
CSC1016

Welcome (again!)
Get course notes handout

(and read them)

The question of whether
computers can think is like the
question of whether
submarines can swim.

Edsger Dijkstra

 2

Me - for those who don’t
know

Mike Linck
Pam.Linck@ebucksmail.com

 Room

 3

You - refresher

what I expect:
Read the book chapter before class
Participate in class
Do the Self-test exercises!
Let me know of problems/issues with you have with
the work

What I’d like:
Enthusiasm
Suggestions

Chapter 11

Recursion

 5

Recursion

It was a dark and stormy night,
and the head of the brigands said
to Antonio:“Antonio, tell us a tale”.
And so Antonio began:

“It was a dark and stormy night and
the head of the brigands said to
Antonio, “Antonio, tell us a tale”. And
so Antonio began:

“It was a dark and stormy night….

 6

From wikipedia:

a recursive definition of person's
ancestors:

One's parents are one's ancestors (base
case);
The parents of any ancestor are also
ancestors of the person under
consideration (recursion step).

 7

Also from Wikipedia:

A visual form of
recursion
known as the
Droste effect.

 8

Recursion

Classic introductory example - Factorial function:

€

n!=1×...×(n−1)×n

€

0!=1

€

n!=(n−1)!×n for n>=1

 9

Recursion - another
example

Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
–recursive sequence,
–calculate the next term by summing the preceding two

€

f (n)=f (n−1)+f (n−2)

€

f (1) = 1
f (2) = 1

http://www.mathacademy.com/pr/prime/browse.asp?LT=L&ANCHOR=sequence0000000000000000000000&LEV=&TBM=&TAL=&TAN=&TBI=&TCA=&TCS=&TDI=&TEC=&TFO=&TGE=&TGR=&THI=&TNT=&TPH=&TST=&TTO=&TTR=&TAD=

 10

Recursive void Methods

A recursive method is a method
that includes a call to itself

based on the general problem solving
technique of breaking down a task
into subtasks
In particular, recursion can be used
whenever one subtask is a smaller
version of the original task

 11

Vertical Numbers

The static recursive method from Ch11:
writeVertical:

takes one (nonnegative) int argument
writes the digits of that int down the screen, one
per line

Note: Recursive methods need not be static

e.g:
input:

10051

output:

1
0
0
5
1

 12

Vertical Numbers

This task may be broken down into the
following two subtasks:

Simple case:
If n<10, then write the number n to the screen

Recursive Case:
If n>=10, then do two subtasks:

Output all the digits except the last digit
Output the last digit

 13

Vertical Numbers

Given the argument 1234, the
output of the first subtask would
be:
1
2
3
The output of the second part
would be:
4

 14

Vertical Numbers

The decomposition of tasks into
subtasks can be used to derive the
method definition:

Subtask 1 is a smaller version of the
original task, so it can be
implemented with a recursive call
Subtask 2 is just the simple case

 15

Algorithm for Vertical
Numbers
Given parameter n:
if (n<10)
 System.out.println(n);

 else
{
 writeVertical(the number n with the last digit
removed);
 System.out.println(the last digit of n);
}

 16

A Recursive void Method
(Part 1 of 2)

 17

A Recursive void Method
(Part 2 of 2)

 18

Tracing a Recursive Call

Recursive methods are processed
in the same way as any method
call
writeVertical(123);

When this call is executed, the
argument 123 is substituted for the
parameter n, and the body of the
method is executed
Since 123 is not less than 10, the
else part is executed

 19

Execution of
writeVertical(123)

 20

Execution of
writeVertical(12)

 21

Execution of
writeVertical(1)

 22

Completion of
writeVertical(12)

 23

Completion of
writeVertical(123)

 24

A Closer Look at Recursion

When the computer encounters a
recursive call, it must temporarily
suspend its execution of a method

It does this because it must know the result
of the recursive call before it can proceed
It saves all the information it needs to
continue the computation later on, when it
returns from the recursive call

Ultimately, this entire process
terminates when one of the recursive
calls does not depend upon recursion to
return

 25

General Form of a Recursive
Method Definition

The general outline of a successful
recursive method definition is as
follows:

One or more cases that include one or
more recursive calls to the method being
defined

These recursive calls should solve "smaller"
versions of the task performed by the method
being defined

One or more cases that include no recursive
calls: base cases or stopping cases

 26

Pitfall: Infinite Recursion
In the writeVertical example, the series of
recursive calls eventually reached a call of the
method that did not involve recursion (a
stopping case)

If, instead, every recursive call had produced
another recursive call, then a call to that
method would, in theory, run forever

This is called infinite recursion
In practice, such a method runs until the computer
runs out of resources, and the program terminates
abnormally

 27

Pitfall: Infinite Recursion
An alternative version of
writeVertical

Note: No stopping case!

public static void
 newWriteVertical(int n)
{
 newWriteVertical(n/10);
 System.out.println(n%10);
}

 28

Pitfall: Infinite Recursion
A program with this method will compile and
run
Calling newWriteVertical(12) causes that
execution to stop to execute the recursive call
newWriteVertical(12/10)

Which is equivalent to newWriteVertical(1)

Calling newWriteVertical(1) causes that
execution to stop to execute the recursive call
newWriteVertical(1/10)

Which is equivalent to newWriteVertical(0)

 29

Pitfall: Infinite Recursion
Calling newWriteVertical(0) causes
that execution to stop to execute the
recursive call
newWriteVertical(0/10)

Which is equivalent to
newWriteVertical(0)

. . . and so on, forever!

Since the definition of
newWriteVertical has no stopping
case, the process will proceed forever
(or until the computer runs out of
resources)

 30

Stacks for Recursion

To keep track of recursion (and other things),
most computer systems use a stack

A stack is a very specialized kind of memory
structure analogous to a stack of paper
As an analogy, there is also an inexhaustible supply
of extra blank sheets of paper
Information is placed on the stack by writing on one
of these sheets, and placing it on top of the stack
(becoming the new top of the stack)
More information is placed on the stack by writing
on another one of these sheets, placing it on top of
the stack, and so on

 31

Stacks for Recursion

To get information out of the stack, the top
paper can be read, but only the top paper
To get more information, the top paper can
be thrown away, and then the new top
paper can be read, and so on

Since the last sheet put on the stack is
the first sheet taken off the stack, a
stack is called a last-in/first-out memory
structure (LIFO)

 32

Stacks for Recursion

To keep track of recursion, whenever a method is
called, a new "sheet of paper" is taken

The method definition is copied onto this sheet, and the
arguments are plugged in for the method parameters

The computer starts to execute the method body

When it encounters a recursive call, it stops the
computation in order to make the recursive call

It writes information about the current method on the
sheet of paper, and places it on the stack

 33

Stacks for Recursion

A new sheet of paper is used for
the recursive call

The computer writes a second copy of
the method, plugs in the arguments,
and starts to execute its body
When this copy gets to a recursive
call, its information is saved on the
stack also, and a new sheet of paper
is used for the new recursive call

 34

Stacks for Recursion

This process continues until some recursive
call to the method completes its computation
without producing any more recursive calls

Its sheet of paper is then discarded

Then the computer goes to the top sheet of
paper on the stack

This sheet contains the partially completed
computation that is waiting for the recursive
computation that just ended
Now it is possible to proceed with that suspended
computation

 35

Stacks for Recursion

After the suspended computation ends,
the computer discards its corresponding
sheet of paper (the one on top)
 The suspended computation that is
below it on the stack now becomes the
computation on top of the stack
This process continues until the
computation on the bottom sheet is
completed

 36

Stacks for Recursion

Depending on how many recursive calls
are made, and how the method
definition is written, the stack may grow
and shrink in any fashion
The stack of paper analogy has its
counterpart in the computer

The contents of one of the sheets of paper
is called a stack frame or activation record
The stack frames don't actually contain a
complete copy of the method definition, but
reference a single copy instead

 37

Pitfall: Stack Overflow

There is always some limit to the size of
the stack

If there is a long chain in which a method
makes a call to itself, and that call makes
another recursive call, . . . , and so forth,
there will be many suspended computations
placed on the stack
If there are too many, then the stack will
attempt to grow beyond its limit, resulting
in an error condition known as a stack
overflow

A common cause of stack overflow is
infinite recursion

 38

Summary so far

Recursion
Recursive void methods

Base case (simple case/stopping case)
Recursive case

Tracing a recursive call
Infinite recursion and stack overflow

 39

Recursive versus iterative
definition of a line
Line(5) produces:

 40

Further exercises

recursive function for drawing a
pyramid, of a height n
e.g. Pyramid(3) displays:

 *

Suggestions?

 41

Further exercises

recursive function for drawing a
pyramid, of a height n
e.g. Pyramid(3) displays:

 L
 LOL
 LOLOL

Suggestions?

 42

Further exercises

recursive function for drawing a
Christmas tree of pyramids

Tree(1,ÓÓ) displays:
 L
LOL

Tree(2,ÓÓ) displays:
 L
 LOL
 L
 LOL
LOLOL

Tree(3,ÓÓ) displays:
 L
 LOL
 L
 LOL
 LOLOL
 L
 LOL
 LOLOL
LOLOLOL

 43

Further exercises

Towers of Hanoi
very old problem
tons of examples on the web

 44

Recursion Versus Iteration

Recursion is not absolutely necessary
Any task that can be done using recursion
can also be done in a nonrecursive manner
A nonrecursive version of a method is called
an iterative version

An iteratively written method will
typically use loops of some sort in place
of recursion
A recursively written method can be
simpler, but will usually run slower and
use more storage than an equivalent
iterative version

 45

Iterative version of
writeVertical

 46

Recursive Methods that
Return a Value

Recursion is not limited to void methods
A recursive method can return a value of any
type
An outline for a successful recursive method
that returns a value is as follows:

One or more cases in which the value returned is
computed in terms of calls to the same method
the arguments for the recursive calls should be
intuitively "smaller"
One or more cases in which the value returned is
computed without the use of any recursive calls (the
base or stopping cases)

 47

Another Powers Method

The method pow from the Math class
computes powers

It takes two arguments of type double and
returns a value of type double

The recursive method power takes two
arguments of type int and returns a
value of type int

The definition of power is based on the
following formula:
xn is equal to xn-1 * x

 48

Another Powers Method

In terms of Java, the value
returned by power(x, n) for n>0
should be the same as
power(x, n-1) * x

When n=0, then power(x, n)
should return 1

This is the stopping case

 49

The Recursive Method power
(Part 1 of 2)

 50

The Recursive Method power
(Part 1 of 2)

 51

Evaluating the Recursive
Method Call power(2,3)

 52

Thinking Recursively

If a problem lends itself to recursion, it
is more important to think of it in
recursive terms, rather than
concentrating on the stack and the
suspended computations

power(x,n) returns power(x, n-1) * x

In the case of methods that return a
value, there are three properties that
must be satisfied, as follows:

 53

Thinking Recursively

1. There is no infinite recursion
– Every chain of recursive calls must reach a

stopping case

2. Each stopping case returns the correct value
for that case

3. For the cases that involve recursion: if all
recursive calls return the correct value, then
the final value returned by the method is the
correct value
These properties follow a technique also
known as mathematical induction

 54

Recursive Design
Techniques

The same rules can be applied to
a recursive void method:

1. There is no infinite recursion
2. Each stopping case performs the

correct action for that case
3. For each of the cases that involve

recursion: if all recursive calls
perform their actions correctly, then
the entire case performs correctly

 55

Binary Search

Binary search uses a recursive method
to search an array to find a specified
value
The array must be a sorted array:
a[0]≤a[1]≤a[2]≤. . . ≤ a[finalIndex]

If the value is found, its index is
returned
If the value is not found, -1 is returned

Note: Each execution of the recursive
method reduces the search space by
about a half

 56

Binary Search

An algorithm to solve this task looks at
the middle of the array or array
segment first
If the value looked for is smaller than
the value in the middle of the array

Then the second half of the array or array
segment can be ignored
This strategy is then applied to the first half
of the array or array segment

 57

Binary Search

If the value looked for is larger than the value
in the middle of the array or array segment

Then the first half of the array or array segment can
be ignored
This strategy is then applied to the second half of
the array or array segment

If the value looked for is at the middle of the
array or array segment, then it has been found
If the entire array (or array segment) has been
searched in this way without finding the value,
then it is not in the array

 5855555555

Binary search animation

searching for number “333” in a
sorted list

5
5

0

1
0

1

4
3

0

2
7

5

3
0

0
3

8
1

3
3

3

 59

Pseudocode for Binary
Search

 60

Recursive Method for
Binary Search

 61

Execution of the Method
search
(Part 1 of 2)

 62

Execution of the Method
search
(Part 1 of 2)

 63

Checking the search
Method
1. There is no infinite recursion

• On each recursive call, the value of
first is increased, or the value of
last is decreased

• If the chain of recursive calls does
not end in some other way, then
eventually the method will be called
with first larger than last

 64

Checking the search
Method
1. Each stopping case performs the

correct action for that case
• If first > last, there are no array

elements between a[first] and
a[last], so key is not in this
segment of the array, and result is
correctly set to -1

• If key == a[mid], result is
correctly set to mid

 65

Checking the search
Method
1. For each of the cases that involve

recursion, if all recursive calls perform
their actions correctly, then the entire
case performs correctly

• If key < a[mid], then key must be one of
the elements a[first] through a[mid-1],
or it is not in the array

• The method should then search only those
elements, which it does

• The recursive call is correct, therefore the
entire action is correct

 66

Checking the search
Method

• If key > a[mid], then key must be one of
the elements a[mid+1] through a[last],
or it is not in the array

• The method should then search only those
elements, which it does

• The recursive call is correct, therefore the
entire action is correct

The method search passes all three tests:
Therefore, it is a good recursive method

definition

 67

Efficiency of Binary Search

The binary search algorithm is
extremely fast compared to an
algorithm that tries all array
elements in order

About half the array is eliminated
from consideration right at the start
Then a quarter of the array, then an
eighth of the array, and so forth

 68

Efficiency of Binary Search

Given an array with 1,000 elements, the binary search
will only need to compare about 10 array elements to
the key value, as compared to an average of 500 for a
serial search algorithm
The binary search algorithm has a worst-case running
time that is logarithmic: O(log n)

Specifically, 1 + log2N iterations are needed to return an answer
A serial search algorithm is linear: O(n)

If desired, the recursive version of the method search
can be converted to an iterative version that will run
more efficiently

 69

Iterative Version of Binary
Search
(Part 1 of 2)

 70

Iterative Version of Binary
Search
(Part 2 of 2)

 71

Further exercises

factorial function:

 72

Further exercises

Recursive method to produce the
nth number in a Fibonacci
sequence

The definition of fib is interesting, because it calls itself
twice when recursion is used. Consider the effect on
program performance of such a function calculating the
fibonacci function of a moderate size number.

 73

Recursion - Justification

there are problems whose solutions are
inherently recursive, because they need to
keep track of prior state. e.g.:

tree traversal
divide-and-conquer algorithms such as Quicksort.

All of these algorithms can be implemented
iteratively with the help of a stack, but the
need for the stack arguably nullifies the
advantages of the iterative solution.
Also, key concept for functional programming
languages, such as Haskell

 74

History of Recursion

Originally specified in 1958, Lisp is
the second-oldest high-level
programming language in
widespread use today; only Fortran
is older.
recursion a key component of
language
Driven by AI

 75

Break:

Edsgar Dijkstra?

 76

Edsgar Dijkstra

The competent programmer is fully aware of
the strictly limited size of his own skull;
therefore he approaches the programming
task in full humility, and among other things
he avoids clever tricks like the plague. [9]

Progress is possible only if we train ourselves
to think about programs without thinking of
them as pieces of executable code.

Being abstract is something profoundly
different from being vague.

 77

Edsgar Dijkstra

Nothing is as expensive as making
mistakes.

Program testing can at best show the
presence of errors but never their absence.

... if 10 years from now, when you are doing
something quick and dirty, you suddenly
visualize that I am looking over your shoulders
and say to yourself, Dijkstra would not have
liked this, well that would be enough
immortality for me.

 78

Some advanced examples of
RECURSIVE procedures

 Quicksort
 Towers of Hanoi
 Trees

 79

QUICKSORT

 A VERY fast RECURSIVE sort
 O(nlog2n) if elements are occur randomly

 O(n2) if elements do not occur randomly

 Invented by CAR Hoare
 A simple version is described

We are really interested in RECURSION

 An example is done
Finally - Hints are given on making

Quicksort more efficient

 80

Quicksort - Algorithm

 Sort array elements into ascending
order
 Choose a pivot element

Easiest choice is 1st element of the array

 Compare all elements of array with
pivot

Elements < pivot go to FRONT of array
Elements > pivot go to REAR of array
Put pivot in empty slot (it is in correct
place)

 Quicksort SMALLER elements
 Quicksort LARGER elements

 81

QUICKSORT

void quicksort(int [] a, int left, int right)
{ int pos;

if (left >= right) return; // terminating
condition
pos = rearrange(a, left, right);
quicksort (a, left, pos-1);
quicksort (a, pos+1, right);

}

 82

Example

 0 1 2 3 4 5 6

Lef
t

Righ
t

Initially 6 2 4 3 8 1 7

2

2 4

2 4 3

2 4 3 8

2 4 3 1 8

2 4 3 1 7 8

2 4 3 1 6 7 8

pos

 83

Example (cont)

After rearrangement
 value 6 is in correct position
(element 4)
 pos = 4
 quicksort (a, left, pos-1) (a, 0, 3)
 quicksort (a, pos+1, right) (a, 5, 6)

 84

Example (cont)

 quicksort(a, 0, 3) // left to you to do
 quicksort(a, 5, 6) becomes

 rearrange elements 5 & 6 (values 7 8)
 (nothing done – values in correct positions)
 left =5; right = 6; pos = 5

 quicksort (a, 5, 4) quicksort(a, left,
pos-1)

 returns immediately as 5 >= 4
 nothing to sort

 quicksort (a, 6, 6) quicksort(a, pos+1,
right)

 returns immediately as 6 >=6
 nothing to sort

 85

 Hints are given on making
Quicksort more efficient

 rearrange routine
Present routine requires 2 arrays
 wasteful on space
 a clever algorithm exists that only
requires 1 array

 not described here because it is complex

 86

Hints are given on making
Quicksort more efficient

 Choice of PIVOT element
 We chose the 1st element

Easy to implement but a poor choice

We really want a pivot that splits the
array approx equally in half
 Better choice is the median element

More difficult to choose (2 approximations)
 Can choose a random element
 Can choose the middle element of the 1st, last &
middle element

 87

Towers of HANOI

 We have 3 pegs – A B C
On one peg (A) we have a number of
disks
Each disk is SMALLER than the one it
rests on
Problem

Move all disks from peg A to peg B
 We can only move 1 disk at a time
Disks must start & finish resting on a
LARGER disk

 88

Towers of Hanoi -
Algorithm

Base Case – if there is 1 disk
 just move it to directly (ie from fromPeg to toPeg)

 2 disks
 move top disk from fromPeg to helpPeg
We move bottom disk from fromPeg to toPeg
Move remaining disk from helpPeg to toPeg

3 disks
 We 1st move 2 disks from fromPeg to helpPeg

Smaller problem & we know how to do it recursively
We move bottom disk from fromPeg to toPeg
Move 2 disks from helpPeg to toPeg

Smaller problem & we know how to do it recursively

 89

Towers of Hanoi -
Algorithm

General case
 We 1st move all but bottom disk from
fromPeg to helpPeg

Smaller problem & we know how to do it
recursively

We move bottom disk from fromPeg to
toPeg
Move remaining disks from helpPeg to
toPeg

 90

RECURSIVE solution

Public static void hanoi(int n, Peg
fromPeg, Peg toPeg, Peg helpPeg)

{ if (n==1) moveDisk (fromPeg, toPeg);
 else
 { hanoi (n-1, fromPeg, helpPeg, toPeg);

moveDisk (fromPeg, toPeg);
hanoi (n-1, helpPeg, toPeg, fromPeg)

}}

 91

moveDisk routine

Public static void moveDisk
(Peg fromPeg Peg toPeg)

{
 System.out.println(“Move disk from

“ + fromPeg + “ to” + toPeg);
}

 92

Example 1

hanoi (1, pegA, pegB, pegC)

Move disk from pegA to pegB

 93

Example 2

hanoi (2, pegA, pegB, pegC)

Move disk from pegA to pegC
Move disk from pegA to pegB
Move disk from pegC to pegB

 94

Example 3

hanoi (3, pegA, pegB, pegC)

Move disk from pegA to pegB
Move disk from pegA to pegC
Move disk from pegB to pegC
Move disk from pegA to pegB
Move disk from pegC to pegA
Move disk from pegC to pegB
Move disk from pegA to pegB

 95

Comments on Towers of
Hanoi

1. There is an iterative algorithm
but it is very difficult

2. This problem was invented in
1883. See: Mathematical Puzzles
& Diversions by Martin Gardner
(Penguin 1965)

	CSC1016
	Me - for those who don’t know
	You - refresher
	Chapter 11
	Recursion
	From wikipedia:
	Also from Wikipedia:
	Slide 8
	Recursion - another example
	Recursive void Methods
	Vertical Numbers
	Slide 12
	Slide 13
	Slide 14
	Algorithm for Vertical Numbers
	A Recursive void Method (Part 1 of 2)
	A Recursive void Method (Part 2 of 2)
	Tracing a Recursive Call
	Execution of writeVertical(123)
	Execution of writeVertical(12)
	Execution of writeVertical(1)
	Completion of writeVertical(12)
	Completion of writeVertical(123)
	A Closer Look at Recursion
	General Form of a Recursive Method Definition
	Pitfall: Infinite Recursion
	Slide 27
	Slide 28
	Slide 29
	Stacks for Recursion
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Pitfall: Stack Overflow
	Summary so far
	Recursive versus iterative definition of a line
	Further exercises
	Slide 41
	Slide 42
	Slide 43
	Recursion Versus Iteration
	Iterative version of writeVertical
	Recursive Methods that Return a Value
	Another Powers Method
	Slide 48
	The Recursive Method power (Part 1 of 2)
	The Recursive Method power (Part 1 of 2)
	Evaluating the Recursive Method Call power(2,3)
	Thinking Recursively
	Slide 53
	Recursive Design Techniques
	Binary Search
	Slide 56
	Slide 57
	Binary search animation
	Pseudocode for Binary Search
	Recursive Method for Binary Search
	Execution of the Method search (Part 1 of 2)
	Execution of the Method search (Part 1 of 2)
	Checking the search Method
	Slide 64
	Slide 65
	Slide 66
	Efficiency of Binary Search
	Slide 68
	Iterative Version of Binary Search (Part 1 of 2)
	Iterative Version of Binary Search (Part 2 of 2)
	Slide 71
	Slide 72
	Recursion - Justification
	History of Recursion
	Break:
	Edsgar Dijkstra
	Slide 77
	Some advanced examples of RECURSIVE procedures
	QUICKSORT
	Quicksort - Algorithm
	Slide 81
	Example
	Example (cont)
	Slide 84
	 Hints are given on making Quicksort more efficient
	Hints are given on making Quicksort more efficient
	Towers of HANOI
	Towers of Hanoi - Algorithm
	Slide 89
	RECURSIVE solution
	moveDisk routine
	Example 1
	Example 2
	Example 3
	Commnets on Towers of Hanoi

