

COMPILERS
Instruction Selection

hussein suleman
uct csc3003s 2009

Introduction
 IR expresses only one operation in each

node.
 MC performs several IR instructions in a

single MC instruction.
 e.g., fetch and add

BINOP

PLUS e CONST

i

MEM

Preliminaries
 Express each machine instruction as a

fragment of an IR tree – “tree pattern”.
 Instruction selection is then equivalent to

tiling the tree with a minimal set of tree
patterns.

Jouette Architecture 1/2
Name Effect Trees

+

TEMP

ri rj + rk ADD
*ri rj * rk MUL

-
ri rj - rk SUB

/ri rj / rk DIV

ADDI
+

CONST

+

CONST

CONSTri rj + c

SUBI ri rj - c
-

CONST

LOAD M[rj + c] ri

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

Note: All
tiles on this
page have
an upward
link like ADD

Jouette Architecture 2/2

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

Name Effect Trees

STORE M[rj + c] ri

MOVEM M[rj]

M[ri]

MEM

MOVE

MEM

Instruction Selection
 The concept of instruction selection is

tiling.
 Tiles are the set of tree patterns

corresponding to legal machine
instructions.

 We want to cover the tree with non-
overlapping tiles.

 Note: We wont worry about which
registers to use - yet.

Tiled Tree 1

MOVE

MEM MEM

+

MEM

+

FP CONST a

*

TEMP i CONST 4

+

FP CONST x

LOAD M[fp + a] r1

ADDI
MUL
ADD
LOAD
STORE

r2 r0 + 4

r2 r2 * r3

r1 r1 + r2

M[fp + x] r4

M[r1 + 0]

r4

Operation: a[i] = x

Tiled Tree 2
MOVE

MEM MEM

+

MEM

+

FP CONST a

*

TEMP i CONST 4

+

FP CONST x

LOAD M[fp + a] r1

ADDI
MUL
ADD
ADDI
MOVEM

r2 r0 + 4

r2 r2 * r3

r1 r1 + r2

fp + x r4

M[r1]

M[r4]

Operation: a[i] = x

Optimum and Optimal Tilings
 Best tiling corresponds to least cost

instruction sequence.
 Each instruction is costed (somehow).
 Optimum tiling

 tiles sum to lowest possible value

 Optimal tiling
 no two adjacent tiles can be combined to a tile

of lower cost

 Note: Optimum tiling is Optimal, but not
vice versa!

Maximal Munch Algorithm
 Start at the root.
 Find the largest tile that fits.
 Cover the root and possibly several other

nodes with this tile.
 Repeat for each subtree.
 Generates instructions in reverse order.
 If two tiles of equal size match the current

node, choose either.

Maximal Munch Example

+

CONST 1

MEM

CONST 2

MEM is matched by LOAD +

CONST

MEM

CONST (2) is matched by ADDI

Instructions emitted (in reverse order) are:

ADDI r1 r0 + 2

LOAD r2 M[r1 + 1]
Note: In
Jouette, r0 is
always zero!

Dynamic Programming Algorithm
 Assign a cost to every node.

 Sum of instruction costs of the best instruction
sequence that can tile that subtree.

 For each node n, proceeding bottom-up:
 For each tile t of cost c that matches at n there

will be zero or more subtrees, si, that
correspond to the leaves (bottom edges) of the
tile.

 Cost of matching t is cost of t + sum of costs of all
child trees of t

 Assign tile with minimum cost to n.
 Walk tree from root and emit instructions

for assigned tiles.

Dynamic Programming Example 1/2

+

CONST 1

MEM

CONST 2

CONST is only matched by an ADDI instruction with cost 1

The + node can be matched by

+

+

CONST

+

CONST

ADD cost 1 leaves 2 Total 3

ADDI cost 1 leaves 1 Total 2

ADDI cost 1 leaves 1 Total 2

Dynamic Programming Example 2/2

The MEM node can be matched by
MEM

+

MEM

CONST

+

CONST

MEM

LOAD cost 1 leaves 2 Total 3

LOAD cost 1 leaves 1 Total 2

LOAD cost 1 leaves 1 Total 2

Instructions emitted (in reverse order, in second pass) are:

ADDI r1 r0 + 1

LOAD r2 M[r1 + 2]

Efficiency of Algorithms
 Assume (on average):

 T tiles
 K non-leaf nodes in matching tile
 Kp is largest number of nodes to check to find

matching tile
 Tp no of different tiles matching at each node
 N nodes in tree

 Cost of MM: O((Kp + Tp)N/K)
 Cost of DP: O((Kp + Tp)N)
 In both cases, with Kp, Tp, K constant

 O(N)

Handling CISC Machine Code
 Fewer registers:

 E.g., Pentium has only 6 general registers
 Allocate TEMPs and solve problem later!

 Register use is restricted:
 E.g., MUL on Pentium requires use of eax
 Introduce additional LOAD/MOVE instructions

to copy values.

 Complex addressing modes:
 E.g., Pentium allows ADD [ebp-8],ecx
 Simple code generation still works, but is not

as size-efficient, and can trash registers.

Implementation Issues
 If registers are allocated after instruction

selection, generated code must have
“holes”.
 Assembly code template: LOAD d0,s0
 List of source registers: s0
 List of destination registers: d0

 Including registers trashed by instruction (e.g., return
address and return value registers for CALLs)

 Register allocation will then fill in the
holes, by (simplistically) matching source
and destination registers and eliminating
redundancy.

	COMPILERS Instruction Selection
	Introduction
	Preliminaries
	Jouette Architecture 1/2
	Jouette Architecture 2/2
	Instruction Selection
	Tiled Tree 1
	Tiled Tree 2
	Optimum and Optimal Tilings
	Maximal Munch Algorithm
	Maximal Munch Example
	Dynamic Programming Algorithm
	Dynamic Programming Example 1/2
	Dynamic Programming Example 2/2
	Efficiency of Algorithms
	Handling CISC Machine Code
	Implementation Issues

