

HyperText Transfer Protocol
HTTP v1.1

hussein suleman
uct cs honours 2009

What is HTTP?

 Protocol for transfer of data between Web
servers and Web clients (browsers).

 Popular Web servers:
 Apache HTTPD
 JBoss
 Tomcat

 Popular Web clients:
 Firefox
 Opera
 wget

 Defined formally by IETF as RFC2616.

Abstract

“The Hypertext Transfer Protocol (HTTP) is an application-
level protocol for distributed, collaborative, hypermedia
information systems. It is a generic, stateless, protocol
which can be used for many tasks beyond its use for
hypertext, such as name servers and distributed object
management systems, through extension of its request
methods, error codes and headers [47]. A feature of HTTP
is the typing and negotiation of data representation,
allowing systems to be built independently of the data
being transferred.

HTTP has been in use by the World-Wide Web global
information initiative since 1990. This specification
defines the protocol referred to as "HTTP/1.1", and is an
update to RFC 2068 [33].”

Basic Operation

Client Server

Request Method

URL / RelativeURL

Request Headers

Request Body

Protocol Version

Status Code

Response Headers

Response Body

Example HTTP Communication

 Client→Server:
GET / HTTP/1.1
Host: www.cs.uct.ac.za

 Server→Client:
HTTP/1.1 200 OK
Content-type: text/html
Content-length: 1024

<html>Really old webpage!</html>

HTTP Request

Method Description

OPTIONS capabilities of resource/server

GET retrieve resource

HEAD retrieve headers for resource

POST submit data to server

PUT replace/insert resource on server

DELETE remove resource from server

TRACE trace request route through Web

 Format:
 Method URI HttpVersion

Amaya

Tim Berners-Lee’s WWW Vision

 The WWW is meant to be a place for accessing
and authoring content, not just the former.

 Amaya is W3C’s experimental 2-way browser
that works with their 2-way server Jigsaw.

 Is access more important than content
creation? Why (not)?

URLs, URNs and URIs
 Every resource accessible through HTTP is identified by a Uniform

Resource Location (URL), which is a location-specific identifier.
 For example,

 http://www.cs.uct.ac.za:80/
 ftp://ftp.cs.uct.ac.za/

 A Uniform Resource Identifier (URI) is a standard format
(<scheme>:<identifier>) generic identifier.
 For example,

 mailto:hussein@cs.uct.ac.za
 oai:www.ndltd.org:123456-789

 A Uniform Resource Name (URN) is one example of a location-
independent URI.
 For example,

 urn:isbn:123-456-789

 Note: Every URL and URN is also a URI!

http://www.cs.uct.ac.za/
ftp://ftp.cs.uct.ac.za/

HTTP Response

Status Reason Description

200 OK Successful request

206 Partial Content Successful request for partial content

301 Moved Permanently Resource has been relocated

304 Not Modified Conditional GET but resource has not
changed

400 Bad Request Request not understood

403 Forbidden Access to resource not allowed

404 Not Found URI/resource not found on server

500 Internal Server Error Unexpected error

 Format:
 HTTPVersion StatusCode Reason

HTTP Headers
 Accept: Indicates which data formats are acceptable.

 Accept: text/html, text/plain

 Content-Language: Language of the content

 Content-Language: en

 Content-Length: Size of message body

 Content-Length: 1234

 Content-Type: MIME type of content body

 Content-Type: text/html

 Date: Date of request/response

 Date: Tue, 15 Nov 1994 08:12:31 GMT

 Expires: When content is no longer valid

 Expires: Tue, 15 Nov 1994 08:12:31 GMT

 Host: Machine that request is directed to

 Host: www.cs.uct.ac.za

 Location: Redirection to a different resource

 Location: http://myserver.org/

 Retry-After: Indicates that client must try again in future

 Retry-After: 120

http://www.cs.uct.ac.za/
http://myserver.org/

Other HTTP Features

 Authentication
 Persistent connections
 GET-if-modified
 Byte ranges
 Content type negotiation
 Cache control
 Proxy support

Non-static content

 HTTP can support content that is not static.
 For a GET request, data is appended to the

request – for a POST request, data is contained
in the request body.

 Responses are generated by a piece of
software and are similar to the non-static
version.

Common Gateway Interface
 Common Gateway Interface (CGI) defines how

parameters are passed to Web applications.
 For a GET request, the URL contains

 http://host:port/path/file?var1=value1&var2=value2&var3=value3
...

 These are called URL-encoded parameters.

 The part beyond ‘?’ is passed in the environment of the
Web application as a QUERY_STRING.

 The application interprets the QUERY_STRING,
generates an HTTP response and writes it to stdout,
with at least a Content-type header.

 HTML forms generate GET requests that can easily be
converted to support CGI.

file:///home/hussein/Desktop/csc4000w_2009_dl_slides/http://host:port/path/file?var1=value1&var2=value2&var3=value3

Notes on URL-Encoding

Character Regular Use Code

: Separates port from host %3A

? Separates parameters from
file

%3F

= Separates var from value %3D

& Separates parameters %26

+ Indicates a space %2B

/ Separates elements of path %2F

 URLs assign special semantics for some characters so if
they are needed, they must be inserted as character
codes.
 e.g., http://host:port/test?math=1+%2B+2+%3D+3

CGI POST

-----------------------------41184676334
Content-Disposition: form-data;
name="var1" something
-----------------------------41184676334
Content-Disposition: form-data; name="var2"; filename="testpost.html“
Content-Type: text/html

<html>
<body>
<form action="http://banzai.cs.uct.ac.za/~hussein/cgi-bin/testpost/testpost.pl"
method="POST" enctype="multipart/form-data">
<input type="text" name="var1" size="40"/>

<input type="file" name="var2" size="40"/>

<input type="submit"/>
</form>
</body>
</html>
-----------------------------41184676334--

recursive
example

if you fill in
the form
embedded
here, this is
the data that
gets sent to
the server

 GET cannot handle file uploads.
 File uploads are handled as Multipart-MIME

messages sent from the client to the server.

Not-So-Common Gateway Interfaces

 Instead of QUERY_STRING and stdin and stdout
for data,

 Java servlets use methods to acquire
parameters and output data.

 PHP defines global variables for GET/POST
query parameters.

References
 Achour, Mehdi, Friedhelm Betz, Antony Dovgal, Nuno Lopes, Philip

Olson, Georg Richter, Damien Seguv and Jakub Vrana (2006) PHP
Manual. Available http://www.php.net/manual/en/

 Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee (1999) Hypertext Transfer Protocol – HTTP/1.1,
RFC 2616, Network Working Group, IETF. Available
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

 NCSA (1996) The Common Gateway Interface. Available http://
hoohoo.ncsa.uiuc.edu/cgi/

 URI Planning Interest Group (2001) URIs, URLs, and URNs:
Clarifications and Recommendations 1.0, W3C. Available
http://www.w3.org/TR/uri-clarification/

 Wilson, Brian (2003) URL Encoding. Available http://
www.blooberry.com/indexdot/html/topics/urlencoding.htm

http://www.php.net/manual/en/
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
http://hoohoo.ncsa.uiuc.edu/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/
http://www.w3.org/TR/uri-clarification/
http://www.blooberry.com/indexdot/html/topics/urlencoding.htm
http://www.blooberry.com/indexdot/html/topics/urlencoding.htm

	HyperText Transfer Protocol HTTP v1.1
	What is HTTP?
	Abstract
	Basic Operation
	Example HTTP Communication
	HTTP Request
	Amaya
	Tim Berners-Lee’s WWW Vision
	URLs, URNs and URIs
	HTTP Response
	HTTP Headers
	Other HTTP Features
	Non-static content
	Common Gateway Interface
	Notes on URL-Encoding
	CGI POST
	Not-So-Common Gateway Interfaces
	References

