COMPILERS Register Allocation

hussein suleman uct csc3003s 2009

Register Allocation

- Want to maximise use of registers for temporaries.
- Build interference graph for each program point.
 - Compute set of temporaries simultaneously live.
 - Add edge to graph for each pair in set.
- Then K-colour the graph by assigning a maximum of K colours such that interfering variables always have different colours.

Step 1: Build

- Start with final live sets from liveness analysis.
 Add an edge for each pair of simultaneously live variables to interference graph.
- Add a dotted line for any "MOVE a,b" instructions

	out	in
a←1	а	-
b←2	ab	а
c←a+b	ас	ab
b←c	ас	ас
d←a+c	ad	ac
d←a+d	-	ad

code and liveness analysis

interference graph (assume K=2)

Step 2: Simplify

- Remove any non-MOVE-related nodes with degree<K and place on stack.</p>
 - K-colourability is maintained in the new subgraph.
 - Every node removed is guaranteed a colour.
 - The removal of edges may create other <K degree nodes.

Step 3: Coalesce

- Merge together MOVE-related nodes if it does not decrease colourability.
 - Briggs: only if merged node ab has <K significant degree neighbours
 - George: only if all significant degree neighbours of a interfere with b

And Repeat ...

Simplify again

And simplify again

Pop nodes off stack and assign colours/registers.

Step 4: Freeze

- If there are no nodes that can be simplified or coalesced AND there are MOVE-related nodes, freeze all MOVEs of a low-degree MOVE-related node.
 - Ignore the MOVE and treat the nodes like any others.
- Repeat steps 2-3-4

Step 5: Potential Spill

- If there are no nodes that can be simplified, coalesced or frozen, choose a node that isnt used much in the program and spill it.
 - Add it to the stack just like a simplify.
 - There may or may not be a colour to allocate to it during the Select step – if there isnt, the potential spill becomes an actual spill.

Repeat steps 2-3-4-5

Actual Spills

- An actual spill is when there aren't enough registers to store the temporaries.
- Rewrite program to shorten live range of spilled variable.
 - Move variable to memory after define.
 - Move memory to variable before use.
- □ Then, repeat process from Step 1.

Spilled Temporaries

- Spilled temporaries can be graph-coloured to reuse activation record slots.
 - Coalescing can be aggressive, since (unlike registers) there is no limit on the number of stack-frame locations.
 - Aggressive coalescing: Any non-interfering nodes can be coalesced since there is no upper bound K.

Precoloured Nodes

- Precoloured nodes correspond to machine registers (e.g., stack pointer, arguments)
 - Select and Coalesce can give an ordinary temporary the same colour as a precoloured register, if they don't interfere
 - e.g., argument registers can be reused inside procedures for a temporary
 - Simplify, Freeze and Spill cannot be performed on them
- Precoloured nodes interfere with other precoloured nodes.

Temporary Copies

- Since precoloured nodes don't spill, their live ranges must be kept short:
 - Use MOVE instructions.
 - Move callee-save registers to fresh temporaries on procedure entry, and back on exit, spilling between as necessary.
 - Register pressure will spill the fresh temporaries as necessary, otherwise they can be coalesced with their precoloured counterpart and the moves deleted.

Handling CALL instructions

- Variables whose live ranges span calls should go to callee-save registers, otherwise to caller-save.
- This is easy for graph coloring allocation with spilling
 - Calls define (interfere with) caller-save registers.
 - Calls use parameter registers.
 - A variable that is alive before and after a call interferes with all precoloured caller-save registers, as well as with the fresh temporaries created for callee-save copies, forcing a spill.
 - Choose nodes with high degree but few uses, to spill the fresh callee-save temporary instead of the cross-call variable. This makes the original callee-save register available for colouring the cross-call variable

1	f:	c ← r3
2		p ← r1
3		if p=0 goto L1
4		$r1 \leftarrow M[p]$
5		call f
6		s ← r1
7		$r1 \leftarrow M[p+4]$
8		call f
9		t ← r1
10		u ← s + t
11		goto L2
12	L1:	u ← 1
13	L2:	r1 ← u
14		r3 ← c
15		return

- □ 3 Machine registers (K=3)
- □ Caller-save:
 - r1, r2
- □ Callee-save:
 - r3
- CALL parameters are set in r1 and results are returned in r1

Example: Liveness Analysis

#		Statement	Succ	Use	Def	Out	In
1	f:	c ← r3	2	r3	С	cr1	r1r3
2		p ← r1	3	r1	р	ср	cr1
3		if p=0 goto L1	4,12	р		ср	ср
4		r1 ← M[p]	5	р	r1	cpr1	ср
5		call f	6	r1	r1r2	cpr1	cpr1
6		s ← r1	7	r1	S	cps	cpr1
7		r1 ← M[p+4]	8	р	r1	cpr1	cps
8		call f	9	r1	r1r2	csr1	csr1
9		t ← r1	10	r1	t	cst	csr1
10		u ← s + t	11	st	u	cu	cst
11		goto L2	13			cu	cu
12	L1:	u ← 1	13		u	cu	С
13	L2:	r1 ← u	14	u	r1	cr1	cu
14		r3 ← c	15	С	r3	r1r3	cr1
15		return		r1r3			r1r3

Example: Edge Determination

Calculate live pairs based on liveness sets:

- liveness sets: cpr1, cps, csr1, cst, cu
- dges \supseteq {cp, cr1, cs, ct, cu, pr1, ps, sr1, st}
- For each CALL, the variables that are live-in and also live-out must interfere with all caller-save registers (r1r2).
 - cp is live-in and live-out in line 5, cs in line 8
 - edges \supseteq {cp, cs, cr1, cr2, pr1, pr2, sr1, sr2}
- Create pairs of precoloured nodes (e.g., machine registers).

edges \supseteq {r1r2, r2r3, r1r3}

- Determine move instructions that are not already constrained.
 - moves = {cr3, tr1, ur1} (constrained = {pr1, sr1})

•cannot simplify, coalesce, freeze

•spill p

S*

p*

s*

•cannot remove precoloured nodes

- •select to put back nodes and colour
- add p

S*

Example Rewritten

#		Statement	Succ	Use	Def	Out	In
1	f:	c ← r3	2	r3	С	cr1	r1r3
2		p1 ← r1	3	r1	р	cp1	cr1
3		Mp ← p1	4	p1	-	C	cp1
4		p2 ← Mp	5		p2	cp2	C
5		if p2=0 goto L1	6,18	p2	-	C	cp2
6		p3 ← Mp	7	•	р3	срЗ	c
7		r1 ← M[p3]	8	р3	r1	cr1	ср3
8		call f	9	r1	r1r2	cr1	cr1
9		s1 ← r1	10	r1	s1	cs1	cr1
10		Ms ← s1	11	s1		С	cs1
11		р4 ← Мр	12		p4	cp4	С
12		r1 ← M[p4+4]	13	p4	r1	cr1	cp4
13		call f	14	r1	r1r2	cr1	cr1
14		t ← r1	15	r1	t	ct	cr1
15		s2 ← Ms	16		s2	cs2t	ct
16		u ← s2 + t	17	s2t	u	С	cs2t
17		goto L2	18			С	С
18	L1:	u ← 1	19		u	cu	С
19	L2:	r1 ← u	20	u	r1	cr1	cu
20		r3 ← c	21	С	r3	r1r3	cr1
21		return		r1r3			r1r3

Example: Edge Determination B

Calculate live pairs based on liveness sets:

- liveness sets: cr1, cp1, cp2, cp3, cs1, cp4, cs2t, cu
- dges \supseteq {cr1, cp1, cp2, cp3, cs1, cp4, cs2, ct, s2t, cu}
- For each CALL, the variables that are live-in and also live-out must interfere with all caller-save registers (r1r2).
 - c is live-in and live-out in line 8 and in line 13
 - edges \supseteq {cr1, cr2}
- Create pairs of precoloured nodes (e.g., machine registers).

dges \supseteq {r1r2, r2r3, r1r3}

- Determine move instructions that are not already constrained.
 - moves = {p1r1, s1r1, tr1, ur1, cr3}

Example 1B

Example 2B

coalesce
 up1s1tr1

Example 3B

Example 4B

Example 5B

Final Register Allocation

