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Objects
 Objects are computer representations of real-world or abstract 

objects.
 e.g., input, System.out, aPerson, timTheTurtle

 Objects are modelled on computer as complex data types, 
defining possibly multiple values AND various operations that 
may be applied to those values.

 This style of programming is called Object Oriented 
Programming (OOP). 

 Why OOP?



  

Classes
 Classes are templates to create objects.
 Classes define the data and associated operations 

(methods) for objects of a particular type.
public class ClassName

{

   // data and methods here

}

 A class is a type, just like int, boolean, etc.
 One class in every file must be public - exposed to the 

outside.
 Separate files = modular programming



  

Instances
 An instance is a variable of the type corresponding to a 

particular class.
 Instances are often simply called objects.
 Unlike variables with primitive types (e.g., int), instances are 

not created when the variable is declared.
 To create an instance from a class use new
 Simplified syntax:

 <class_name> <variable name>;
 <variable name> = new <class_name> ();

 Examples:
 Person aPerson; 
 aPerson = new Person ();



  

Instance variables
 Instance variables are variables defined within a class, with 

separate copies for each instance.
 This makes every object unique, even though they have the same 

class.
 Just like different int variables are unique but all have the same 

type!
 Instance variables are usually labelled private because they may 

only be used by methods within this class.
public class Person

{

   private String firstName, lastName;

   private int age;

}



  

Methods
 A method is a block of statements within a class.

 It is considered a single unit, and named with an identifier.
 Just like a variable.

 It is used for common functions/subprograms and to set/retrieve values of 
instance variables from outside the object.

 A method is called or invoked using dot-notation in the context of an 
object.
 e.g., System.out.println (“Hello”);
 System.out is the object. println is the method executed on that object.

 When a method is called, execution jumps to the method and only comes 
back when the method is finished.



  

Methods: Data In
 Parameters are used to send data to a method - within the 

method they behave just like variables.
public void setName ( String first, String last )

{

   firstName = first; lastName=last;

}

 Calling methods must provide matching values (arguments) 
for every parameter.
 e.g., aPerson.setName (“Alfred”, “Tshabalala”);

 Formal parameters (first) vs. Actual parameters (“Alfred”)



  

Methods: Data Out
 Values can be returned from a typed method.

public int getAge ()

{

   return age;

}
 return must be followed by an expression with the same type 

as the header (int in above example).

 So what is an untyped method? 
 One whose type is indicated as void.

 return can be used to simply leave the method.



  

Method Syntax
 Simplified syntax:

public <type> <method_name> (<list_of_parameters>)

{

   <list_of_statements>

}

 Example:
public int doAdd ( int aValue, int anotherValue )

{

   int sum = aValue+anotherValue;

   return sum;

}



  

Methods: Quick Quiz
public class Planet {

   private String name;

   public void setName ( String aName ) {

      name = aName;

   }

} 

...

Planet earth = new Planet ();

 Which of these work?

 earth.setName ();
 earth.setName (2.345);
 earth.setName (“Mars”);

 earth.setName (“Mercury”, “Venus”, “Earth”);
 earth.setName (“The”+“ Dude’s ”+“Planet”);



  

Problem
 Write a class that represents complex numbers.
 Use this class to perform simple arithmetic on 

complex numbers.



  

Methods to factor common code
...

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

...

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

...

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

...

public void yay () 

{

   System.out.println (“YAY it works);

   System.out.println (“a=“+a);

}

...

d.yay ();

d.yay ();

d.yay ();



  

Methods with parameters
…
System.out.println (“YAY it works”);
System.out.println (“a=“+12);
…
System.out.println (“YAY it works”);
System.out.println (“a=“+13);
…
System.out.println (“YAY it works”);
System.out.println (“a=“+14);

public void yay ( int someNumber ) 

{

   System.out.println (“YAY it works);

   System.out.println (“a=“+someNumber);

}

…

x.yay (12);

x.yay (13);

x.yay (14);



  

Methods with parameters/return values

...
c=a*a+2*a*b+b*b;
...
d=e*e+2*e*f+f*f;
...
g=h*h+2*h*i+i*i;

public int doCalc ( int n1, int n2 ) 

{

   return (n1*n1+2*n1*n2+n2*n2);

}

…

c = x.doCalc (a, b);

d = x.doCalc (e, f);

g = x.doCalc (h, i);



  

Local and Instance Variables
 Local variables are defined within a method or block (i.e., 

{ and } ).  Local variables can even be defined in a for 
statement.
 e.g., for ( int a=1; a<10; a++ )

 Instance variables are defined within a class, but outside any 
methods, and each object has its own copy.

 A variable has scope when it can be used and lifetime when 
it exists.



  

this
 this is a special instance variable that exists in every 

instance.
 this refers to the current object.
 Calling this.someMethod() is the same as calling 
someMethod().

 What is the point of this?



  

equals and toString
 equals is a special method with a single parameter being of the same 

type, returning whether or not the two objects are equal.

public boolean equals ( Person aPerson )

{

   return this.name.equals (aPerson.name);

}

 toString is a special method with no parameters that returns a String 
representation of the object.

public String toString ()

{

   return (name+” ”+surname);

}



  

Problem
 Write a program to calculate the roots of a quadratic 

polynomial.



  

Problem
 Write a program to calculate whether or not a 

student will get DP and can write the examination in 
CSC1015F.



  

Problem
 Write a numerology calculator using object-oriented 

programming.  For any two given birthdates, calculate the 
compatibility between people as a simple 0-100 integer. 

 Use any formula that makes sense.



  

Overloading
 Overloading means having multiple methods with 

the same name and different parameter lists (but 
same return type) within a single class.

class Averages
{
   public int average ( int x, int y )
   {
      return (x + y)/2;
   }
   public int average ( int a, int b, 
                        int c )
   {
       return (a + b + c)/3;
   }
}

Averages ave;
ave = new 
Averages();

int a = ave.average 
         (1,2);
int b = ave.average 
         (1,2,3);



  

Why overload?
 A programmer using the class can use the same 

method name for different parameters if the name is 
sensible.

 Remove the need for lots of unique names for 
methods that essentially do the same thing.



  

Problem
 Modify the Complex number class to use overloading 

to avoid multiple multiplication methods.



  

Constructors
 An object is initialised (given initial values) by means of a 

special method called a constructor.

 Every class may have one or more of these special methods 
with no return type and the same name as the class.

public class Person

{

   public Person ( String firstname )

   { … } 

}

Person aPerson = new Person (“hussein”);



  

Initialising Objects with Constructors
 Create an object using new operator followed by the 

name of the class and the parameters/arguments to a 
constructor.

 Constructors can be overloaded.
 Normally include a constructor with no arguments so you 

can say:
 Person aPerson = new Person();

 Constructors cannot be invoked directly.



  

Problem
 Write a OO program to calculate some basic statistics 

for a class test – including average, minimum and 
maximum marks (and track the names of best/worst 
students).



  

Problem
 Add suitable constructors to the Complex number 

class.



  

Other ways to initialise objects
 Assume variables are initialised to “zero”. Java does 

this automatically for primitive instance variables!

 Initialise instance variables in the class definition.
public Person

{

   String firstname = “John”;

   String lastname = “”;

   public Person ( String fname, String lname ) 

   {… }



  

StringTokenizer
 Class to separate a String into multiple words.

 Typical Use:
String as = “Hello World”;

StringTokenizer st = new StringTokenizer (as);

while (st.hasMoreTokens())

{

   System.out.println (st.nextToken());

}



  

Encapsulation
 Encapsulation in Java is the combining of data and 

methods into single units.

 This allows us to treat the object as a single unit, 
preventing errors when keeping track of multiple 
related variables and methods.



  

Information Hiding
 Information hiding means we don’t allow 

programmers to see details that they don’t need to 
see.

 This means fewer accidental programming errors.

 Java enables this with the public and private prefixes/
modifiers.



  

public and private

instance variable method

public accessible from 
anywhere
public int x;

accessible from anywhere
public int getAge ();

private accessible from 
methods in same 
class
private int x;

accessible from methods 
in same class
private int getAge();



  

Accessors and Mutators
 Accessors are methods that allow you to access one (or 

more) private instance variable(s).

public int getAge ()

{

   return age;

}
 Mutators are methods that allow you to set the value of one (or 

more) private variable(s).
public void setAge ( int anAge )

{

   age = anAge;

}



  

Why accessors and mutators?
 Control access to instance variables by providing only 

some accessors and mutators = information hiding.

 Allow additional sanity checks when assigning values 
for instance variables.
 e.g., check that a date is valid
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