

Information Retrieval

hussein suleman
uct cs honours 2009

Introduction
 Information retrieval is the process of

locating the most relevant information to
satisfy a specific information need.

 Traditionally, we used databases and
keywords to locate information.

 The most common modern application is
search engines.

 Historically, the technology has been
developed from the mid-50’s onwards,
with a lot of fundamental research
conducted pre-Internet!

Terminology
 Term

 Individual word, or possibly phrase, from a
document.

 Document
 Set of terms, usually identified by a document

identifier (e.g., filename).
 Query

 Set of terms (and other semantics) that are a
machine representation of the user’s needs.

 Relevance
 Whether or not a given document matches a

given query.

More Terminology
 Searching/Querying

 Retrieving all the possibly relevant results for a
given query.

 Indexing
 Creating indices of all the documents/data to

enable faster searching/quering.

 Ranked retrieval
 Retrieval of a set of matching documents in

decreasing order of estimated relevance to the
query.

Models for IR
 Boolean model

 Queries are specified as boolean expressions
and only documents matching those criteria
are returned.

 e.g., apples AND bananas

 Vector model
 Both queries and documents are specified as

lists of terms and mapped into an n-
dimensional space (where n is the number of
possible terms). The relevance then depends
on the angle between the vectors.

Vector Model in 2-D

bananas

a
p
p
le

s

θ1

θ2

query

document2

document1
θ1 < θ2
This implies that document1
is more relevant to the query
than document2.

Extended Boolean Models
 Any modern search engine that returns no

results for a very long query probably uses
some form of boolean model!
 Altavista, Google, etc.
 Vector models are not as efficient as boolean

models.

 Some extended boolean models filter on
the basis of boolean matching and rank on
the basis of term weights (tf.idf).

Filtering and Ranking
 Filtering

 Removal of non-relevant results.
 Filtering restricts the number of results to

those that are probably relevant.

 Ranking
 Ordering of results according to calculated

probability of relevance.
 Ranking puts the most probably relevant

results at the “top of the list”.

Efficient Ranking
 Comparing every document to each query

is very slow.
 Use inverted files to speed up ranking

algorithms by possibly ignoring:
 terms with zero occurrence in each document.
 documents where terms have a very low

occurrence value.

 We are only interested in those documents
that contain the terms in the query.

Inverted (Postings) Files

bananas bananas apples
bananas bananas

apples bananas apples apples

Doc2

Doc1

 An inverted file for a term contains a list of
document identifiers that correspond to that
term.

Doc1: 1
Doc2: 4

Doc1: 3
Doc2: 1

5bananas

4applesoriginal
documents

inverted files

Implementation of Inverted Files
 Each term corresponds to a list of

weighted document identifiers.
 Each term can be a separate file, sorted by

weight.
 Terms, documents identifiers and weights can

be stored in an indexed database.

 Search engine indices can easily take 2-6
times as much space as the original data.
 The MG system (part of Greenstone) uses

index compression and claims 1/3 as much
space as the original data.

Inverted File Optimisations
 Use identifier hash/lookup table:

 apples: 1 3 2 1
 bananas: 1 1 2 4

 Sort weights and use differential values:
 apples: 2 1 1 2
 bananas: 1 1 2 3

 Aim: reduce values as much as possible so
that optimal variable-length encoding
schemes can be applied.
 (For more information, read up on basic

encoding schemes in data compression)

IF Optimisation Example

WId

15

54

73

22

31

WId

73

54

31

22

15

W
’

Id

23

24

11

12

15

WId

73

54

31

22

15
Original
inverted
file

Sort on
W(eight)
column

To get the original data:
W[1] = W’[1]

W[i] = W[i-1]+W’[i]

Subtract
each weight
from the
previous
value

Transformed
inverted file –
this is what is
encoded and
stored

Note: We can do
this with the ID
column instead!

Boolean Ranking
 Assume a document D and a query Q are both n-

term vectors.
 Then the inner product is a measure of how well D

matches Q:

∑
=

=⋅=
n

t
tt qdQDSimilarity

1

.

∑
=

=
n

t
tt qdQD

Similarity
1

.
1

 Normalise so that long vectors do not adversely
affect the ranking.

Boolean Ranking Example
 Suppose we have the document vectors D1:(1, 1, 0)

and D2:(4, 0, 1) and the query (1, 1, 0).
 Non-normalised ranking:

 D1: (1, 1, 0)·(1, 1, 0) = 1.1 + 1.1 + 0.0 = 2
 D2: (4, 0, 1)·(1, 1, 0) = 4.1 + 0.1 + 1.0 = 4
 Ranking: D2, D1

 Normalised ranking:

20.01.11.11
1

2
,1 =++== ∑

=

m

i
idD

 D1: (1, 1, 0)·(1, 1, 0)/√2.√2 = (1.1 + 1.1 + 0.0)/2 = 1
 D2: (4, 0, 1)·(1, 1, 0)/√17.√2 = (4.1 + 0.1 + 1.0)/√34 = 4/√34
 Ranking: D1, D2

171.10.04.42
1

2
,2 =++== ∑

=

m

i
idD

20.01.11.1
1

2 =++== ∑
=

m

i
iqQ

tf.idf
 Term frequency (tf)

 The number of occurrences of a term in a
document – terms which occur more often in a
document have higher tf.

 Document frequency (df)
 The number of documents a term occurs in –

popular terms have a higher df.

 In general, terms with high “tf” and low
“df” are good at describing a document
and discriminating it from other
documents – hence tf.idf (term frequency *
inverse document frequency).

Inverse Document Frequency
 Common formulation:

 Where ft is the number of documents term t
occurs in (document frequency) and N is the total
number of documents.

 Many different formulae exist – all increase the
importance of rare terms.

 Now, weight the query in the ranking formula to
include an IDF with the TF.

w t= loge 1 Nf t 

Similarity=
1

∣D∣∣Q∣
∑
t=1

n

d t . log e1Nf t  .qt

Term Frequency
 Scale term frequency so that the subsequent

occurrences have a lesser effect than earlier
occurrences.

 Choose only terms in Q - as this is boolean - so
prevent every term having a value of at least 1
(where before they were 0).

 Lastly, eliminate |Q| since it is constant.

Similarity=
1

∣D∣∣Q∣
∑

t∈Q∩D
1 loge f d , t . log e1Nf t 

Similarity=
1
∣D∣

∑
t∈Q∩D

1log e f d , t  . loge 1 Nf t 

Vector Ranking
 In n-dimensional Euclidean space, the angle

between two vectors is given by:

YX

YX ⋅=θcos

 Note:
 cos 90 = 0 (orthogonal vectors shouldn’t match)
 cos 0 = 1 (corresponding vectors have a perfect match)

 Cosine θ is therefore a good measure of similarity
of vectors.

 Substituting good tf and idf formulae in X.Y, we
then get a similar formula to before (except we
use all terms t[1..N]).

Term Document Space
 A popular view of inverted files is as a matrix of

terms and documents.

41Bananas

13Apples

Doc2Doc1

documents

terms

Clustering
 In term-document space, documents that

are similar will have vectors that are
“close together”.

 Even if a specific term of a query does not
match a specific document, the clustering
effect will compensate.

 Centroids of the clusters can be used as
cluster summaries.

 Explicit clustering can be used to reduce
the amount of information in T-D space.

Evaluation of Retrieval Algorithms
 Recall

 The number of relevant results returned.
 Recall = number retrieved and relevant / total number relevant

 Precision
 The number of returned results that are relevant.
 Precision = number retrieved and relevant / total number retrieved

 F-measure
 F = (2*R*P)/(R+P)

 Relevance is determined by an “expert” in recall/
precision experiments. High recall and high
precision are desirable.

Typical Recall-Precision Graph

recall

p
re

ci
si

o
n

In general, recall and
precision are at odds in an IR
system – better performance
in one means worse
performance in the other!

Other Techniques to Improve IR
 Stemming, Stopping
 Thesauri
 Metadata vs. Fulltext
 Relevance Feedback
 Inference Engines
 LSI
 PageRank
 HITS

Stemming and Case Folding
 Case Folding

 Changing all terms to a standard case, e.g.,
lowercase

 Stemming
 Changing all term forms to canonical versions.

 e.g., studying, studies and study map to “study”.

 Stemming must avoid mapping words with
different roots to the same term.

 Porter’s Stemming Algorithm for English
applies a set of rules based on patterns of
vowel-consonant transitions.

Stopping
 Stopwords are common words that do not

help in discriminating in terms of
relevance.
 E.g., in for the a an of on

 Stopwords are not standard and depend on
application and language.

Thesauri
 A thesaurus is a collection of words and

their synonyms.
 e.g., According to Merriam-Webster, the

synonyms for “library” are “archive” and
“athenaeum”.

 An IR system can include all synonyms of
a word to increase recall, but at a lower
precision.

 Thesauri can also be used for cross-
language retrieval.

Metadata vs. Full-text
 Text documents can be indexed by their

contents or by their metadata.
 Metadata indexing is faster and uses less

storage.
 Metadata can be obtained more easily

(e.g., using open standards) while full text
is often restricted.

 Full-text indexing does not rely on good
quality metadata and can find very
specific pieces of information.

Relevance Feedback
 After obtaining results, a user can specify

that a given document is relevant or non-
relevant.

 Terms that describe a (non-)relevant
document can then be used to refine the
query – an automatic summary of a
document is usually better at describing
the content than a user.

Inference Engines
 Machine learning can be used to digest a

document collection and perform query
matching.
 Connectionist models (e.g., neural networks)
 Decision trees (e.g., C5)

 Combined with traditional statistical
approaches, this can result in increased
recall/precision.

Latent Semantic Indexing
 LSI is a technique to reduce the

dimensionality of the term-document
space, resulting in greater speed and
arguably better results.

 Problems with traditional approach:
 Synonymy – two different words that mean the

same thing.
 Polysemy – two different meanings for a single

word.
 LSI addresses both of these problems by

transforming data to its “latent
semantics.”

Singular Value Decomposition
 SVD is used in LSI to factor the term-document

matrix into constituents.
 Calculations are based on eigenvalues and

eigenvectors - many Mathematics packages can
compute an SVD as a built-in function.

A=U∑V T=[
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

] [
*

*
*] [* * *
* * *
* * *]

SVD Sizes
 If A, the term-document matrix, is an mxn

matrix,
 U is an mxm orthogonal matrix
 V is an nxn orthogonal matrix
 ∑ is the mxn diagonal matrix containing values

on its diagonal in decreasing order of value.
i.e., σ1 ≥ σ2 ≥ σ3 ≥ … ≥ σmin(m,n)

 Note:
 m is the number of terms, represented by the

rows of A
 n is the number of documents, represented by

the columns of A

Approximation
 Replace ∑ with an approximation where the

smallest values are zero.

∑= [
1.578

1 .320
1 .111

0.870
0 .230

]
becomes

∑= [
1.578

1 .320
1 .111

0.0
0 .0

]

Effect of Approximation

 If only p values are retained in ∑, then only
p columns of U and p rows of V must be
stored.

A '=U '∑ ' V T '=[
* * 0 0 0
* * 0 0 0
* * 0 0 0
* * 0 0 0
* * 0 0 0

] [
*
*
0][* * *
* * *
0 0 0]

LSI Example 1/2
 Consider a document collection:

 D1: apples bananas bananas bananas pears
 D2: bananas bananas bananas
 D3: pears

 With query: q=“apples”
 The term-document matrix will be:

101pears

033bananas

001apples

D3D2D1

LSI Example 2/3

LSI Example 3/3

Note: in practice, LSI does not generate the approximated matrix.

Advantages of LSI
 Smaller vectors and pre-calculations result

in faster query matching.
 Smaller term-document space – less

storage required.
 Automatic clustering of documents based

on mathematical similarity (basis vector
calculations).

 Elimination of “noise” in document
collection.

Web Data Retrieval
 Web crawlers are often bundled with

search engines to obtain data from the
WWW.

 Crawlers follow each link (respecting
robots.txt exclusions) in a hypertext
document, obtaining an ever-expanding
collection of data for indexing/querying.

 WWW search engines operate as follows:

crawl queryindex

PageRank
 PageRank (popularised by Google)

determines the rank of a document based
on the number of documents that point to
it, implying that it is an “authority” on a
topic.

 In a highly connected network of
documents with lots of links, this works
well. In a diverse collection of separate
documents, this will not work.

 Google uses other techniques as well!

Simple PageRank
 PageRank works with a complete collection of

linked documents.
 Pages are deemed important if

 They are pointed to by many other pages,
 Each also of high importance.

 Define
 r(i) = rank of a page
 B(i)= set of pages that point to i
 N(i) = number of pages that i points to

∑
∈

=
)(

)(/)()(
iBj

jNjrir

Interpretation: r(j) distributes its weight evenly to all its N(j) children

Computing PageRank
 Choose a random set of ranks and iterate

until the relative order doesn’t change.

 Basic Algorithm:
 s = random vector
 Compute new r(i) for each node
 If |r-s|<ε, r is the PageRank vector
 s = r, and iterate.

PageRank Example

123

2

4

2

B(i)

14

13

32

11

N(i)Node

1

2 3

4

0.25

0.25

0.25

0.25

r0(i)

0.361

0.194

0.25

0.194

r3(i)

0.375…0.250.5834

0.125…0.0830.0833

0.375…0.5830.252

0.125…0.0830.0831

r200(i)…r2(i)r1(i)Node

R=0.125

R=0.125

R=0.375

R=0.375

Sinks and Leaks
 In practice, some pages have no outgoing

or incoming links.
 A “rank sink” is a set of connected pages

with no outgoing links.
 A “rank leak” is a single page with no

outgoing link.
 PageRank does the following:

 Remove all leak nodes.
 Introduce random perturbations into the

iterative algorithm.

HITS
 Hypertext Induced Topic Search ranks the

results of an IR query based on authorities
and hubs.

 An authority is a page that many pages
(hubs) point to.
 E.g., www.uct.ac.za

 A hub is a page that points to many pages
(authorities).
 E.g., yahoo.com

HITS Algorithm 1/2
 Submit the query to an IR system and get

a list of results.

 Create a focused subgraph as follows:
 Let R = set of all result pages
 Let S = R
 Let Q = {}
 For each page p in R

 Add to Q all pages in S that p points to
 Add to Q all pages (up to a limit) in S that point to p

HITS Algorithm 2/2
 Initialise ai and hi for each node i to

arbitrary values.

 Repeat until convergence:
 ai = sum of hj values of all pages pointing to it

 hi = sum of aj values of all pages it points to

 Normalise the sum of ai values to 1

 Normalise the sum of hi values to 1

HITS Example

123

2

4

2

B(i)

24

43

1342

41

F(i)Node

1

2 3

4

0.5

0.25

0.00

0.25

a200(i)

0.25

0.25

0.25

0.25

a0(i)

0.083

0.25

0.417

0.25

h1(i)

0.00…0.50.254

0.25…0.1670.253

0.5…0.1670.252

0.25…0.1670.251

h200(i)…a1(i)h0(i)Node

a=0.25
h=0.25

a=0.25
h=0.25

a=0
h=0.5

a=0.5
h=0

HITS vs PageRank vs LSI vs …
 Under what circumstances can we use

each?
 What are the advantages/disadvantages of

each?
 How do they compare to traditional

boolean/vector searching?

References
 Arasu, A., J. Cho, H. Garcia-Molina, A. Paepcke and S.

Raghavan (2001). “Searching the Web”, ACM Transactions
on Internet Technology, Vol 1., No. 1, August 2001, pp. 2-
43.

 Bell, T. C., J. G. Cleary and I. H. Witten (1990) Text
Compression, Prentice Hall, New Jersey.

 Berry, M. W. and M. Browne (1999) Understanding Search
Engines: Mathematical Modelling and Text Retrieval, SIAM,
Philadelphia.

 Deerwester, S., S. T. Dumais, T. K. Landauer, G. W. Furnas
and R. A. Harshman (1990). “Indexing by latent semantic
analysis”, Journal of the Society for Information Science,
Vol. 41, No. 6, pp. 391-407.

 Witten, I. H., A. Moffat and T. C. Bell (1999) Managing
Gigabytes, Morgan Kauffman, San Francisco.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

