

COMPILERS
Instruction Selection

hussein suleman
uct csc3003s 2009

Introduction
 IR expresses only one operation in each

node.
 MC performs several IR instructions in a

single MC instruction.
 e.g., fetch and add

BINOP

PLUS e CONST

i

MEM

Preliminaries
 Express each machine instruction as a

fragment of an IR tree – “tree pattern”.
 Instruction selection is then equivalent to

tiling the tree with a minimal set of tree
patterns.

Jouette Architecture 1/2
Name Effect Trees

+

TEMP

ri rj + rk ADD
*ri rj * rk MUL

-
ri rj - rk SUB

/ri rj / rk DIV

ADDI
+

CONST

+

CONST

CONSTri rj + c

SUBI ri rj - c
-

CONST

LOAD M[rj + c] ri

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

Note: All
tiles on this
page have
an upward
link like ADD

Jouette Architecture 2/2

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

Name Effect Trees

STORE M[rj + c] ri

MOVEM M[rj]

M[ri]

MEM

MOVE

MEM

Instruction Selection
 The concept of instruction selection is

tiling.
 Tiles are the set of tree patterns

corresponding to legal machine
instructions.

 We want to cover the tree with non-
overlapping tiles.

 Note: We wont worry about which
registers to use - yet.

Tiled Tree 1

MOVE

MEM MEM

+

MEM

+

FP CONST a

*

TEMP i CONST 4

+

FP CONST x

LOAD M[fp + a] r1

ADDI
MUL
ADD
LOAD
STORE

r2 r0 + 4

r2 r2 * r3

r1 r1 + r2

M[fp + x] r4

M[r1 + 0]

r4

Operation: a[i] = x

Tiled Tree 2
MOVE

MEM MEM

+

MEM

+

FP CONST a

*

TEMP i CONST 4

+

FP CONST x

LOAD M[fp + a] r1

ADDI
MUL
ADD
ADDI
MOVEM

r2 r0 + 4

r2 r2 * r3

r1 r1 + r2

fp + x r4

M[r1]

M[r4]

Operation: a[i] = x

Optimum and Optimal Tilings
 Best tiling corresponds to least cost

instruction sequence.
 Each instruction is costed (somehow).
 Optimum tiling

 tiles sum to lowest possible value

 Optimal tiling
 no two adjacent tiles can be combined to a tile

of lower cost

 Note: Optimum tiling is Optimal, but not
vice versa!

Maximal Munch Algorithm
 Start at the root.
 Find the largest tile that fits.
 Cover the root and possibly several other

nodes with this tile.
 Repeat for each subtree.
 Generates instructions in reverse order.
 If two tiles of equal size match the current

node, choose either.

Maximal Munch Example

+

CONST 1

MEM

CONST 2

MEM is matched by LOAD +

CONST

MEM

CONST (2) is matched by ADDI

Instructions emitted (in reverse order) are:

ADDI r1  r0 + 2

LOAD r2  M[r1 + 1]
Note: In
Jouette, r0 is
always zero!

Dynamic Programming Algorithm
 Assign a cost to every node.

 Sum of instruction costs of the best instruction
sequence that can tile that subtree.

 For each node n, proceeding bottom-up:
 For each tile t of cost c that matches at n there

will be zero or more subtrees, si, that
correspond to the leaves (bottom edges) of the
tile.

 Cost of matching t is cost of t + sum of costs of all
child trees of t

 Assign tile with minimum cost to n.
 Walk tree from root and emit instructions

for assigned tiles.

Dynamic Programming Example 1/2

+

CONST 1

MEM

CONST 2

CONST is only matched by an ADDI instruction with cost 1

The + node can be matched by

+

+

CONST

+

CONST

ADD cost 1 leaves 2 Total 3

ADDI cost 1 leaves 1 Total 2

ADDI cost 1 leaves 1 Total 2

Dynamic Programming Example 2/2

The MEM node can be matched by
MEM

+

MEM

CONST

+

CONST

MEM

LOAD cost 1 leaves 2 Total 3

LOAD cost 1 leaves 1 Total 2

LOAD cost 1 leaves 1 Total 2

Instructions emitted (in reverse order, in second pass) are:

ADDI r1  r0 + 1

LOAD r2  M[r1 + 2]

Efficiency of Algorithms
 Assume (on average):

 T tiles
 K non-leaf nodes in matching tile
 Kp is largest number of nodes to check to find

matching tile
 Tp no of different tiles matching at each node
 N nodes in tree

 Cost of MM: O((Kp + Tp)N/K)
 Cost of DP: O((Kp + Tp)N)
 In both cases, with Kp, Tp, K constant

 O(N)

Handling CISC Machine Code
 Fewer registers:

 E.g., Pentium has only 6 general registers
 Allocate TEMPs and solve problem later!

 Register use is restricted:
 E.g., MUL on Pentium requires use of eax
 Introduce additional LOAD/MOVE instructions

to copy values.

 Complex addressing modes:
 E.g., Pentium allows ADD [ebp-8],ecx
 Simple code generation still works, but is not

as size-efficient, and can trash registers.

Implementation Issues
 If registers are allocated after instruction

selection, generated code must have
“holes”.
 Assembly code template: LOAD d0,s0
 List of source registers: s0
 List of destination registers: d0

 Including registers trashed by instruction (e.g., return
address and return value registers for CALLs)

 Register allocation will then fill in the
holes, by (simplistically) matching source
and destination registers and eliminating
redundancy.

	COMPILERS Instruction Selection
	Introduction
	Preliminaries
	Jouette Architecture 1/2
	Jouette Architecture 2/2
	Instruction Selection
	Tiled Tree 1
	Tiled Tree 2
	Optimum and Optimal Tilings
	Maximal Munch Algorithm
	Maximal Munch Example
	Dynamic Programming Algorithm
	Dynamic Programming Example 1/2
	Dynamic Programming Example 2/2
	Efficiency of Algorithms
	Handling CISC Machine Code
	Implementation Issues

