

COMPILERS
Basic Blocks and

Traces

hussein suleman
uct csc3003s 2009

Evaluation Order
 Its useful to evaluate the subexpressions

of an expression in any order.
 Some IR trees can contain side effects.
 ESEQ and CALL can contain side effects

 assignment
 I/O

 It there were no side effects in these
statements then the order of evaluation
would not matter.

IR/MC mismatches
 CJUMP jumps to one of two labels not one

label and next instruction.
 ESEQ nodes within expressions make

order of evaluation significant.
 CALL nodes within expressions make order

of evaluation significant.
 CALL nodes within the argument of other

CALL nodes make allocation of formal-
parameter registers difficult.

Canonical Trees
 1: No SEQ or ESEQ
 2: CALL can only be subtree of EXP(. .) or

MOVE(TEMP t,. .)
 Transformations:

 lift ESEQs up tree until they can become SEQs
 turn SEQs into linear list

Simplification Rules
 ESEQ(s1, ESEQ(s2, e)) =>

 ESEQ(SEQ(s1,s2), e)
 BINOP(op, ESEQ(s, e1), e2) =>

 ESEQ(s, BINOP(op, e1, e2))
 MEM(ESEQ(s, e1)) =>

 ESEQ(s, MEM(e1))
 JUMP(ESEQ(s, e1)) =>

 SEQ(s, JUMP(e1))
 CJUMP(op, ESEQ(s, e1), e2, l1, l1) =>

 SEQ(s, CJUMP(op, e1, e2, l1, l2))
 MOVE(ESEQ(s, e1), e2)

 = SEQ(s, MOVE(e1, e2))
 BINOP(op, e1, ESEQ(s, e2)) =>

 ESEQ(MOVE(TEMP t, e1), ESEQ (s, BINOP(op,TEMP t, e2)))
 CJUMP(op, e1, ESEQ(s, e2), l1, l2) =>

 SEQ(MOVE(TEMP t, e1), SEQ(s, CJUMP(op,TEMP t, e2, l1, l2)))
 CALL(f , a) =

 ESEQ(MOVE(TEMP t, CALL(f , a)), TEMP(t))

General Technique
 For subexpressions of a node, e1..en,

 [e1, e2, … ESEQ(s,ei), … , en-1, en]
 if s commutes with e1..ei-1 (independent),

 (s; [e1, e2, … ei, … , en-1, en]
 otherwise,

 SEQ(MOVE(TEMP t1, e1),
 SEQ(MOVE(TEMP t2, e2),
 … SEQ(MOVE(TEMP ti-1, ei-1),s))
 [TEMP t1, TEMP t2, … TEMP ti-1, ei, … , en-1, en]

 In general, extract children, reorder and
then reinsert children

Basic Blocks
 Divide linear sequence of nodes in each

subprogram into basic blocks, where:
 execution always starts at top and stops at

bottom
 first statement is a LABEL
 last statement is a JUMP or CJUMP
 no intervening LABELs, JUMPs or CJUMPs

 Basic blocks are easier to work with for
future optimisations since they can be
rearranged, while maintaining logic.

Basic Blocks Algorithm
 Scan sequence of statements from start to

end
 If LABEL, start new block
 If JUMP or CJUMP, end block

 If a block does not start with a LABEL
 Create new LABEL

 If a block does not end with JUMP/CJUMP
 Create new JUMP to next LABEL

 Add terminal “JUMP done” for end of
subprogram.

Traces
 We want to rearrange basic blocks to

optimise the number and nature of jumps.
 A trace is a sequence of statements that

can be consecutively executed during the
program execution (e.g., b1, b3, b6 below)
 block b1: LABEL a … JUMP b
 block b3: LABEL b … JUMP c
 block b6: LABEL c … CJUMP ?,a

 Every program has many overlapping
traces – we want a single set that covers
all the instructions.

Trace Generation
 Put all basic blocks into a list Q
 while Q is not empty

 Start a new (empty) trace T
 Remove an element b from Q

 while b is not marked
 Mark b
 Append b to T
 Check succesors if b for unmarked node and make this

the new b
 End the trace T

JUMP considerations
 We prefer CJUMP followed by its false

label, since this translates to MC
conditional jump.

 If CJUMP followed by its true label,
 switch true and false labels, and negate

conditonal
 If CJUMP (cond, a, b, lt, lf) followed by

some other label, replace with:
 CJUMP (cond, a, b, lt, lfprime)
 LABEL lfprime
 JUMP (NAME lf)

 Remove all JUMPs followed by their target
LABELs.

	COMPILERS Basic Blocks and Traces
	Evaluation Order
	IR/MC mismatches
	Canonical Trees
	Simplification Rules
	General Technique
	Basic Blocks
	Basic Blocks Algorithm
	Traces
	Trace Generation
	JUMP considerations

