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Subprogram Invocation Mechanics
 Save status of caller.
 Process parameters.
 Save return address.
 Jump to called subprogram.
 … do stuff ...
 Process value-result/result parameters and 

function return value(s).
 Restore status of caller.
 Jump back to caller’s saved position.



  

Frames / Activation Records
 An activation record is 

the layout of data needed 
to support a call to a 
subprogram.

 For languages that do not 
allow recursion, each 
subprogram has a single 
fixed activation record 
instance stored in 
memory (and no links).
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Stack-based Recursion
 When recursion is implemented using a 

stack, activation records are pushed onto 
the stack at invocation and popped upon 
return.

 Example:
int sum ( int x )
{
   if (x==0) return 0;
   else return (x + sum (x-1));
}
void main ()
{ sum (2); }



  

Recursion Activation Records
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Non-local References
 To access non-local names in statically-

scoped languages, a program must keep 
track of the current referencing 
environment.

 Static chains
 Link a subprogram’s activation record to its 

static parent.

 Displays
 Keep a list of active activation records.



  

Non-local Reference Example
 Example:

main {
   int x;
   sub SUBA {
      sub SUBB {
         x = 1;
      }
      SUBB;
   }
   sub SUBC {
      int x;
      int y;
      SUBA;
   }
   SUBC;
}
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Static Chains
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Displays
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Static Chains vs. Displays
 Static chains require more indirect 

addressing – displays require a fixed 
amount of work.

 Displays require pointer maintenance on 
return – static chains do not.

 Displays require “backing up” of display 
pointer – static chains require static links 
in each activation record.



  

Dynamic Scoping
 Dynamically scoped languages can be 

implemented using:
 Deep Access

 Follow the dynamic chains to find most recent 
non-local name definition.

 Shallow Access
 Maintain a separate stack for each name.



  

Deep Access
 At breakpoint3, by 

following dynamic 
links from SUBB, the 
closest definition of x 
is in SUBC.

 (Remember that for 
static scoping, by 
following static links, 
the closest definition 
is in main.) local (x)
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Frame Pointers
 Stack frames are usually supported by:

 stack pointer - points to top of stack
 frame pointer - points to top of previous frame
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View Shifts
 On a Pentium machine,

 M[SP + 0] <-- FP
 save old frame pointer

 FP <-- SP
 move frame pointer to top of stack

 SP <-- SP - K
 move stack pointer to end of new frame

 On machines which use registers for frame 
optimisation, remember to save registers 
in temporary variables.



  

Register Handling
 One set of registers are typically used by 

many subprograms, so a value expected 
by one may be overwritten by another.

 Solution:
 Make it the responsibility of the caller to save 

registers first (caller-save)
 Make it the responsibility of the callee to save 

registers first (callee-save)

 Optimise which registers need to be saved 
as some values can be thrown away.



  

Parameter Passing
 Registers are more efficient than copying 

every parameter to the stack frame.
 Registers are limited so pass first k parameters 

in registers and rest in frame.

 Nested subprogram calls require saving 
and restoring so there is dubious cost 
savings!
 leaf procedures, different registers, done with 

variables, register windows

 How does C support varargs ?



  

Return Addresses
 Traditionally a stack frame entry.
 More efficient to simply use a register.

 Same saving procedure necessary as before for 
non-leaf subprograms.



  

Temporaries and Labels
 Each time a local variable is encountered, 

a unique temporary name is generated – 
this temporary will eventually map to 
either a register or a memory location 
(usually on the stack).

 Each time a subprogram is encountered, a 
unique label is generated.

 These must be unique to prevent naming 
conflicts - the optimiser will deal with 
efficiency.



  

Frame Implementation 1/2
 A Frame class corresponds to the frame 

for each subprogram.
 During translation, frames are created to track 

variables and generate prologue/epilogue 
code.

 Frame can be an abstract class with 
instantiations for different machine 
architectures.
 Each instantiation must know how to 

implement a “view shift” from one frame to 
another.



  

Frame Implementation 2/2
 Each time a local variable is defined, a 

method of Frame can be called to allocate 
space appropriately (on stack frame or in 
registers).
 f.allocLocal (false)
 Parameter indicates if variable requires 

memory (escapes) or not - should we allocate 
stack space or temporary?

 Allocating a temporary for each variable 
can be slow - future stages will optimise by 
reusing both registers and space.



  

Stack vs. Registers
 Why use registers?

 Faster and smaller code

 If registers are so great, why use stack?
 variables used/passed by reference
 nested subprograms
 variable is not simple or just too big
 arrays
 registers are needed for other purposes
 too many variables
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