

COMPILERS
Register Allocation

hussein suleman
uct csc3003s 2009

Register Allocation
 Want to maximise use of registers for

temporaries.
 Build interference graph for each program

point.
 Compute set of temporaries simultaneously

live.
 Add edge to graph for each pair in set.

 Then K-colour the graph by assigning a
maximum of K colours such that
interfering variables always have different
colours.

Step 1: Build
 Start with final live sets from liveness analysis.

Add an edge for each pair of simultaneously live
variables to interference graph.

 Add a dotted line for any “MOVE a,b” instructions

out in

a1 a -

b2 ab a

ca+b ac ab

bc ac ac

da+c ad ac

da+d - ad

code and liveness analysis interference graph (assume K=2)

CD

A B

Step 2: Simplify
 Remove any non-MOVE-related nodes with

degree<K and place on stack.
 K-colourability is maintained in the new

subgraph.
 Every node removed is guaranteed a colour.
 The removal of edges may create other <K

degree nodes.

C

A B

DCD

A B

Step 3: Coalesce
 Merge together MOVE-related nodes if it

does not decrease colourability.
 Briggs: only if merged node ab has <K

significant degree neighbours
 George: only if all significant degree

neighbours of a interfere with b

BCA

DC

A B

And Repeat …
 Simplify again

 And simplify again

A
BC
D

A
BC
D

Step 6: Select
 Pop nodes off stack and assign

colours/registers.

Ar1
BC
D D

Dr2

BCr2Ar1

BCr2Ar1

R1 1

R2 2

R2 R1 + R2

R2 R2

R2 R1 + R2

R2 R1 + R2

Redundant
MOVE (from
coalesce)
can be
removed!

Step 4: Freeze
 If there are no nodes that can be simplified

or coalesced AND there are MOVE-related
nodes, freeze all MOVEs of a low-degree
MOVE-related node.
 Ignore the MOVE and treat the nodes like any

others.

 Repeat steps 2-3-4

Step 5: Potential Spill
 If there are no nodes that can be

simplified, coalesced or frozen, choose a
node that isnt used much in the program
and spill it.
 Add it to the stack just like a simplify.
 There may or may not be a colour to allocate

to it during the Select step – if there isnt, the
potential spill becomes an actual spill.

 Repeat steps 2-3-4-5

Actual Spills
 An actual spill is when there aren’t enough

registers to store the temporaries.
 Rewrite program to shorten live range of

spilled variable.
 Move variable to memory after define.
 Move memory to variable before use.

 Then, repeat process from Step 1.

c a

.

.

.

b c+1

c1 a

Memc c1

.

c2 Memc

b c2 +1

Spilled Temporaries
 Spilled temporaries can be graph-coloured

to reuse activation record slots.
 Coalescing can be aggressive, since (unlike

registers) there is no limit on the number of
stack-frame locations.

 Aggressive coalescing: Any non-interfering
nodes can be coalesced since there is no upper
bound K.

Precoloured Nodes
 Precoloured nodes correspond to machine

registers (e.g., stack pointer, arguments)
 Select and Coalesce can give an ordinary

temporary the same colour as a precoloured
register, if they don’t interfere

 e.g., argument registers can be reused inside
procedures for a temporary

 Simplify, Freeze and Spill cannot be performed
on them

 Precoloured nodes interfere with other
precoloured nodes.

Temporary Copies
 Since precoloured nodes don’t spill, their

live ranges must be kept short:
 Use MOVE instructions.
 Move callee-save registers to fresh temporaries

on procedure entry, and back on exit, spilling
between as necessary.

 Register pressure will spill the fresh
temporaries as necessary, otherwise they can
be coalesced with their precoloured
counterpart and the moves deleted.

Handling CALL instructions
 Variables whose live ranges span calls should go

to callee-save registers, otherwise to caller-save.
 This is easy for graph coloring allocation with

spilling
 Calls define (interfere with) caller-save registers.
 Calls use parameter registers.
 A variable that is alive before and after a call interferes

with all precoloured caller-save registers, as well as with
the fresh temporaries created for callee-save copies,
forcing a spill.

 Choose nodes with high degree but few uses, to spill the
fresh callee-save temporary instead of the cross-call
variable. This makes the original callee-save register
available for colouring the cross-call variable

Example
1 f: c r3
2 p r1
3 if p=0 goto L1
4 r1 M[p]
5 call f
6 s r1
7 r1 M[p+4]
8 call f
9 t r1
10 u s + t
11 goto L2
12 L1: u 1
13 L2: r1 u
14 r3 c
15 return

 3 Machine registers (K=3)
 Caller-save:

 r1, r2
 Callee-save:

 r3
 CALL parameters are set in

r1 and results are returned
in r1

Example: Liveness Analysis
Statement Succ Use Def Out In
1 f: c r3 2 r3 c cr1 r1r3
2 p r1 3 r1 p cp cr1
3 if p=0 goto L1 4,12 p cp cp
4 r1 M[p] 5 p r1 cpr1 cp
5 call f 6 r1 r1r2 cpr1 cpr1
6 s r1 7 r1 s cps cpr1
7 r1 M[p+4] 8 p r1 cpr1 cps
8 call f 9 r1 r1r2 csr1 csr1
9 t r1 10 r1 t cst csr1
10 u s + t 11 st u cu cst
11 goto L2 13 cu cu
12 L1: u 1 13 u cu c
13 L2: r1 u 14 u r1 cr1 cu
14 r3 c 15 c r3 r1r3 cr1
15 return r1r3 r1r3

Example: Edge Determination
 Calculate live pairs based on liveness sets:

 liveness sets: cpr1, cps, csr1, cst, cu
 edges ⊇ {cp, cr1, cs, ct, cu, pr1, ps, sr1, st}

 For each CALL, the variables that are live-in and
also live-out must interfere with all caller-save
registers (r1r2).
 cp is live-in and live-out in line 5, cs in line 8
 edges ⊇ {cp, cs, cr1, cr2, pr1, pr2, sr1, sr2}

 Create pairs of precoloured nodes (e.g., machine
registers).
 edges ⊇ {r1r2, r2r3, r1r3}

 Determine move instructions that are not already
constrained.
 moves = {cr3, tr1, ur1} (constrained = {pr1, sr1})

Example 1

s

c

t

u

r2 r3

r1

p

•cannot simplify
as all non-MOVE-
related nodes:
d(ps) >= K

•coalesce tur1

Example 2

s

c

r2 r3

tur1

p

•coalesce cr3

Example 3

s

r2 cr3

tur1

p

•cannot simplify,
coalesce, freeze

•spill s (as it is
used less than p)

Example 4

•cannot simplify,
coalesce, freeze

•spill p
s*

r2 cr3

tur1

p

Example 5

p*
s*

r2 cr3

tur1

•cannot remove
precoloured nodes

•select to put back
nodes and colour

•add p

Example 6

•cannot colour p

•p is an actual
spill – do not
colour it

•add potential spill
s

s*

r2 cr3

tur1

p

Example 7

•cannot colour s

•s in an actual
spill – do not
colour it

•now rewrite
program to handle
spills and build
interference graph

s

r2 cr3

tur1

p

Example Rewritten
Statement Succ Use Def Out In
1 f: c r3 2 r3 c cr1 r1r3
2 p1 r1 3 r1 p cp1 cr1
3 Mp p1 4 p1 c cp1
4 p2 Mp 5 p2 cp2 c
5 if p2=0 goto L1 6,18 p2 c cp2
6 p3 Mp 7 p3 cp3 c
7 r1 M[p3] 8 p3 r1 cr1 cp3
8 call f 9 r1 r1r2 cr1 cr1
9 s1 r1 10 r1 s1 cs1 cr1
10 Ms s1 11 s1 c cs1
11 p4 Mp 12 p4 cp4 c
12 r1 M[p4+4] 13 p4 r1 cr1 cp4
13 call f 14 r1 r1r2 cr1 cr1
14 t r1 15 r1 t ct cr1
15 s2 Ms 16 s2 cs2t ct
16 u s2 + t 17 s2t u c cs2t
17 goto L2 18 c c
18 L1: u 1 19 u cu c
19 L2: r1 u 20 u r1 cr1 cu
20 r3 c 21 c r3 r1r3 cr1
21 return r1r3 r1r3

Example: Edge Determination B
 Calculate live pairs based on liveness sets:

 liveness sets: cr1, cp1, cp2, cp3, cs1, cp4, cs2t, cu
 edges ⊇ {cr1, cp1, cp2, cp3, cs1, cp4, cs2, ct, s2t, cu}

 For each CALL, the variables that are live-in and
also live-out must interfere with all caller-save
registers (r1r2).
 c is live-in and live-out in line 8 and in line 13
 edges ⊇ {cr1, cr2}

 Create pairs of precoloured nodes (e.g., machine
registers).
 edges ⊇ {r1r2, r2r3, r1r3}

 Determine move instructions that are not already
constrained.
 moves = {p1r1, s1r1, tr1, ur1, cr3}

Example 1B

s2

c

t

u

r2 r3

r1

p1

•simplify
p2p3p4s2

s1
p4

p3

p2

Example 2B

c

t

u

r2 r3

r1

p1

•coalesce
up1s1tr1

s1

p2
p3
p4
s2

Example 3B

c

r2 r3

up1s1tr1
•coalesce cr3

p2
p3
p4
s2

Example 4B

r2 cr3

up1s1tr1
•select to put back
nodes and colour

•add p2 p3 p4 s2

p2
p3
p4
s2

Example 5B

s2(r2)

p2(r1)

r2 cr3

up1s1tr1
•no spills, so we
are done!

p3(r1)

p4(r1)

Final Register Allocation
f: r3 r3

r1 r1
Mp r1
r1 Mp
if r1=0 goto L1
r1 Mp
r1 M[r1]
call f
r1 r1
Ms r1
r1 Mp
r1 M[r1+4]
call f
r1 r1
r2 Ms
r1 r2 + r1
goto L2

L1: r1 1
L2: r1 r1

r3 r3
return

f: Mp r1
r1 Mp
if r1=0 goto L1
r1 Mp
r1 M[r1]
call f
Ms r1
r1 Mp
r1 M[r1+4]
call f
r2 Ms
r1 r2 + r1
goto L2

L1: r1 1
L2: return

eliminate
MOVEs with the

same source
and destination

	COMPILERS Register Allocation
	Register Allocation
	Step 1: Build
	Step 2: Simplify
	Step 3: Coalesce
	And Repeat …
	Step 6: Select
	Step 4: Freeze
	Step 5: Potential Spill
	Actual Spills
	Spilled Temporaries
	Precoloured Nodes
	Temporary Copies
	Handling CALL instructions
	Example
	Example: Liveness Analysis
	Example: Edge Determination
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example Rewritten
	Example: Edge Determination B
	Example 1B
	Example 2B
	Example 3B
	Example 4B
	Example 5B
	Final Register Allocation

