Information Retrieval

hussein suleman uct cs honours 2009

Introduction

- Information retrieval is the process of locating the most relevant information to satisfy a specific information need.
- Traditionally, we used databases and keywords to locate information.
- The most common modern application is search engines.
- Historically, the technology has been developed from the mid-50's onwards, with a lot of fundamental research conducted pre-Internet!

Terminology

Term

Individual word, or possibly phrase, from a document.

Document

- Set of terms, usually identified by a document identifier (e.g., filename).
- Query
 - Set of terms (and other semantics) that are a machine representation of the user's needs.

Relevance

Whether or not a given document matches a given query.

More Terminology

Searching/Querying

Retrieving all the possibly relevant results for a given query.

Indexing

Creating indices of all the documents/data to enable faster searching/quering.

Ranked retrieval

Retrieval of a set of matching documents in decreasing order of estimated relevance to the query.

Models for IR

Boolean model

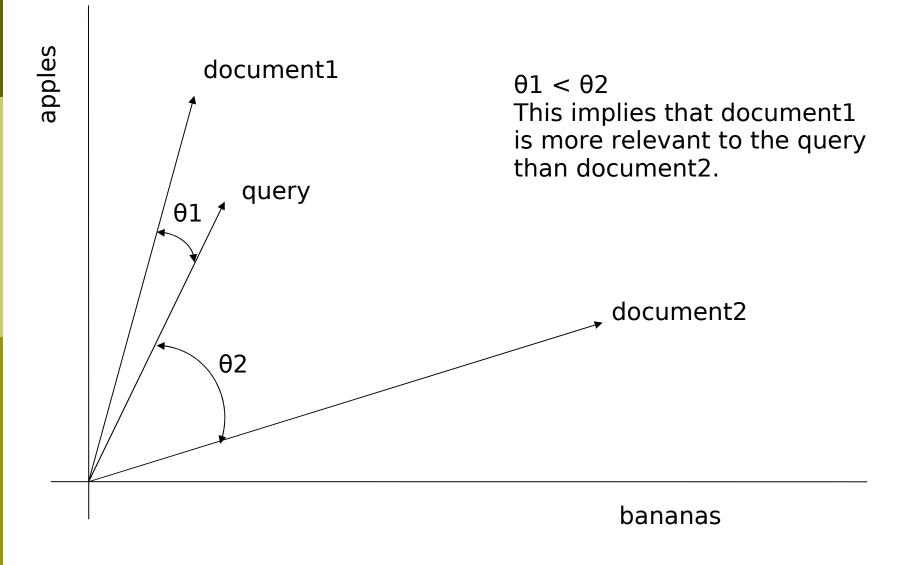
 Queries are specified as boolean expressions and only documents matching those criteria are returned.

e.g., apples AND bananas

Vector model

Both queries and documents are specified as lists of terms and mapped into an *n*dimensional space (where *n* is the number of possible terms). The relevance then depends on the angle between the vectors.

Vector Model in 2-D



Extended Boolean Models

- Any modern search engine that returns no results for a very long query probably uses some form of boolean model!
 - Altavista, Google, etc.
 - Vector models are not as efficient as boolean models.
- Some extended boolean models filter on the basis of boolean matching and rank on the basis of term weights (tf.idf).

Filtering and Ranking

Filtering

- Removal of non-relevant results.
- Filtering restricts the number of results to those that are probably relevant.
- Ranking
 - Ordering of results according to calculated probability of relevance.
 - Ranking puts the most probably relevant results at the "top of the list".

Efficient Ranking

- Comparing every document to each query is very slow.
- Use inverted files to speed up ranking algorithms by possibly ignoring:
 - terms with zero occurrence in each document.
 - documents where terms have a very low occurrence value.
- We are only interested in those documents that contain the terms in the query.

Inverted (Postings) Files

An inverted file for a term contains a list of document identifiers that correspond to that term.

Doc1	apples bananas apples apples				
Doc2	bananas bananas apples bananas bananas				
original documents		apples	Doc1: 3 Doc2: 1		

inverted files

		_
	Doc2: 1	
bananas	Doc1: 1	5
	Doc2: 4	

4

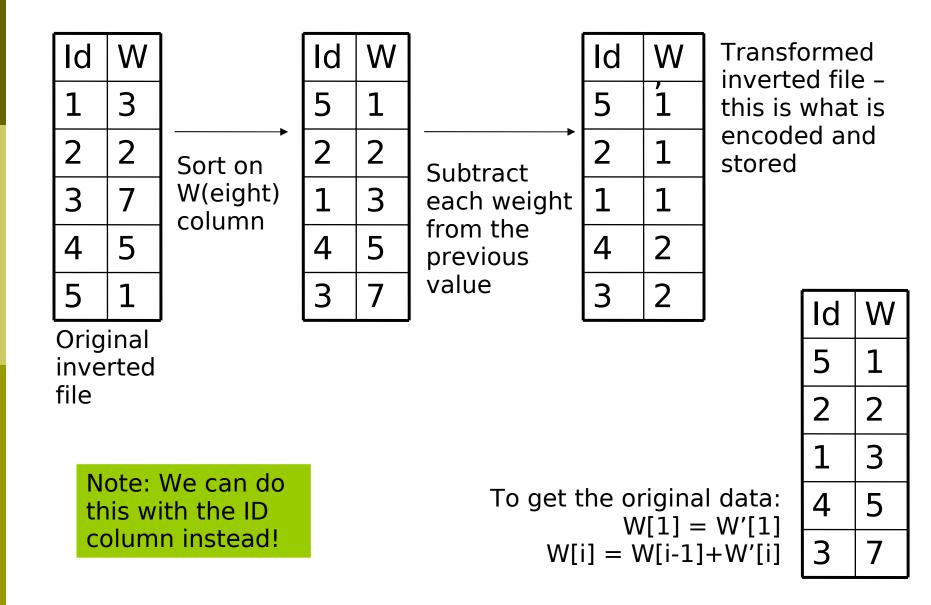
Implementation of Inverted Files

- Each term corresponds to a list of weighted document identifiers.
 - Each term can be a separate file, sorted by weight.
 - Terms, documents identifiers and weights can be stored in an indexed database.
- Search engine indices can easily take 2-6 times as much space as the original data.
 - The MG system (part of Greenstone) uses index compression and claims 1/3 as much space as the original data.

Inverted File Optimisations

- Use identifier hash/lookup table:
 - apples: 1 3 2 1
 - bananas: 1 1 2 4
- Sort weights and use differential values:
 - apples: 2 1 1 2
 - bananas: 1 1 2 3
- Aim: reduce values as much as possible so that optimal variable-length encoding schemes can be applied.
 - (For more information, read up on basic encoding schemes in data compression)

IF Optimisation Example



Boolean Ranking

- Assume a document D and a query Q are both nterm vectors.
- Then the inner product is a measure of how well D matches Q:

Similarity =
$$D \cdot Q = \sum_{t=1}^{n} d_t \cdot q_t$$

Normalise so that long vectors do not adversely affect the ranking.

Similarity =
$$\frac{1}{|D||Q|} \sum_{t=1}^{n} d_t \cdot q_t$$

Boolean Ranking Example

- Suppose we have the document vectors D1:(1, 1, 0) and D2:(4, 0, 1) and the query (1, 1, 0).
- Non-normalised ranking:
 - D1: $(1, 1, 0) \cdot (1, 1, 0) = 1.1 + 1.1 + 0.0 = 2$
 - D2: $(4, 0, 1) \cdot (1, 1, 0) = 4.1 + 0.1 + 1.0 = 4$
 - Ranking: D2, D1

Normalised ranking:

$$\begin{aligned} \left| D1 \right| &= \sqrt{\sum_{i=1}^{m} d_{1,i}^2} = \sqrt{1.1 + 1.1 + 0.0} = \sqrt{2} \qquad \left| D2 \right| = \sqrt{\sum_{i=1}^{m} d_{2,i}^2} = \sqrt{4.4 + 0.0 + 1.1} = \sqrt{17} \\ \left| Q \right| &= \sqrt{\sum_{i=1}^{m} q_i^2} = \sqrt{1.1 + 1.1 + 0.0} = \sqrt{2} \end{aligned}$$

D1: $(1, 1, 0) \cdot (1, 1, 0) / \sqrt{2} \cdot \sqrt{2} = (1.1 + 1.1 + 0.0) / 2 = 1$

- D2: $(4, 0, 1) \cdot (1, 1, 0) / \sqrt{17} \cdot \sqrt{2} = (4.1 + 0.1 + 1.0) / \sqrt{34} = 4 / \sqrt{34}$
- Ranking: D1, D2

tf.idf

Term frequency (tf)

The number of occurrences of a term in a document – terms which occur more often in a document have higher tf.

Document frequency (df)

- The number of documents a term occurs in popular terms have a higher df.
- In general, terms with high "tf" and low "df" are good at describing a document and discriminating it from other documents – hence tf.idf (term frequency * inverse document frequency).

Inverse Document Frequency

Common formulation:

$$w_t = \log_e \left(1 + \frac{N}{f_t} \right)$$

- Where f_t is the number of documents term t occurs in (document frequency) and N is the total number of documents.
- Many different formulae exist all increase the importance of rare terms.
- Now, weight the query in the ranking formula to include an IDF with the TF.

Similarity =
$$\frac{1}{|D||Q|} \sum_{t=1}^{n} d_t \cdot \log_e \left(1 + \frac{N}{f_t}\right) \cdot q_t$$

Term Frequency

- Scale term frequency so that the subsequent occurrences have a lesser effect than earlier occurrences.
- Choose only terms in Q as this is boolean so prevent every term having a value of at least 1 (where before they were 0).

Similarity =
$$\frac{1}{|D||Q|} \sum_{t \in Q \cap D} \left(1 + \log_e f_{d,t}\right) \cdot \log_e \left(1 + \frac{N}{f_t}\right)$$

Lastly, eliminate |Q| since it is constant.

$$Similarity = \frac{1}{|D|} \sum_{t \in Q \cap D} \left(1 + \log_e f_{d,t} \right) \cdot \log_e \left(1 + \frac{N}{f_t} \right)$$

Vector Ranking

In *n*-dimensional Euclidean space, the angle between two vectors is given by:

$$\cos\theta = \frac{X \cdot Y}{|X||Y|}$$

Note:

- cos 90 = 0 (orthogonal vectors shouldn't match)
- cos 0 = 1 (corresponding vectors have a perfect match)
- Cosine θ is therefore a good measure of similarity of vectors.
- Substituting good tf and idf formulae in X.Y, we then get a similar formula to before (except we use all terms t[1..N]).

Term Document Space

A popular view of inverted files is as a matrix of terms and documents.

documents

		Doc1	Doc2
terms	Apples	3	1
	Bananas	1	4

Clustering

- In term-document space, documents that are similar will have vectors that are "close together".
- Even if a specific term of a query does not match a specific document, the clustering effect will compensate.
- Centroids of the clusters can be used as cluster summaries.
- Explicit clustering can be used to reduce the amount of information in T-D space.

Evaluation of Retrieval Algorithms

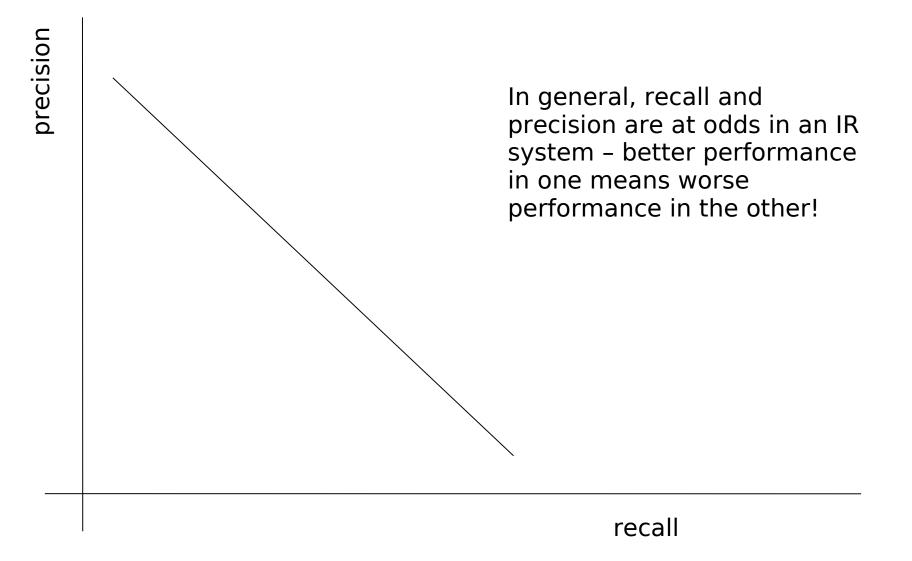
Recall

- The number of relevant results returned.
- Recall = number retrieved and relevant / total number relevant
- Precision
 - The number of returned results that are relevant.
 - Precision = number retrieved and relevant / total number retrieved

F-measure

- F = (2*R*P)/(R+P)
- Relevance is determined by an "expert" in recall/ precision experiments. High recall and high precision are desirable.

Typical Recall-Precision Graph



Other Techniques to Improve IR

- Stemming, Stopping
- Thesauri
- Metadata vs. Fulltext
- Relevance Feedback
- Inference Engines
- LSI
- PageRank
- HITS

Stemming and Case Folding

Case Folding

Changing all terms to a standard case, e.g., lowercase

Stemming

- Changing all term forms to canonical versions.
 e.g., studying, studies and study map to "study".
- Stemming must avoid mapping words with different roots to the same term.
- Porter's Stemming Algorithm for English applies a set of rules based on patterns of vowel-consonant transitions.

Stopping

- Stopwords are common words that do not help in discriminating in terms of relevance.
 - E.g., in for the a an of on
- Stopwords are not standard and depend on application and language.

Thesauri

- A thesaurus is a collection of words and their synonyms.
 - e.g., According to Merriam-Webster, the synonyms for "library" are "archive" and "athenaeum".
- An IR system can include all synonyms of a word to increase recall, but at a lower precision.
- Thesauri can also be used for crosslanguage retrieval.

Metadata vs. Full-text

- Text documents can be indexed by their contents or by their metadata.
- Metadata indexing is faster and uses less storage.
- Metadata can be obtained more easily (e.g., using open standards) while full text is often restricted.
- Full-text indexing does not rely on good quality metadata and can find very specific pieces of information.

Relevance Feedback

- After obtaining results, a user can specify that a given document is relevant or nonrelevant.
- Terms that describe a (non-)relevant document can then be used to refine the query – an automatic summary of a document is usually better at describing the content than a user.

AltaVista found 825,158 results About

Libweb - Library WWW Servers

A global directory of library home pages ... type, name or other information. United States Academic **Libraries** Public **Libraries** National **Libraries** and Library Organizations State **Libraries** Regional ... sunsite.berkeley.edu/Libweb • Refreshed in past 48 hours • <u>Related Pages</u> <u>More pages from sunsite.berkeley.edu</u>

Inference Engines

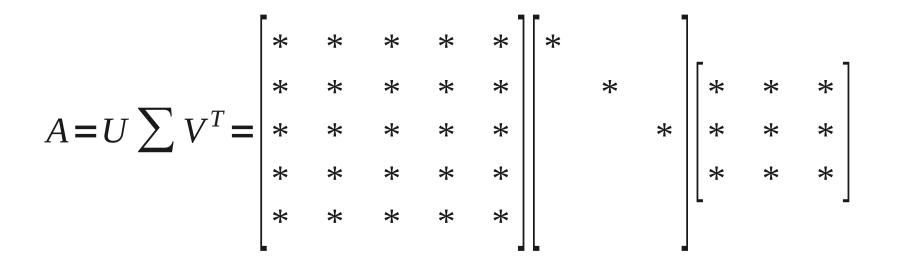
- Machine learning can be used to digest a document collection and perform query matching.
 - Connectionist models (e.g., neural networks)
 - Decision trees (e.g., C5)
- Combined with traditional statistical approaches, this can result in increased recall/precision.

Latent Semantic Indexing

- LSI is a technique to reduce the dimensionality of the term-document space, resulting in greater speed and arguably better results.
- Problems with traditional approach:
 - Synonymy two different words that mean the same thing.
 - Polysemy two different meanings for a single word.
- LSI addresses both of these problems by transforming data to its "latent semantics."

Singular Value Decomposition

- SVD is used in LSI to factor the term-document matrix into constituents.
 - Calculations are based on eigenvalues and eigenvectors - many Mathematics packages can compute an SVD as a built-in function.



SVD Sizes

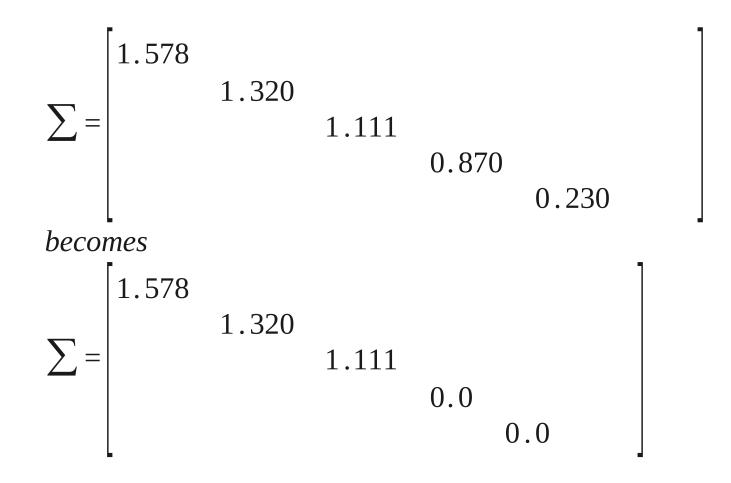
- If A, the term-document matrix, is an mxn matrix,
 - U is an mxm orthogonal matrix
 - V is an nxn orthogonal matrix
 - ∑ is the mxn diagonal matrix containing values on its diagonal in decreasing order of value. i.e., $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge ... \ge \sigma_{\min(m,n)}$

Note:

- m is the number of terms, represented by the rows of A
- n is the number of documents, represented by the columns of A

Approximation

■ Replace ∑ with an approximation where the smallest values are zero.



Effect of Approximation

$$A' = U' \sum V'' = \begin{bmatrix} * & * & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} * & & \\ & * & \\ & & 0 \end{bmatrix} \begin{bmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 0 \end{bmatrix}$$

If only p values are retained in ∑, then only p columns of U and p rows of V must be stored.

LSI Example 1/2

Consider a document collection:

- D1: apples bananas bananas bananas pears
- D2: bananas bananas bananas
- D3: pears
- With query: q="apples"
- The term-document matrix will be:

	D1	D2	D3
apples	1	0	0
bananas	3	3	0
pears	1	0	1

LSI Example 2/3

Svd. nb * -STUDENT VERSION-

Specify the term-document matrix.

 $\ln[1]:= \mathbf{A} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{3} & \mathbf{3} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} \end{pmatrix}$

 $Out[1]= \{\{1, 0, 0\}, \{3, 3, 0\}, \{1, 0, 1\}\}$

Create a query vector.

```
\ln[2]:= q = \{1, 0, 0\}
```

Out[2]= $\{1, 0, 0\}$

Find the inner product of the query with every original document (column of A) by matrix/vector multiplication.

Z

ין

3

٦T

7

```
ln[3]= Transpose[A] . q
```

 $Out[3]=\{1, 0, 0\}$

Calculate the Singular Value Decomposition of A into three matrices.

ln[4]:= {U, S, V} = SingularValues[N[A]]

LSI Example 3/3

Svd.nb * -STUDENT VERSION-

Check that the SVD, when multiplied, gives back the original matrix.

```
h[5]:= Transpose[U] . DiagonalMatrix[S] . V
```

Out[5]= { { { 1., -3.88578 × 10⁻¹⁶, 3.33067 × 10⁻¹⁶ }, { 3., 3., -2.498 × 10⁻¹⁶ }, { 1., 2.498 × 10⁻¹⁶, 1. } } З

3_

Create a truncated S diagonal matrix, with all elements being 0 except the first.

h[0]:= Sp = Table[If[i == 1, S[[i]], 0], {i, 1, 3}]

```
Out[6]= {4.36877, 0, 0}
```

Multiply the new S with U and V, to create an approximation of the term-document space.

```
h[7]:= Ap = Transpose[U].DiagonalMatrix[Sp].V
```

Out[7]= {{0.555777, 0.495928, 0.0307295}, {3.15511, 2.81536, 0.174449}, {0.586506, 0.523348, 0.0324285}}

Find the inner product of the query with every document of Ap, the approximated term-document space.

```
h[8]:= Transpose[Ap].q
```

Out[8]= {0.555777, 0.495928, 0.0307295}

Note: in practice, LSI does not generate the approximated matrix.

Advantages of LSI

- Smaller vectors and pre-calculations result in faster query matching.
- Smaller term-document space less storage required.
- Automatic clustering of documents based on mathematical similarity (basis vector calculations).
- Elimination of "noise" in document collection.

Web Data Retrieval

- Web crawlers are often bundled with search engines to obtain data from the WWW.
- Crawlers follow each link (respecting robots.txt exclusions) in a hypertext document, obtaining an ever-expanding collection of data for indexing/querying.
- WWW search engines operate as follows:

PageRank

- PageRank (popularised by Google) determines the rank of a document based on the number of documents that point to it, implying that it is an "authority" on a topic.
- In a highly connected network of documents with lots of links, this works well. In a diverse collection of separate documents, this will not work.
- Google uses other techniques as well!

Simple PageRank

- PageRank works with a complete collection of linked documents.
- Pages are deemed important if
 - They are pointed to by many other pages,
 - Each also of high importance.
- Define
 - r(i) = rank of a page
 - B(i) = set of pages that point to i
 - N(i) = number of pages that i points to

$$r(i) = \sum_{j \in B(i)} \frac{r(j)}{N(j)}$$

Interpretation: r(j) distributes its weight evenly to all its N(j) children

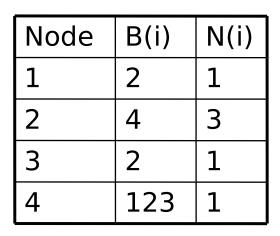
Computing PageRank

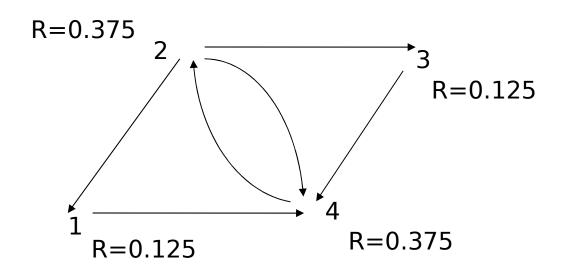
Choose a random set of ranks and iterate until the relative order doesn't change.

Basic Algorithm:

- s = random vector
- Compute new r(i) for each node
- If |r-s|<ε, r is the PageRank vector</p>
- s = r, and iterate.

PageRank Example





Node	r _o (i)	r ₁ (i)	r ₂ (i)	r ₃ (i)	 r ₂₀₀ (i)
1	0.25	0.083	0.083	0.194	 0.125
2	0.25	0.25	0.583	0.25	 0.375
3	0.25	0.083	0.083	0.194	 0.125
4	0.25	0.583	0.25	0.361	 0.375

Sinks and Leaks

- In practice, some pages have no outgoing or incoming links.
- A "rank sink" is a set of connected pages with no outgoing links.
- A "rank leak" is a single page with no outgoing link.
- PageRank does the following:
 - Remove all leak nodes.
 - Introduce random perturbations into the iterative algorithm.

HITS

- Hypertext Induced Topic Search ranks the results of an IR query based on authorities and hubs.
- An authority is a page that many pages (hubs) point to.
 - E.g., www.uct.ac.za
- A hub is a page that points to many pages (authorities).
 - E.g., yahoo.com

HITS Algorithm 1/2

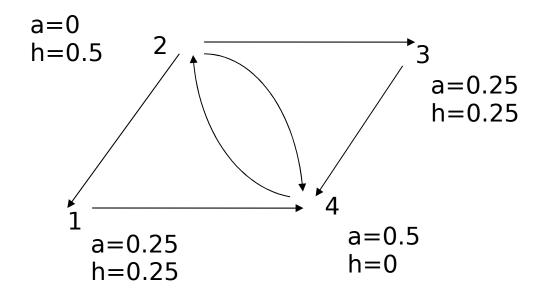
- Submit the query to an IR system and get a list of results.
- Create a focused subgraph as follows:
 - Let R = set of all result pages
 - Let S = R
 - Let Q = { }
 - For each page p in R
 - Add to Q all pages in S that p points to
 - Add to Q all pages (up to a limit) in S that point to p

HITS Algorithm 2/2

- Initialise a_i and h_i for each node i to arbitrary values.
- Repeat until convergence:
 - $a_i = sum of h_j$ values of all pages pointing to it
 - $h_i = sum of a_j$ values of all pages it points to
 - Normalise the sum of a_i values to 1
 - Normalise the sum of h_i values to 1

HITS Example

Node	B(i)	F(i)	
1	2	4	
2	4	134	
3	2	4	
4	123	2	



Node	a ₀ (i)	h _o (i)	a ₁ (i)	h ₁ (i)		a ₂₀₀ (i)	h ₂₀₀ (i)
1	0.25	0.25	0.167	0.25		0.25	0.25
2	0.25	0.25	0.167	0.417		0.00	0.5
3	0.25	0.25	0.167	0.25		0.25	0.25
4	0.25	0.25	0.5	0.083	••••	0.5	0.00

HITS vs PageRank vs LSI vs ...

- Under what circumstances can we use each?
- What are the advantages/disadvantages of each?
- How do they compare to traditional boolean/vector searching?

References

- Arasu, A., J. Cho, H. Garcia-Molina, A. Paepcke and S. Raghavan (2001). "Searching the Web", ACM Transactions on Internet Technology, Vol 1., No. 1, August 2001, pp. 2-43.
- Bell, T. C., J. G. Cleary and I. H. Witten (1990) Text Compression, Prentice Hall, New Jersey.
- Berry, M. W. and M. Browne (1999) Understanding Search Engines: Mathematical Modelling and Text Retrieval, SIAM, Philadelphia.
- Deerwester, S., S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A. Harshman (1990). "Indexing by latent semantic analysis", Journal of the Society for Information Science, Vol. 41, No. 6, pp. 391-407.
- Witten, I. H., A. Moffat and T. C. Bell (1999) Managing Gigabytes, Morgan Kauffman, San Francisco.