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Semantic Analysis
 The compilation process is driven by the syntactic 

structure of the program as discovered by the 
parser.

 Semantic routines:
 interpret meaning of the program based on its syntactic 

structure
 it has two functions:

 finish analysis by deriving context-sensitive information
 begin synthesis by generating the IR or target code

 Associated with individual productions of a 
context free grammar or subtrees of a syntax 
tree.



  

Context Sensitive Analysis - Why
 What context-sensitive issues can be 

determined?
 Is X declared before it is used?
 Are any names declared but not used?
 Which declaration of X does this reference?
 Is an expression type-consistent?
 Do the dimensions of a reference match the declaration?
 Where can X be stored? (heap, stack,  ,,, )
 Does *p reference the result of a malloc()?
 Is X defined before it is used?
 Is an array reference in bounds?
 Does function foo(…) produce a constant value?



  

Context Sensitive Analysis - How
 How to check symbols and their semantics 

at various points in the program?
 Process program linearly (roughly, in-order tree 

traversal).
 Maintain a list of currently defined symbols and 

what they mean as the program is processed – 
this is called a Symbol Table.



  

Symbol Tables
 Associate lexical names (symbols) with 

their attributes.
 Can contain:

 variable names
 defined constants
 procedure/function/method names
 literal constants and strings
 source text labels
 compiler-generated temporaries
 subtables for structure layouts (types) (field 

offsets and lengths)



  

Symbol Table Attributes
 Attributes are internal representations of 

declarations.
 The following attributes would be kept in a 

symbol table:
 textual name
 data type
 dimension information (for aggregates)
 declaring procedure
 lexical level of declaration
 storage class (base address)
 offset in storage
 if record, pointer to structure table
 if parameter, by-reference or by-value?
 can it be aliased? to what other names?
 number and type of arguments to functions/methods



  

Attribute Differentiation
 Names may have different attributes 

depending on their meaning:
 variables: type, procedure level, frame offset
 types: type descriptor, data size/alignment
 constants: type, value
 methods: formals (names/types), result type, 

block information (local decls.), frame size



  

Binding
 As the declarations of types, variables, and 

functions are processed, identifiers are 
bound to “meanings” in the symbol table.

 A symbol table is a set of bindings.

 … But this binding is not static – it changes 
over the course of the program.



  

Scope
 An identifier has scope when it is visible 

and can be referenced.
 An out-of-scope identifier cannot be 

referenced.
 Identifiers in open scopes may override 

older/outer scopes temporarily.
 2 Types of scope:

 Static scope is when visibility is due to the 
lexical nesting of subprograms/blocks.

 Dynamic scope is when visibility is due to the 
call sequence of subprograms.



  

Basic Static Scope
 Usually, a name begins life where it is 

declared and ends at the end of its block.

            void foo()  {
                      int k;
            …….
           }



  

Why Scope?
 Scope is not necessary. 

 Languages such as assembler have exactly 
one scope: the whole program.

 Modern programming languages have 
more than one scope.
 Information hiding and modularity.

 Goal of any language is to make the 
programmer’s job simpler.
 One way: keep things isolated.
 Make each thing only affect a limited area.
 Make it hard to break something far away.



  

Changing Scope
 Identifiers come into scope at the beginning of a 

subprogram/block and go out of scope at the end.

 Example (in C++):

void testfunc ()
{
   int a; // a enters scope;
   for ( int b=1; b<10; b++ ) // b in scope for for
   {
      int c; // c enters scope
      …
   } // b,c leave scope
   …
} // a leaves scope



  

Types of Scope
 Static Scope

 Accessibility of variables depends on lexical 
structure of program.

 Determined at compile time / “programming 
time”.

 Dynamic Scope
 Accessibility of variables depends on call 

sequence of program.
 Determined at runtime.



  

Static Scope
 Consider the Pascal program (which uses static scoping):

program test;
var a : integer;

   procedure proc1;
   var b : integer;
   begin
   end;

   procedure proc2;
   var a, c : integer;
   begin
      proc1;
   end;

begin
   proc2; 
end.

in scope: a (from test)

in scope: a, c (from proc2)

in scope: b (from proc1), a (from test)



  

Dynamic Scope
 Consider the Pascal-like code (assume dynamic scoping):

program test;
var a : integer;

   procedure proc1;
   var b : integer;
   begin
   end;

   procedure proc2;
   var a, c : integer;
   begin
      proc1;
   end;

begin
   proc2; 
end.

in scope: a (from test)

in scope: a, c (from proc2)

in scope: b (from proc1) a, c (from proc2)



  

Static vs. Dynamic Scope
 Dynamic scope makes it easier to access 

variables with lifetime, but it is difficult to 
understand the semantics of code outside 
the context of execution.

 Static scope is more restrictive – therefore 
easier to read – but may force the use of 
more subprogram parameters or global 
identifiers to enable visibility when 
required.



  

Scope in a symbol table
 Most modern programming languages 

have nested static scope.
 The symbol table must reflect this.

 What additional information can reflect 
nested scope?
 A name query must access the most recent 

declaration, from the current scope or some 
enclosing scope.

 Innermost scope overrides declarations from 
outer scopes.



  

Scope and Symbol Table Operations

 What symbol table operations do we 
need?
  void put (Symbol key, Object value)

 binds key to value

  Object get(Symbol key)
 returns value bound to key

  void beginScope()
 remembers current state of table

  void endScope()
 restores table to state at most recent scope that has 

not been ended



  

Symbol Table Implementation
 Implemented as a collection of dictionaries 

in which each symbol is placed.

 Many different possible data structures:
 array
 linked list
 hash table
 binary tree



  

Symbol Table Lookup
 Basic operation is to find the entry for a 

given symbol.
 Each symbol table may have a pointer to 

its parent scope.
 Lookup: if symbol in current table, return 

it, otherwise look in parent.

 Hash tables and binary trees can be used 
more efficiently.



  

Types of Implementation
 Imperative

 Auxiliary data structures are modified as the 
analysis progresses, always reflecting only the 
current state.

 Functional
 Auxiliary data structures are maintained intact 

as the analysis progresses, with new versions 
created when needed – thus previous and 
current states are all available at any time.



  

Hash Table - Imperative
 Principle: Use a stack of scope pointers to 

lists of entries in each scope.
 put

 Chain new entries to beginning of table, thus 
overriding older entries.  New entries are 
linked together, headed by scope pointer.

 beginScope
 Create new list pointer for new entries. Save 

old pointer on stack

 endScope
 Using list pointer, remove entries from head of 

each linked list.



  

Hash Table - Functional
 Principle: Create copies of array for every 

open scope.
 put

 Chain new entries to beginning of table, thus 
overriding older entries.

 beginScope
 Functional - Create copy of hash table array.

 endScope
 Functional – Dispose of array.



  

Binary Tree - Functional
 Principle: Duplicate node list to root.
 put

 Insert new entries into a new subtree, 
duplicating nodes up to the root.

 endScope
 Delete all nodes in new subtree.

valueC 3

valueA 4

valueA 2

valueB 1

valueB 1
root before second “valueA”

root after second “valueA”



  

Symbols vs. Names
 Names are the textual entities found in the 

source code.
 Symbols are entities assigned to each 

name for more efficient processing during 
compilation.

 Example:
 Name: valueA

 Symbol: V001
 Name: valueB

 Symbol: V002

 Remember perfect hash functions?



  

Type Checking
 Static semantics should be checked 

after/as the symbol table is populated.
 Is every name defined before it is used?
 Does the type of each subexpression conform 

to what is expected?
 Are the types on either side of an assignment 

compatible?

 The tree can be walked/visited to perform 
these checks.
 May need multiple passes – so retain symbol 

table across passes.



  

Type Equivalence
 Two approaches:

 Name equivalence: each type name is a 
distinct type.

 Structural equivalence: two types are 
equivalent iff. they have the same structure 
(after substituting type expressions for type 
names).

 Example (structural):
typedef int bignumber;
int c;
bignumber b =c;



  

Error Handling
 If errors are detected, correct program 

representation and continue analysis to 
detect other errors.

 Example:
int a, b;
String c;
c = a;
b = a;
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