

COMPILERS
Liveness Analysis

hussein suleman
uct csc3003s 2009

Register Allocation
 IR trees are tiled to determine instructions,

but registers are not assigned.
 Can we assign registers arbitrarily?
 What if:

mov d0,24
mov d1,36
add d0,d1

 was translated to:
mov eax,24
mov eax,36
add eax,eax

Allocation Issues
 Issues:

 Registers already have previous values when
they are used.

 But there are a limited number of registers so
we have to reuse!

 Use of particular registers affects which
instructions to choose.

 Register vs. memory use affects the number
and nature of LOAD/STORE instructions.

 Optimal allocation of registers is difficult.
 NP-complete for k >1 registers

Liveness Analysis
 Problem:

 IR contains an unbounded number of temporaries.
 Actual machine has bounded number of registers.

 Approach:
 Temporaries with disjoint live ranges (where their values

are needed) can map to same register.
 If not enough registers then spill some temporaries.

 [i.e., keep them in memory]

 Liveness Analysis = determining when
variables/registers hold values that may still be
needed.

Control Flow Analysis
 Before performing liveness analysis, we

need to understand the control flow by
building a control flow graph [CFG]:
 Nodes may be individual program statements

or basic blocks.
 Edges represent potential flow of control.

 Out-edges from node n lead to successor
nodes, succ[n].

 In-edges to node n come from predecessor
nodes, pred[n].

Control Flow Example 1/2
 Sample Program

 a = 0
 L1: b = a + 1
 c = c + b
 a = b * 2
 if a < N goto L1
 return c

Control Flow Example 2/2

a = 0

b = a + 1

c = c + b

a = b * 2

a < N

return c

a = 0

b = a + 1

c = c + b

a = b * 2

a < N

return c

a = 0

b = a + 1

c = c + b

a = b * 2

a < N

return c

a b c

def and use
 Gathering liveness information is a form of

data flow analysis operating over the CFG.
 Liveness of variables “flows” around the

edges of the graph.
 assignments define a variable, v:

 def[v] set of graph nodes that define v
 def[n] set of variables defined by node n

 occurrences of v in expressions use it:
 use[v] = set of nodes that use v
 use[n] = set of variables used in node n

Calculating Liveness 1/3
 v is live on edge e if there is a directed

path from e to a use of v that does not
pass through any def[v].

 v is live-in at node n if live on any of n’s in-
edges.

 v is live-out at n if live on any of n’s out-
edges.

 v∈ use[n] => v live-in at n
 v live-in at n => v live-out at all m ∈

pred[n]
 v live-out at n,v ∉ def[n] => v live-in at n

Calculating Liveness 2/3
 Define:

 in[n]: variables live-in at n
 out[n]: variables live-out at n

 Then:
 out[n] = ∪ in[s]
 s∈succ[n]
 for a single node successor,

 succ[n] = {} => out[n] = {}

Calculating Liveness 3/3
 Note:

 in[n] ⊇ use[n]
 in[n] ⊇ out[n] - def[n]

 use[n] and def[n] are constant
[independent of control flow]

 Now,
 v ∈ in[n] iff v ∈ use[n] or v ∈ out[n] - def[n]
 Thus, in[n] = use[n] ∪ [out[n] - def[n]]

Iterative Liveness Calculation
foreach n {in[n] = {}; out[n] = {}}
repeat
 foreach n
 in’[n] = in[n];
 out’[n] = out[n];
 in[n] = use[n] ∪ (out[n] - def[n])
 out[n] = ∪ in[s]
 s∈succ[n]
 until ∀n (in’[n] = in[n]) &
 (out’[n] = out[n])

Liveness Algorithm Notes
 Should order computation of inner loop to

follow the “flow”.
 Liveness flows backward along control-flow

arcs, from out to in.

 Nodes can just as easily be basic blocks to
reduce CFG size.

 Could do one variable at a time, from uses
back to defs, noting liveness along the
way.

Liveness Algorithm Complexity 1/2

Complexity: for input program of size N
 ≤ N nodes in CFG
 => < N variables
 => N elements per in/out
 => O(N) time per set-union
for loop performs constant number of set
operations per node
 => O(N2) time for for loop

Liveness Algorithm Complexity 2/2

Each iteration of repeat loop can only add to
each set.
Sets can contain at most every variable
 => sizes of all in and out sets sum to 2N2 ,
bounding the number of iterations of the
repeat loop
 => worst-case complexity of O(N4)
ordering can cut repeat loop down to 2-3
iterations
 => O(N) or O(N2) in practice

Optimality 1/2
 Least fixed points

 There is often more than one solution for a
given dataflow problem (see example in text).

 Any solution to dataflow equations is a
conservative approximation:

 v has some later use downstream from n,
 => v ∈ out(n)
 but not the converse

 What is the implication of a non-least-
fixed-point?

Optimality 2/2
 Conservatively assuming a variable is live

does not break the program; just means
more registers may be needed.

 Assuming a variable is dead when it is
really live will break things.

 May be many possible solutions but want
the “smallest”: the least fixed point.

 The iterative liveness computation
computes this least fixed point.

	COMPILERS Liveness Analysis
	Register Allocation
	Allocation Issues
	Liveness Analysis
	Control Flow Analysis
	Control Flow Example 1/2
	Control Flow Example 2/2
	def and use
	Calculating Liveness 1/3
	Calculating Liveness 2/3
	Calculating Liveness 3/3
	Iterative Liveness Calculation Algorithm
	Liveness Algorithm Notes
	Liveness Algorithm Complexity 1/2
	Liveness Algorithm Complexity 2/2
	Optimality 1/2
	Optimality 2/2

