

COMPILERS
Activation Records

hussein suleman
uct csc3003s 2009

Subprogram Invocation Mechanics
 Save status of caller.
 Process parameters.
 Save return address.
 Jump to called subprogram.
 … do stuff ...
 Process value-result/result parameters and

function return value(s).
 Restore status of caller.
 Jump back to caller’s saved position.

Frames / Activation Records
 An activation record is

the layout of data needed
to support a call to a
subprogram.

 For languages that do not
allow recursion, each
subprogram has a single
fixed activation record
instance stored in
memory (and no links).

Return address

Static link

Dynamic link

Parameters

Local variables

Function return value

Stack-based Recursion
 When recursion is implemented using a

stack, activation records are pushed onto
the stack at invocation and popped upon
return.

 Example:
int sum (int x)
{
 if (x==0) return 0;
 else return (x + sum (x-1));
}
void main ()
{ sum (2); }

Recursion Activation Records

mainARI

retvalue (?)

parm (x=0)

dynamiclink

staticlink

return (sum)

retvalue (?)

parm (x=1)

dynamiclink

staticlink

return (sum)

retvalue (?)

parm (x=2)

dynamiclink

staticlink

return (main)

mainARI

retvalue (?)

parm (x=1)

dynamiclink

staticlink

return (sum)

retvalue (?)

parm (x=2)

dynamiclink

staticlink

return (main)

mainARI

retvalue (?)

parm (x=2)

dynamiclink

staticlink

return (main)

su
m

(2
)

m
a
in

su
m

(2
)

m
a
in

su
m

(1
)

su
m

(2
)

m
a
in

su
m

(1
)

su
m

(0
)

Non-local References
 To access non-local names in statically-

scoped languages, a program must keep
track of the current referencing
environment.

 Static chains
 Link a subprogram’s activation record to its

static parent.

 Displays
 Keep a list of active activation records.

Non-local Reference Example
 Example:

main {
 int x;
 sub SUBA {
 sub SUBB {
 x = 1;
 }
 SUBB;
 }
 sub SUBC {
 int x;
 int y;
 SUBA;
 }
 SUBC;
}

breakpoint1

breakpoint3

breakpoint2

breakpoint0

Static Chains

local (x)

dynamiclink

staticlink

return (A)

dynamiclink

staticlink

return (C)

local (x)

local (y)

dynamiclink

staticlink

return (main)

local (x)

dynamiclink

staticlink

return (C)

local (x)

local (y)

dynamiclink

staticlink

return (main)

local (x)

local (x)

local (y)

dynamiclink

staticlink

return (main)

S
U

B
C

m
a
in

S
U

B
C

m
a
in

S
U

B
A

S
U

B
C

m
a
in

S
U

B
A

S
U

B
B

breakpoint1 breakpoint3breakpoint2

Displays

breakpoint1 breakpoint3breakpoint2

MAIN ARI

SUBC ARI

0

1

stack display

MAIN ARI

SUBC ARI

0

1

stack display

MAIN ARI

SUBC ARI

0

1

stack display

SUBA ARI SUBA ARI

SUBB ARI

2

Static Chains vs. Displays
 Static chains require more indirect

addressing – displays require a fixed
amount of work.

 Displays require pointer maintenance on
return – static chains do not.

 Displays require “backing up” of display
pointer – static chains require static links
in each activation record.

Dynamic Scoping
 Dynamically scoped languages can be

implemented using:
 Deep Access

 Follow the dynamic chains to find most recent
non-local name definition.

 Shallow Access
 Maintain a separate stack for each name.

Deep Access
 At breakpoint3, by

following dynamic
links from SUBB, the
closest definition of x
is in SUBC.

 (Remember that for
static scoping, by
following static links,
the closest definition
is in main.) local (x)

dynamiclink

staticlink

return (A)

dynamiclink

staticlink

return (C)

local (x)

local (y)

dynamiclink

staticlink

return (main)

S
U

B
C

m
a
in

S
U

B
A

S
U

B
B

breakpoint3

Frame Pointers
 Stack frames are usually supported by:

 stack pointer - points to top of stack
 frame pointer - points to top of previous frame

frame
pointer

stack
pointer

AR g

AR h

frame
pointer

stack
pointer

AR g

AR f AR f

After call to h()

View Shifts
 On a Pentium machine,

 M[SP + 0] <-- FP
 save old frame pointer

 FP <-- SP
 move frame pointer to top of stack

 SP <-- SP - K
 move stack pointer to end of new frame

 On machines which use registers for frame
optimisation, remember to save registers
in temporary variables.

Register Handling
 One set of registers are typically used by

many subprograms, so a value expected
by one may be overwritten by another.

 Solution:
 Make it the responsibility of the caller to save

registers first (caller-save)
 Make it the responsibility of the callee to save

registers first (callee-save)

 Optimise which registers need to be saved
as some values can be thrown away.

Parameter Passing
 Registers are more efficient than copying

every parameter to the stack frame.
 Registers are limited so pass first k parameters

in registers and rest in frame.

 Nested subprogram calls require saving
and restoring so there is dubious cost
savings!
 leaf procedures, different registers, done with

variables, register windows

 How does C support varargs ?

Return Addresses
 Traditionally a stack frame entry.
 More efficient to simply use a register.

 Same saving procedure necessary as before for
non-leaf subprograms.

Temporaries and Labels
 Each time a local variable is encountered,

a unique temporary name is generated –
this temporary will eventually map to
either a register or a memory location
(usually on the stack).

 Each time a subprogram is encountered, a
unique label is generated.

 These must be unique to prevent naming
conflicts - the optimiser will deal with
efficiency.

Frame Implementation 1/2
 A Frame class corresponds to the frame

for each subprogram.
 During translation, frames are created to track

variables and generate prologue/epilogue
code.

 Frame can be an abstract class with
instantiations for different machine
architectures.
 Each instantiation must know how to

implement a “view shift” from one frame to
another.

Frame Implementation 2/2
 Each time a local variable is defined, a

method of Frame can be called to allocate
space appropriately (on stack frame or in
registers).
 f.allocLocal (false)
 Parameter indicates if variable requires

memory (escapes) or not - should we allocate
stack space or temporary?

 Allocating a temporary for each variable
can be slow - future stages will optimise by
reusing both registers and space.

Stack vs. Registers
 Why use registers?

 Faster and smaller code

 If registers are so great, why use stack?
 variables used/passed by reference
 nested subprograms
 variable is not simple or just too big
 arrays
 registers are needed for other purposes
 too many variables

	COMPILERS Activation Records
	Subprogram Invocation Mechanics
	Frames / Activation Records
	Stack-based Recursion
	Recursion Activation Records
	Non-local References
	Non-local Reference Example
	Static Chains
	Displays
	Static Chains vs. Displays
	Dynamic Scoping
	Deep Access
	Frame Pointers
	View Shifts
	Register Handling
	Parameter Passing
	Return Addresses
	Temporaries and Labels
	Frame Implementation 1/2
	Frame Implementation 2/2
	Stack vs. Registers

