University of Cape Town ~ Department of Computer Science
 Computer Science 1016S ~ 2007

 Practical Test 2 - Test One

 Practical Test 2 - Test One}

Time: 45 minutes

Write a program to calculate the value of the mathematical constant Pi (3.141592...) using the formula attributed to François Viète:

$$
\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots=\frac{2}{\pi}
$$

Each term on the left-hand-side can be derived from the previous one and further refines the product. Finally, we can solve for Pi after a suitable number of iterations.

You MUST write a method called calculatePi, which takes as a parameter the precision required (either the number of iterations or the acceptable error). The value of Pi must then be printed to the screen using a call to this method. Your program must not take in any input.

You may consult your paper notes and textbook, but no electronic resources. You may NOT use a search engine or consult any Web resources (including Vula) or files on your flash disk, hard drive, etc.

Hint: Use the Math.sqrt method.
Submit the Java source files to Vula, using a Zip file if necessary. Name your file PTest2One.java or PTest2One.zip.

Marking Guide:

- Correctness: Term calculation :30\%, Iteration: 20\%, Final Pi value: 10\%
- Comments (Documentation): 40%

University of Cape Town ~ Department of Computer Science Computer Science 1016S ~ 2007

 Practical Test 2 - Test Two

 Practical Test 2 - Test Two}

Time: $\mathbf{4 5}$ minutes

Write a program to calculate the value of the mathematical constant Pi (3.141592...) using what is known as a Monte Carlo method.

Support you have a quarter circle within a square, where all sides are of length 1 . If you randomly choose (x, y) points within this square (where x and y are both less than 1), the points may fall within the circle (i.e., $\sqrt{x^{2}+y^{2}}<1$) or not. If you repeat this many times and count the proportion of points within the circle (18/22 in the picture), you get an approximation for $\mathrm{Pi} / 4$ because of the formula for area of a circle. It is then trivial to compute Pi.

You MUST write a method called calculatePi, which takes as a parameter the precision required (either the number of iterations or the acceptable error). The value of Pi must then be printed to the screen using a call to this method. Your program must not take in any input.

You may consult your paper notes and textbook, but no electronic resources. You may NOT use a search engine or consult any Web resources (including Vula) or files on your flash disk, hard drive, etc.
Hint: Use the Math.random and Math.sqrt methods.
Submit the Java source files to Vula, using a Zip file if necessary. Name your file PTest2Two.java or PTest2Two.zip.

Marking Guide:

- Correctness: Random numbers :15\%, Within circle counter: 15\%, Iteration: 20\%, Final Pi value: 10\%
- Comments (Documentation): 40\%

University of Cape Town ~ Department of Computer Science
 Computer Science 1016S ~ 2007

 Practical Test 2 - Test Three

 Practical Test 2 - Test Three}

Time: 45 minutes

Write a program to calculate the value of the mathematical constant Pi (3.141592...) using the formula attributed to Wallis:

$$
\prod_{n=1}^{\infty}\left(\frac{n+1}{n}\right)^{(-1)^{n-1}}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots=\frac{\pi}{2}
$$

Each term on the right-hand-side can be derived from the previous one or the formula, and further refines the product. Finally, we can trivially solve for Pi after a suitable number of iterations.

You MUST write a method called calculatePi, which takes as a parameter the precision required (either the number of iterations or the acceptable error). The value of Pi must then be printed to the screen using a call to this method. Your program must not take in any input.

You may consult your paper notes and textbook, but no electronic resources. You may NOT use a search engine or consult any Web resources (including Vula) or files on your flash disk, hard drive, etc.

Hint: Use the Math.pow (base, exp) method.
Submit the Java source files to Vula, using a Zip file if necessary. Name your file PTest2Three.java or PTest2Three.zip.
Marking Guide:

- Correctness: Term calculation :30\%, Iteration: 20\%, Final Pi value: 10\%
- Comments (Documentation): 40%

