

Testing and Debugging

UCT Department of Computer Science

Computer Science 1015F

Hussein Suleman
<hussein@cs.uct.ac.za>

March 2009

Errors and testing
 Quick Poll

 In a typical hour spent programming, how many
minutes do you spend fixing errors?

Errors
 What is an error?

 When your program does not behave as intended or
expected.

 What is a bug?
 “…a bug crept into my program …”

 Debugging
 the art of removing bugs

Types of Errors
 Compile-time Error

 Discovered by Java when you hit “compile”.
 Improper use of Java language.
 e.g., int x + 1;

 Run-time Error
 Program compiles but does not execute as expected.
 e.g., int x=0, y = 15/x;

Types of Errors II

●

 Logic Error
 Program compiles and runs but produces incorrect results -

because of a flaw in the algorithm or implementation of
algorithm.

int a = Keyboard.readInt();

int b = Keyboard.readInt();

int maximum;

if (a < b) { maximum = a; }

 else { maximum = b; }

Testing Methods
 Programs must be thoroughly tested for all possible

input/output values to make sure the programs
behave correctly.

 But how do we test for all values of integers?

int a = Keyboard.readInt();
if (a < 1 || a > 100)
{ System.out.println (“Error”); }

Equivalence Classes

●

 Group input values into sets with similar expected
behaviour and choose candidate values
 e.g., -50, 50, 150

 Choose values at and on either side of boundaries
(boundary value analysis)
 e.g., 0, 1, 2, 99, 100, 101

Path Testing

Path 1: a=35 Path 2: a=-5

 Create test cases to test every path of execution of
the program at least once.

int a = Keyboard.readInt();

if (a < 1 || a > 100)

{ System.out.println (“Error”); }

Statement Coverage
 What if we had:
if (a < 25)

{ System.out.println (“Error in a”); }

else

{ System.out.println (“No error in a”); }

if (b < 25)

{ System.out.println (“Error in b”); }

else

{ System.out.println (“No error in b”); }

 Rather than test all paths, test all statements at least
once.
 e.g., (a,b) = (10, 10), (50, 50)

Glass and Black Boxes
 If you can create your test cases based on only the

problem specification, this is black box testing.
 If you have to look at the code, this is glass box

testing.
 Which categories do these fall in:

 Equivalence classes/boundary values
 Path coverage
 Statement coverage

Test Cases Example
equivalence classes:

small multiple of 5: 5
small non-multiples of 5: 3
large multiple of 5: 25
large non-multiples of 5: 23

boundary values:

4, 5, 6, 9, 10, 11, 14, 15, 16

statement coverage:

5, 14

path coverage:

5, 7, 13, 20

// Software Testing sample
// hussein suleman
// CSC1015F
// 19 March 2007

import java.util.Scanner;

class SoftwareTesting
{
 public static void main (String [] args)

{
 // get a number
 Scanner scan = new Scanner (System.in);
 int input = scan.nextInt();

 input += 10;

 // check if it is small or large
 if (input < 20)
 System.out.print ("small number");
 else
 System.out.print ("large number");

 // check if it is divisible by 5
 if (input % 5 == 0)
 System.out.println (" divisible by 5");
}

}

Quick Poll
 So, which of these is the best approach to determine

test values?
1. Exhaustive testing of all values
2. Equivalence classes and boundary values
3. Path testing
4. Statement coverage

Debugging
 Debugging is the process of finding errors or bugs in

the code.
 A debugger is a tool for executing an application

where the programmer can carefully control execution
and inspect data.

 Features include:
 step through code one instruction at a time
 viewing variables
 insert and remove breakpoints to pause execution

Assertions
 In Java a programmer can specify conditions that

must always be satisfied at particular points
(invariants) or the program produces an error. This
is an assertion.

 Example:
assert (input > 0);

Tracing

trace instruction

 Insert temporary statements into code to output values during
calculation.

 Very useful when there is no debugger!

 Example:
int x = y*y*2;
int z = x+5;

System.out.println (z);
if (z == 13)
{
 …
}

	Slide 1
	Errors and testing
	Errors
	Types of Errors
	Types of Errors II
	Testing Methods
	Equivalence Classes
	Path Testing
	Statement Coverage
	Glass and Black Boxes
	Test Cases Example
	Quick Poll
	Slide 13
	Slide 14
	Slide 15

