
\qquad
\qquad

Student Number:

University of Cape Town ~ Department of Computer Science Computer Science 1018F ~ 2009

Test 2

Question	Max	Mark	Internal	External
1	3			
2	15			
3	12			
TOTAL	$\mathbf{3 0}$			

Marks $\quad: \mathbf{3 0}$
Time $\quad: \mathbf{4 0}$ minutes
Instructions:
a) Answer all questions.
b) Write your answers, in pen, in the space provided.
c) Show all calculations where applicable.

Question 1 [3]

Given a list: fruit = ['persimmon', 'granadilla', 'litchi']

What would the newfruit list look like after each of the following operations.
a)

```
    newfruit = fruit[:-1]
```

newfruit $=$ ['persimmon', 'granadilla']
b)

```
newfruit = [f*2 for f in fruit]
```

newfruit $=$ ['persimmonpersimmon', 'granadillagranadilla', 'litchilitchi']
c)

```
newfruit = fruit
    newfruit.append(['kiwi', 'plantain'])
```

newfruit = ['persimmon', 'granadilla', 'litchi', ['kiwi', 'plantain']]

Question 2 [15]

a) Your task is to create a telephone directory using a dictionary data structure that will allow a programmer to look up a telephone number given a person's name. This question has two parts:
i. Write a method telparse(telfile) that opens a file called telfile containing a list of names and associated telephone numbers. Each name and number is linked by a ' $=$ ' (i.e., name1=telnum1) and telephone entries are seperated by spaces. A typical file might have the form:

James=6504058 Hussein=6505106

The telparse method should return a list of strings of the form ['name1=telnum1', 'name2=telnum2', ...]. Be sure to use proper exception handling when opening the telfile and close any open files once finished.
"""Parse the telfile into a list of name and telephone
number pairs."""
try [1/2]
$t f=$ open(telfile, ' r ') [1/2]
$t t x t=t$ f.read) [1/2]
tf.close() [1/2]
except IOError: [1/2]
print 'Error in File $I O^{\prime} \quad[1 / 2]$
return [] [1/2]
tlist $=$ ttxt.split($\left(^{\prime}\right.$) [1]
return tlist [1/2]
ii. Write a method teldir(tellist) that takes the list of names and telephone number pairs from part (i) and creates and returns a dictionary indexed by name. Hint: you will need to use the ' $=$ ' to split apart the name and telephone number.
def teldir(tellist):
"""Return a telephone dictionary from a list of names and
telephone numbers."""
tdict $=\{ \}$
for telentry in tellist: [1]
tel $=$ telentry.split $(=$ ' $) \quad$ [1]
tdict[tel[0]] = tel[1] [1]
return tdict [1/2]
b) Mention two (2) practices of effective defensive programming and explain why they lead to fewer bugs or make debugging easier in the resulting programs.
Plan before coding [1] - solution is propertly structured and hence easier to debug [1]
Comment while coding [1] - means that you (or another coder) can understand the code when you return to it later [1]

Use pre- and post-conditions [1] - catches bugs that arise from incorrect input or output values [1]

Catch exceptions [1] - makes sure that you identify and helpfully label bugs at the point where they occur [1]
Test [1] - the only way to find a range of bugs before the software is delivered [1]
Any two accepted. Arguments don't have to match exactly but must be plausible.

Question 3 [12]

Visual Python has a class which supports a variety of operations on vectors. You are given the following class declaration:

```
Class Vector():
    """A mathematical entity with three elements i, j, k.
    It represents direction and magnitude in a three-
    dimensional coordinate system."""
```

a) Create the following methods for your version of the Vector class:
i. An initialisation method that assigns its three parameters to the $\mathrm{i}, \mathrm{j}, \mathrm{k}$ instance variables. The parameters are optional and default to a value of 0.0.
ii. An add method that takes a vector as argument and performs component-wise addition with the current vector and returns the result as a new vector. Called as: $\mathrm{v}=\mathrm{v} 1 . \operatorname{add}(\mathrm{v} 2)$
iii. A length method that returns the magnitude of the current vector (the square root of the sum of the squares of the vector elements). Called as: $1=$ v.length()

$$
\begin{equation*}
\text { def__init__(self, } a=0.0, b=0.0, c=0.0): \tag{10}
\end{equation*}
$$

"initiliase by assigning (a, b, c) to the vector" [1/2]
self. $i=a$
self. $j=b \quad$ [1/2]
self. $k=c \quad$ [1/2]
def add(self, Vector $v 2$): [1]
"add $v 2$ to the current vector and return the sum" [1/2]
$v=\operatorname{Vector}($ self. $i+v 2 . i$, self. $j+v 2 . j$, self. $k+v 2 . k) \quad[11 / 2]$
return v [1/2]
def length(self): [1]
"return the length of the vector" [1/2]
return sqrt(self. i *self. $i+$ self. j *self. $j+$ self. k *self. k) [2]
b) It might be easier for a user of the vector class to use the '+' addition operator (e.g., $\mathrm{v}=\mathrm{v} 1+$ v2) instead of the add method (e.g., v = v1.add (v2)). How could this be done and what is this process called?
By using a special class method (__add__). [1] It is called operator overloading or polymorphism [1]

