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Errors and testing
 Quick Poll

 In a typical hour spent programming, how many 
minutes do you spend fixing errors?



  

Errors
 What is an error?

 When your program does not behave as intended or 
expected.

 What is a bug?
 “…a bug crept into my program …”

 Debugging
 the art of removing bugs



  

Types of Errors
 Compile-time Error

 Discovered by Java when you hit “compile”.
 Improper use of Java language.
 e.g., int x + 1;

 Run-time Error
 Program compiles but does not execute as expected.
 e.g., int x=0, y = 15/x;



  

Types of Errors II

●

 Logic Error
 Program compiles and runs but produces incorrect results - 

because of a flaw in the algorithm or implementation of 
algorithm.

int a = Keyboard.readInt();

int b = Keyboard.readInt();

int maximum;

if (a < b) { maximum = a; } 

      else { maximum = b; }



  

Testing Methods
 Programs must be thoroughly tested for all possible 

input/output values to make sure the programs 
behave correctly.

 But how do we test for all values of integers?

int a = Keyboard.readInt();
if (a < 1 || a > 100) 
{ System.out.println (“Error”); }



  

Equivalence Classes

●

 Group input values into sets with similar expected 
behaviour and choose candidate values
 e.g., -50, 50, 150

 Choose values at and on either side of boundaries 
(boundary value analysis)
 e.g., 0, 1, 2, 99, 100, 101



  

Path Testing

Path 1: a=35 Path 2: a=-5

 Create test cases to test every path of execution of 
the program at least once.

int a = Keyboard.readInt();

if (a < 1 || a > 100) 

{ System.out.println (“Error”); }



  

Statement Coverage
 What if we had:
if (a < 25) 

{ System.out.println (“Error in a”); } 

else

{ System.out.println (“No error in a”); } 

if (b < 25) 

{ System.out.println (“Error in b”); } 

else

{ System.out.println (“No error in b”); } 

 Rather than test all paths, test all statements at least 
once.
 e.g., (a,b) = (10, 10), (50, 50)



  

Glass and Black Boxes
 If you can create your test cases based on only the 

problem specification, this is black box testing.
 If you have to look at the code, this is glass box 

testing.
 Which categories do these fall in:

 Equivalence classes/boundary values
 Path coverage
 Statement coverage



  

Test Cases Example
equivalence classes:

small multiple of 5: 5
small non-multiples of 5: 3
large multiple of 5: 25
large non-multiples of 5: 23

boundary values:

4, 5, 6, 9, 10, 11, 14, 15, 16

statement coverage:

5, 14

path coverage:

5, 7, 13, 20

// Software Testing sample
// hussein suleman
// CSC1015F
// 19 March 2007

import java.util.Scanner;

class SoftwareTesting
{
   public static void main ( String [] args )

{
   // get a number
   Scanner scan = new Scanner (System.in);
   int input = scan.nextInt();

       input += 10;

   // check if it is small or large
   if (input < 20)
      System.out.print ("small number");
   else
      System.out.print ("large number");

   // check if it is divisible by 5
   if (input % 5 == 0)
      System.out.println (" divisible by 5");
}

}



  

Quick Poll
 So, which of these is the best approach to determine 

test values?
1. Exhaustive testing of all values
2. Equivalence classes and boundary values
3. Path testing
4. Statement coverage



  

Debugging
 Debugging is the process of finding errors or bugs in 

the code.
 A debugger is a tool for executing an application 

where the programmer can carefully control execution 
and inspect data.

 Features include:
 step through code one instruction at a time
 viewing variables
 insert and remove breakpoints to pause execution



  

Assertions
 In Java a programmer can specify conditions that 

must always be satisfied at particular points 
(invariants) or the program produces an error.  This 
is an assertion.

 Example:
assert (input > 0);



  

Tracing

trace instruction

 Insert temporary statements into code to output values during 
calculation.

 Very useful when there is no debugger!

 Example:
int x = y*y*2;
int z = x+5;

System.out.println (z); 
if (z == 13)
{
   …
}
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