

OOP Bootcamp

UCT Department of Computer Science

Computer Science 1015F

Hussein Suleman
<hussein@cs.uct.ac.za>

April 2009

What is OOP?
 Object Oriented Programming
 Write programs as collections of classes:

 Each class is a type.
 Each class defines the behaviour of one or more objects of

that class.
 Java starts the program by invoking the main method of the

“driver” class.
 The driver's main method may then create other objects and

execute other methods, and these methods may do the
same, andsoforth ...

Class
 Collection of data and methods (Encapsulation).
 Template to create objects.
 Stored in a file on disk.
 Is a data type (just like int).

class Test {
// stuff here
}

Object
 Collection of data and methods.
 Instance of a class.
 Stored in memory, and only while program is running.
 Is a data value (just like 1 is an int).

Test anObject = new Test();

Instance Variables
 Variables defined in class.
 Exist as part of object as long as object exists.
 Can be accessed using dot-notation within methods of

class (or outside class if public).
class Test {
 int mark;
 String name, subject;
}

Methods
 Collections of statements defined in class.
 Exist as part of object as long as object exists.
 Can be accessed using dot-notation within methods of

class (or outside class if public).
 Can be overloaded.
class Test {

 public void printName ()

 {

 System.out.println (name);

 }
}

Parameters and Return Values
 Parameters send set of data values to method.
 Return values get one value back, like a function.
class Test {

 public void setName (String aName)

 {

 name = aName;

 }

 public String getName ()

 {

 return name;

 }

}

this, toString, equals
 this is a reference to the current object.

 no need to define - automatic

 toString is a special method that must return a String representation of the
object.
 define if needed – needed sometimes

 equals is a special method that must return if an object is equal to the one
passed in as a parameter.
 define if needed – needed sometimes

 Mutators (usually per instance variable) directly modify instance variables
based on parameters.
 define if needed – needed most of the time

 Accessors (usually per instance variable) return the values of instance
variables.
 define if needed – needed most of the time

Constructors
 Special method to initialise object.
 Invoked only when object is being created.
 Can be overloaded.

 Can specify initial values as parameters.
 Can specify no parameters and assume initial values.
 Can specify an object to copy.

class Test {

 public Test (String aName, String aSubject)

 {

 name = aName; subject = aSubject; mark=0;

 }

}

Information Hiding
 Declare all instance variables as private so they

CANNOT be accessed using dot-notation except from
methods in the same class.

 Declare some methods as public so they CAN be
accessed using dot-notation from methods in other
classes.

Static Variables/Methods
 Variables/Methods that can be used without an object.
 Defined in class with “static” prefix.
 Instance variables are 1-per-object, static variables

are 1-per-class
class Test {

 private static int counter;

 public static addOne ()

 {

 counter++

 }

}

Automatic Boxing/Unboxing
 Convert from primitive types (int, float, etc.) to/from

corresponding classes (Integer, Float, etc.)

Integer marksObject = new Integer (12);

Integer marksObject = 12;

int marks = marksObject;

int marks = marksObject.intValue ();

int marks = Integer.parseInt (“12”);

References
 Java stores objects indirectly by storing a their

memory locations – primitive data is stored directly.
 Assignment causes 2 variables to reference the same

object.

Test t1 = new Test ();
Test t2 = t1;
t1.setName (“hussein”);
System.out.println (t2.getName());

null
 Special value for any class type variable.
 Equivalent to zero or nothing.
 Used where variable does not reference anything

particular.

Reference Parameters
 Class type objects passed as parameters are also

references.
 This means a method that makes changes to its

parameters will cause changes to the original objects.
 public boolean equals (Test another)

 {

 return ((another != null) &&

 (this.name.equals (another.name)) &&

 (this.marks == another.marks) &&

 (this.subject.equals (another.subject)));

 }

Copy Constructors
 Initialise an object to be a copy of another object,

passed in as a parameter.
 Results in a deep copy, instead of a shallow copy – a

completely new object, not just a reference.

 public Test (Test another)

 {

 name = another.name;

 subject = another.subject;

 marks = another.marks;

 }

Problem
 Write a program to manage a bank account using a

BankAccount class.
 The BankAccount class should store information

about a single account (name, a/c number, balance).
 The driver class must interact with the user for typical

operations (withdraw, deposit, query, etc.).

Problem
 Write a program to track some basic statistics for a

set of marks: minimum, maximum and average.
 The class Statistics should contain a method to add a

new mark and update the instance variables
appropriately.

 The driver program must submit a sequence of marks
from the user to the Statistics object and output
statistics at the end.

Problem
 Write a program to manage the counting of votes in

an election.
 The Election class must have variables to count votes

for ANC/DA/Cope/ID/etc. and associated methods.
 The Vote class must store a single vote.
 The main method must create an Election object, then

create a sequence of Vote objects and send those to
the Election object to be counted.

Problem
 Write a program that creates a family tree of Person

objects (defined/hard-coded in the driver class).
 Each Person object should store a reference to a

spouse and links to up to 3 children, with appropriate
accessors and mutators.

 The tree should be printable using a single call to the
toString method of the head of the family tree.

Problem
 Write a program to calculate the value of Sin(x) for

any real value of x. Use the infinite Taylor series
approximation:

 Extend your program to draw a Sin(x) graph using
ASCII art.

Problem
 Write an OOP program to simulate the operation of

Facebook:
 Driver class creates an instance of Facebook and an

instance of User and sends User to Facebook.
 Facebook authenticates user and creates FacebookApp

object.
 FacebookApp object generates profile box and sends it

back.
 Facebook displays User information as well as

FacebookApp profile box.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Problem
	Slide 22

