

COMPILERS
Semantic Analysis

hussein suleman
uct csc3003s 2009

Semantic Analysis
 The compilation process is driven by the syntactic

structure of the program as discovered by the
parser.

 Semantic routines:
 interpret meaning of the program based on its syntactic

structure
 it has two functions:

 finish analysis by deriving context-sensitive information
 begin synthesis by generating the IR or target code

 Associated with individual productions of a
context free grammar or subtrees of a syntax
tree.

Context Sensitive Analysis - Why
 What context-sensitive issues can be

determined?
 Is X declared before it is used?
 Are any names declared but not used?
 Which declaration of X does this reference?
 Is an expression type-consistent?
 Do the dimensions of a reference match the declaration?
 Where can X be stored? (heap, stack, ,,,)
 Does *p reference the result of a malloc()?
 Is X defined before it is used?
 Is an array reference in bounds?
 Does function foo(…) produce a constant value?

Context Sensitive Analysis - How
 How to check symbols and their semantics

at various points in the program?
 Process program linearly (roughly, in-order tree

traversal).
 Maintain a list of currently defined symbols and

what they mean as the program is processed –
this is called a Symbol Table.

Symbol Tables
 Associate lexical names (symbols) with

their attributes.
 Can contain:

 variable names
 defined constants
 procedure/function/method names
 literal constants and strings
 source text labels
 compiler-generated temporaries
 subtables for structure layouts (types) (field

offsets and lengths)

Symbol Table Attributes
 Attributes are internal representations of

declarations.
 The following attributes would be kept in a

symbol table:
 textual name
 data type
 dimension information (for aggregates)
 declaring procedure
 lexical level of declaration
 storage class (base address)
 offset in storage
 if record, pointer to structure table
 if parameter, by-reference or by-value?
 can it be aliased? to what other names?
 number and type of arguments to functions/methods

Attribute Differentiation
 Names may have different attributes

depending on their meaning:
 variables: type, procedure level, frame offset
 types: type descriptor, data size/alignment
 constants: type, value
 methods: formals (names/types), result type,

block information (local decls.), frame size

Binding
 As the declarations of types, variables, and

functions are processed, identifiers are
bound to “meanings” in the symbol table.

 A symbol table is a set of bindings.

 … But this binding is not static – it changes
over the course of the program.

Scope
 An identifier has scope when it is visible

and can be referenced.
 An out-of-scope identifier cannot be

referenced.
 Identifiers in open scopes may override

older/outer scopes temporarily.
 2 Types of scope:

 Static scope is when visibility is due to the
lexical nesting of subprograms/blocks.

 Dynamic scope is when visibility is due to the
call sequence of subprograms.

Basic Static Scope
 Usually, a name begins life where it is

declared and ends at the end of its block.

 void foo() {
 int k;
 …….
 }

Why Scope?
 Scope is not necessary.

 Languages such as assembler have exactly
one scope: the whole program.

 Modern programming languages have
more than one scope.
 Information hiding and modularity.

 Goal of any language is to make the
programmer’s job simpler.
 One way: keep things isolated.
 Make each thing only affect a limited area.
 Make it hard to break something far away.

Changing Scope
 Identifiers come into scope at the beginning of a

subprogram/block and go out of scope at the end.

 Example (in C++):

void testfunc ()
{
 int a; // a enters scope;
 for (int b=1; b<10; b++) // b in scope for for
 {
 int c; // c enters scope
 …
 } // b,c leave scope
 …
} // a leaves scope

Types of Scope
 Static Scope

 Accessibility of variables depends on lexical
structure of program.

 Determined at compile time / “programming
time”.

 Dynamic Scope
 Accessibility of variables depends on call

sequence of program.
 Determined at runtime.

Static Scope
 Consider the Pascal program (which uses static scoping):

program test;
var a : integer;

 procedure proc1;
 var b : integer;
 begin
 end;

 procedure proc2;
 var a, c : integer;
 begin
 proc1;
 end;

begin
 proc2;
end.

in scope: a (from test)

in scope: a, c (from proc2)

in scope: b (from proc1), a (from test)

Dynamic Scope
 Consider the Pascal-like code (assume dynamic scoping):

program test;
var a : integer;

 procedure proc1;
 var b : integer;
 begin
 end;

 procedure proc2;
 var a, c : integer;
 begin
 proc1;
 end;

begin
 proc2;
end.

in scope: a (from test)

in scope: a, c (from proc2)

in scope: b (from proc1) a, c (from proc2)

Static vs. Dynamic Scope
 Dynamic scope makes it easier to access

variables with lifetime, but it is difficult to
understand the semantics of code outside
the context of execution.

 Static scope is more restrictive – therefore
easier to read – but may force the use of
more subprogram parameters or global
identifiers to enable visibility when
required.

Scope in a symbol table
 Most modern programming languages

have nested static scope.
 The symbol table must reflect this.

 What additional information can reflect
nested scope?
 A name query must access the most recent

declaration, from the current scope or some
enclosing scope.

 Innermost scope overrides declarations from
outer scopes.

Scope and Symbol Table Operations

 What symbol table operations do we
need?
 void put (Symbol key, Object value)

 binds key to value

 Object get(Symbol key)
 returns value bound to key

 void beginScope()
 remembers current state of table

 void endScope()
 restores table to state at most recent scope that has

not been ended

Symbol Table Implementation
 Implemented as a collection of dictionaries

in which each symbol is placed.

 Many different possible data structures:
 array
 linked list
 hash table
 binary tree

Symbol Table Lookup
 Basic operation is to find the entry for a

given symbol.
 Each symbol table may have a pointer to

its parent scope.
 Lookup: if symbol in current table, return

it, otherwise look in parent.

 Hash tables and binary trees can be used
more efficiently.

Types of Implementation
 Imperative

 Auxiliary data structures are modified as the
analysis progresses, always reflecting only the
current state.

 Functional
 Auxiliary data structures are maintained intact

as the analysis progresses, with new versions
created when needed – thus previous and
current states are all available at any time.

Hash Table - Imperative
 Principle: Use a stack of scope pointers to

lists of entries in each scope.
 put

 Chain new entries to beginning of table, thus
overriding older entries. New entries are
linked together, headed by scope pointer.

 beginScope
 Create new list pointer for new entries. Save

old pointer on stack

 endScope
 Using list pointer, remove entries from head of

each linked list.

Hash Table - Functional
 Principle: Create copies of array for every

open scope.
 put

 Chain new entries to beginning of table, thus
overriding older entries.

 beginScope
 Functional - Create copy of hash table array.

 endScope
 Functional – Dispose of array.

Binary Tree - Functional
 Principle: Duplicate node list to root.
 put

 Insert new entries into a new subtree,
duplicating nodes up to the root.

 endScope
 Delete all nodes in new subtree.

valueC 3

valueA 4

valueA 2

valueB 1

valueB 1
root before second “valueA”

root after second “valueA”

Symbols vs. Names
 Names are the textual entities found in the

source code.
 Symbols are entities assigned to each

name for more efficient processing during
compilation.

 Example:
 Name: valueA

 Symbol: V001
 Name: valueB

 Symbol: V002

 Remember perfect hash functions?

Type Checking
 Static semantics should be checked

after/as the symbol table is populated.
 Is every name defined before it is used?
 Does the type of each subexpression conform

to what is expected?
 Are the types on either side of an assignment

compatible?

 The tree can be walked/visited to perform
these checks.
 May need multiple passes – so retain symbol

table across passes.

Type Equivalence
 Two approaches:

 Name equivalence: each type name is a
distinct type.

 Structural equivalence: two types are
equivalent iff. they have the same structure
(after substituting type expressions for type
names).

 Example (structural):
typedef int bignumber;
int c;
bignumber b =c;

Error Handling
 If errors are detected, correct program

representation and continue analysis to
detect other errors.

 Example:
int a, b;
String c;
c = a;
b = a;

	COMPILERS Semantic Analysis
	Semantic Analysis
	Context Sensitive Analysis - Why
	Context Sensitive Analysis - How
	Symbol Tables
	Symbol Table Attributes
	Attribute Information
	Binding
	Scope
	Basic Static Scope
	Why Scope?
	Changing Scope
	Slide 13
	Static Scope
	Dynamic Scope
	Static vs. Dynamic Scope
	Scope in a symbol table
	 Scope and Symbol Table Operations
	Symbol Table Implementation
	Symbol Table Lookup
	Types of Implementation
	Hash Table
	Slide 23
	Binary Tree
	Symbols vs. Names
	Type Checking
	Type Equivalence
	Error Handling

