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Introduction
 Information retrieval is the process of 

locating the most relevant information to 
satisfy a specific information need.

 Traditionally, we used databases and 
keywords to locate information.

 The most common modern application is 
search engines.

 Historically, the technology has been 
developed from the mid-50’s onwards, 
with a lot of fundamental research 
conducted pre-Internet!



  

Terminology
 Term

 Individual word, or possibly phrase, from a 
document.

 Document
 Set of terms, usually identified by a document 

identifier (e.g., filename).
 Query

 Set of terms (and other semantics) that are a 
machine representation of the user’s needs.

 Relevance
 Whether or not a given document matches a 

given query.



  

More Terminology
 Searching/Querying

 Retrieving all the possibly relevant results for a 
given query.

 Indexing
 Creating indices of all the documents/data to 

enable faster searching/quering.

 Ranked retrieval
 Retrieval of a set of matching documents in 

decreasing order of estimated relevance to the 
query.



  

Models for IR
 Boolean model

 Queries are specified as boolean expressions 
and only documents matching those criteria 
are returned.

 e.g., apples  AND bananas

 Vector model
 Both queries and documents are specified as 

lists of terms and mapped into an n-
dimensional space (where n is the number of 
possible terms). The relevance then depends 
on the angle between the vectors.



  

Vector Model in 2-D
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This implies that document1 
is more relevant to the query 
than document2.



  

Extended Boolean Models
 Any modern search engine that returns no 

results for a very long query probably uses 
some form of boolean model!
 Altavista, Google, etc.
 Vector models are not as efficient as boolean 

models.

 Some extended boolean models filter on 
the basis of boolean matching and rank on 
the basis of term weights (tf.idf).



  

Filtering and Ranking
 Filtering

 Removal of non-relevant results.
 Filtering restricts the number of results to 

those that are probably relevant.

 Ranking
 Ordering of results according to calculated 

probability of relevance.
 Ranking puts the most probably relevant 

results at the “top of the list”.



  

Efficient Ranking
 Comparing every document to each query 

is very slow.
 Use inverted files to speed up ranking 

algorithms by possibly ignoring: 
 terms with zero occurrence in each document.
 documents where terms have a very low 

occurrence value.

 We are only interested in those documents 
that contain the terms in the query.



  

Inverted (Postings) Files
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 An inverted file for a term contains a list of 
document identifiers that correspond to that 
term.

Doc1: 1
Doc2: 4

Doc1: 3
Doc2: 1
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Implementation of Inverted Files
 Each term corresponds to a list of 

weighted document identifiers.
 Each term can be a separate file, sorted by 

weight.
 Terms, documents identifiers and weights can 

be stored in an indexed database.

 Search engine indices can easily take 2-6 
times as much space as the original data.
 The MG system (part of Greenstone) uses 

index compression and claims 1/3 as much 
space as the original data.



  

Inverted File Optimisations
 Use identifier hash/lookup table:

 apples: 1 3 2 1
 bananas: 1 1 2 4

 Sort weights and use differential values:
 apples: 2 1 1 2
 bananas: 1 1 2 3

 Aim: reduce values as much as possible so 
that optimal variable-length encoding 
schemes can be applied.
 (For more information, read up on basic 

encoding schemes in data compression)



  

IF Optimisation Example
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To get the original data:
W[1] = W’[1]

W[i] = W[i-1]+W’[i]

Subtract 
each weight 
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previous 
value

Transformed 
inverted file – 
this is what is 
encoded and 
stored

Note: We can do 
this with the ID 
column instead!



  

Boolean Ranking
 Assume a document D and a query Q are both n-

term vectors.
 Then the inner product is a measure of how well D 

matches Q:
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 Normalise so that long vectors do not adversely 
affect the ranking.



  

Boolean Ranking Example
 Suppose we have the document vectors D1:(1, 1, 0) 

and D2:(4, 0, 1) and the query (1, 1, 0).
 Non-normalised ranking:

 D1: (1, 1, 0)·(1, 1, 0) = 1.1 + 1.1 + 0.0 = 2
 D2: (4, 0, 1)·(1, 1, 0) = 4.1 + 0.1 + 1.0 = 4
 Ranking: D2, D1

 Normalised ranking:
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 D1: (1, 1, 0)·(1, 1, 0)/√2.√2 = (1.1 + 1.1 + 0.0)/2 = 1
 D2: (4, 0, 1)·(1, 1, 0)/√17.√2 = (4.1 + 0.1 + 1.0)/√34 = 4/√34
 Ranking: D1, D2
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tf.idf
 Term frequency (tf) 

 The number of occurrences of a term in a 
document – terms which occur more often in a 
document have higher tf.

 Document frequency (df) 
 The number of documents a term occurs in – 

popular terms have a higher df.

 In general, terms with high “tf” and low 
“df” are good at describing a document 
and discriminating it from other 
documents – hence tf.idf (term frequency * 
inverse document frequency).



  

Inverse Document Frequency
 Common formulation:

 Where ft is the number of documents term t 
occurs in (document frequency) and N is the total 
number of documents.

 Many different formulae exist – all increase the 
importance of rare terms.

 Now, weight the query in the ranking formula to 
include an IDF with the TF.

w t= loge 1 Nf t 

Similarity=
1
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Term Frequency
 Scale term frequency so that the subsequent 

occurrences have a lesser effect than earlier 
occurrences.

 Choose only terms in Q - as this is boolean - so 
prevent every term having a value of at least 1 
(where before they were 0).

 Lastly, eliminate |Q| since it is constant.

Similarity=
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Vector Ranking
 In n-dimensional Euclidean space, the angle 

between two vectors is given by:

YX

YX ⋅=θcos

 Note:
 cos 90 = 0 (orthogonal vectors shouldn’t match) 
 cos 0 = 1 (corresponding vectors have a perfect match)

 Cosine θ is therefore a good measure of similarity 
of vectors.

 Substituting good tf and idf formulae in X.Y, we 
then get a similar formula to before (except we 
use all terms t[1..N]).



  

Term Document Space
 A popular view of inverted files is as a matrix of 

terms and documents.
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13Apples

Doc2Doc1

documents
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Clustering
 In term-document space, documents that 

are similar will have vectors that are 
“close together”.

 Even if a specific term of a query does not 
match a specific document, the clustering 
effect will compensate.

 Centroids of the clusters can be used as 
cluster summaries.

 Explicit clustering can be used to reduce 
the amount of information in T-D space.



  

Evaluation of Retrieval Algorithms
 Recall

 The number of relevant results returned.
 Recall = number retrieved and relevant / total number relevant

 Precision
 The number of returned results that are relevant.
 Precision = number retrieved and relevant / total number retrieved

 F-measure
 F = (2*R*P)/(R+P)

 Relevance is determined by an “expert” in recall/
precision experiments. High recall and high 
precision are desirable.



  

Typical Recall-Precision Graph
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In general, recall and 
precision are at odds in an IR 
system – better performance 
in one means worse 
performance in the other!



  

Other Techniques to Improve IR
 Stemming, Stopping
 Thesauri
 Metadata vs. Fulltext
 Relevance Feedback
 Inference Engines
 LSI
 PageRank
 HITS



  

Stemming and Case Folding
 Case Folding

 Changing all terms to a standard case, e.g., 
lowercase

 Stemming
 Changing all term forms to canonical versions.

 e.g., studying, studies and study map to “study”.

 Stemming must avoid mapping words with 
different roots to the same term.

 Porter’s Stemming Algorithm for English 
applies a set of rules based on patterns of 
vowel-consonant transitions.



  

Stopping
 Stopwords are common words that do not 

help in discriminating in terms of 
relevance.
 E.g., in for the a an of on

 Stopwords are not standard and depend on 
application and language.



  

Thesauri
 A thesaurus is a collection of words and 

their synonyms.
 e.g., According to Merriam-Webster, the 

synonyms for “library” are “archive” and 
“athenaeum”.

 An IR system can include all synonyms of 
a word to increase recall, but at a lower 
precision.

 Thesauri can also be used for cross-
language retrieval.



  

Metadata vs. Full-text
 Text documents can be indexed by their 

contents or by their metadata.
 Metadata indexing is faster and uses less 

storage. 
 Metadata can be obtained more easily 

(e.g., using open standards) while full text 
is often restricted.

 Full-text indexing does not rely on good 
quality metadata and can find very 
specific pieces of information.



  

Relevance Feedback
 After obtaining results, a user can specify 

that a given document is relevant or non-
relevant.

 Terms that describe a (non-)relevant 
document can then be used to refine the 
query – an automatic summary of a 
document is usually better at describing 
the content than a user.



  

Inference Engines
 Machine learning can be used to digest a 

document collection and perform query 
matching.
 Connectionist models (e.g., neural networks)
 Decision trees (e.g., C5)

 Combined with traditional statistical 
approaches, this can result in increased 
recall/precision.



  

Latent Semantic Indexing
 LSI is a technique to reduce the 

dimensionality of the term-document 
space, resulting in greater speed and 
arguably better results.

 Problems with traditional approach:
 Synonymy – two different words that mean the 

same thing.
 Polysemy – two different meanings for a single 

word.
 LSI addresses both of these problems by 

transforming data to its “latent 
semantics.”



  

Singular Value Decomposition
 SVD is used in LSI to factor the term-document 

matrix into constituents.
 Calculations are based on eigenvalues and 

eigenvectors - many Mathematics packages can 
compute an SVD as a built-in function.

A=U∑V T=[
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

] [
*

*
* ] [* * *
* * *
* * * ]



  

SVD Sizes
 If A, the term-document matrix, is an mxn 

matrix,
 U is an mxm orthogonal matrix
 V is an nxn orthogonal matrix
 ∑ is the mxn diagonal matrix containing values 

on its diagonal in decreasing order of value. 
i.e., σ1 ≥ σ2 ≥ σ3 ≥ … ≥ σmin(m,n)

 Note: 
 m is the number of terms, represented by the 

rows of A
 n is the number of documents, represented by 

the columns of A



  

Approximation
 Replace ∑ with an approximation where the 

smallest values are zero.  

∑= [
1.578

1 .320
1 .111

0.870
0 .230

]
becomes

∑= [
1.578

1 .320
1 .111

0.0
0 .0

]



  

Effect of Approximation

 If only p values are retained in ∑, then only 
p columns of U and p rows of V must be 
stored. 

A '=U '∑ ' V T '=[
* * 0 0 0
* * 0 0 0
* * 0 0 0
* * 0 0 0
* * 0 0 0

] [
*
*
0 ][* * *
* * *
0 0 0 ]



  

LSI Example 1/2
 Consider a document collection:

 D1: apples bananas bananas bananas pears
 D2: bananas bananas bananas
 D3: pears

 With query: q=“apples” 
 The term-document matrix will be:

101pears

033bananas

001apples

D3D2D1



  

LSI Example 2/3



  

LSI Example 3/3

Note: in practice, LSI does not generate the approximated matrix.



  

Advantages of LSI
 Smaller vectors and pre-calculations result 

in faster query matching.
 Smaller term-document space – less 

storage required.
 Automatic clustering of documents based 

on mathematical similarity (basis vector 
calculations).

 Elimination of “noise” in document 
collection.



  

Web Data Retrieval
 Web crawlers are often bundled with 

search engines to obtain data from the 
WWW.

 Crawlers follow each link (respecting 
robots.txt exclusions) in a hypertext 
document, obtaining an ever-expanding 
collection of data for indexing/querying.

 WWW search engines operate as follows:

crawl queryindex



  

PageRank
 PageRank (popularised by Google) 

determines the rank of a document based 
on the number of documents that point to 
it, implying that it is an “authority” on a 
topic.

 In a highly connected network of 
documents with lots of links, this works 
well. In a diverse collection of separate 
documents, this will not work.

 Google uses other techniques as well!



  

Simple PageRank
 PageRank works with a complete collection of 

linked documents.
 Pages are deemed important if 

 They are pointed to by many other pages, 
 Each also of high importance.

 Define 
 r(i) = rank of a page
 B(i)= set of pages that point to i
 N(i) = number of pages that i points to

∑
∈

=
)(

)(/)()(
iBj

jNjrir

Interpretation: r(j) distributes its weight evenly to all its N(j) children 



  

Computing PageRank
 Choose a random set of ranks and iterate 

until the relative order doesn’t change.

 Basic Algorithm:
 s = random vector
 Compute new r(i) for each node
 If |r-s|<ε, r is the PageRank vector
 s = r, and iterate.



  

PageRank Example
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Sinks and Leaks
 In practice, some pages have no outgoing 

or incoming links.
 A “rank sink” is a set of connected pages 

with no outgoing links.
 A “rank leak” is a single page with no 

outgoing link.
 PageRank does the following:

 Remove all leak nodes.
 Introduce random perturbations into the 

iterative algorithm.



  

HITS
 Hypertext Induced Topic Search ranks the 

results of an IR query based on authorities 
and hubs.

 An authority is a page that many pages 
(hubs) point to.
 E.g., www.uct.ac.za

 A hub is a page that points to many pages 
(authorities).
 E.g., yahoo.com



  

HITS Algorithm 1/2
 Submit the query to an IR system and get 

a list of results.

 Create a focused subgraph as follows:
 Let R = set of all result pages
 Let S = R
 Let Q = {}
 For each page p in R

 Add to Q all pages in S that p points to
 Add to Q all pages (up to a limit) in S that point to p



  

HITS Algorithm 2/2
 Initialise ai and hi for each node i to 

arbitrary values.

 Repeat until convergence:
 ai = sum of hj values of all pages pointing to it

 hi = sum of aj values of all pages it points to

 Normalise the sum of ai values to 1

 Normalise the sum of hi values to 1



  

HITS Example
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HITS vs PageRank vs LSI vs …
 Under what circumstances can we use 

each?
 What are the advantages/disadvantages of 

each?
 How do they compare to traditional 

boolean/vector searching?
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