

OOP Bootcamp

UCT Department of Computer Science

Computer Science 1015F

Hussein Suleman
<hussein@cs.uct.ac.za>

April 2009

What is OOP?
 Object Oriented Programming
 Write programs as collections of classes:

 Each class is a type.
 Each class defines the behaviour of one or more objects of

that class.
 Java starts the program by invoking the main method of the

“driver” class.
 The driver's main method may then create other objects and

execute other methods, and these methods may do the
same, andsoforth ...

Class
 Collection of data and methods (Encapsulation).
 Template to create objects.
 Stored in a file on disk.
 Is a data type (just like int).

class Test {
// stuff here
}

Object
 Collection of data and methods.
 Instance of a class.
 Stored in memory, and only while program is running.
 Is a data value (just like 1 is an int).

Test anObject = new Test();

Instance Variables
 Variables defined in class.
 Exist as part of object as long as object exists.
 Can be accessed using dot-notation within methods of

class (or outside class if public).
class Test {
 int mark;
 String name, subject;
}

Methods
 Collections of statements defined in class.
 Exist as part of object as long as object exists.
 Can be accessed using dot-notation within methods of

class (or outside class if public).
 Can be overloaded.
class Test {

 public void printName ()

 {

 System.out.println (name);

 }
}

Parameters and Return Values
 Parameters send set of data values to method.
 Return values get one value back, like a function.
class Test {

 public void setName (String aName)

 {

 name = aName;

 }

 public String getName ()

 {

 return name;

 }

}

this, toString, equals
 this is a reference to the current object.

 no need to define - automatic

 toString is a special method that must return a String representation of the
object.
 define if needed – needed sometimes

 equals is a special method that must return if an object is equal to the one
passed in as a parameter.
 define if needed – needed sometimes

 Mutators (usually per instance variable) directly modify instance variables
based on parameters.
 define if needed – needed most of the time

 Accessors (usually per instance variable) return the values of instance
variables.
 define if needed – needed most of the time

Constructors
 Special method to initialise object.
 Invoked only when object is being created.
 Can be overloaded.

 Can specify initial values as parameters.
 Can specify no parameters and assume initial values.
 Can specify an object to copy.

class Test {

 public Test (String aName, String aSubject)

 {

 name = aName; subject = aSubject; mark=0;

 }

}

Information Hiding
 Declare all instance variables as private so they

CANNOT be accessed using dot-notation except from
methods in the same class.

 Declare some methods as public so they CAN be
accessed using dot-notation from methods in other
classes.

Static Variables/Methods
 Variables/Methods that can be used without an object.
 Defined in class with “static” prefix.
 Instance variables are 1-per-object, static variables

are 1-per-class
class Test {

 private static int counter;

 public static addOne ()

 {

 counter++

 }

}

Automatic Boxing/Unboxing
 Convert from primitive types (int, float, etc.) to/from

corresponding classes (Integer, Float, etc.)

Integer marksObject = new Integer (12);

Integer marksObject = 12;

int marks = marksObject;

int marks = marksObject.intValue ();

int marks = Integer.parseInt (“12”);

References
 Java stores objects indirectly by storing a their

memory locations – primitive data is stored directly.
 Assignment causes 2 variables to reference the same

object.

Test t1 = new Test ();
Test t2 = t1;
t1.setName (“hussein”);
System.out.println (t2.getName());

null
 Special value for any class type variable.
 Equivalent to zero or nothing.
 Used where variable does not reference anything

particular.

Reference Parameters
 Class type objects passed as parameters are also

references.
 This means a method that makes changes to its

parameters will cause changes to the original objects.
 public boolean equals (Test another)

 {

 return ((another != null) &&

 (this.name.equals (another.name)) &&

 (this.marks == another.marks) &&

 (this.subject.equals (another.subject)));

 }

Copy Constructors
 Initialise an object to be a copy of another object,

passed in as a parameter.
 Results in a deep copy, instead of a shallow copy – a

completely new object, not just a reference.

 public Test (Test another)

 {

 name = another.name;

 subject = another.subject;

 marks = another.marks;

 }

Problem
 Write a program to manage a bank account using a

BankAccount class.
 The BankAccount class should store information

about a single account (name, a/c number, balance).
 The driver class must interact with the user for typical

operations (withdraw, deposit, query, etc.).

Problem
 Write a program to track some basic statistics for a

set of marks: minimum, maximum and average.
 The class Statistics should contain a method to add a

new mark and update the instance variables
appropriately.

 The driver program must submit a sequence of marks
from the user to the Statistics object and output
statistics at the end.

Problem
 Write a program to manage the counting of votes in

an election.
 The Election class must have variables to count votes

for ANC/DA/Cope/ID/etc. and associated methods.
 The Vote class must store a single vote.
 The main method must create an Election object, then

create a sequence of Vote objects and send those to
the Election object to be counted.

Problem
 Write a program that creates a family tree of Person

objects (defined/hard-coded in the driver class).
 Each Person object should store a reference to a

spouse and links to up to 3 children, with appropriate
accessors and mutators.

 The tree should be printable using a single call to the
toString method of the head of the family tree.

Problem
 Write a program to calculate the value of Sin(x) for

any real value of x. Use the infinite Taylor series
approximation:

 Extend your program to draw a Sin(x) graph using
ASCII art.

Problem
 Write an OOP program to simulate the operation of

Facebook:
 Driver class creates an instance of Facebook and an

instance of User and sends User to Facebook.
 Facebook authenticates user and creates FacebookApp

object.
 FacebookApp object generates profile box and sends it

back.
 Facebook displays User information as well as

FacebookApp profile box.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Problem
	Slide 22

