

Object Oriented Programming

UCT Department of Computer Science

Computer Science 1015F

Hussein Suleman
<hussein@cs.uct.ac.za>

March 2009

Objects
 Objects are computer representations of real-world or abstract

objects.
 e.g., input, System.out, aPerson, timTheTurtle

 Objects are modelled on computer as complex data types,
defining possibly multiple values AND various operations that
may be applied to those values.

 This style of programming is called Object Oriented
Programming (OOP).

 Why OOP?

Classes
 Classes are templates to create objects.
 Classes define the data and associated operations

(methods) for objects of a particular type.
public class ClassName

{

 // data and methods here

}

 A class is a type, just like int, boolean, etc.
 One class in every file must be public - exposed to the

outside.
 Separate files = modular programming

Instances
 An instance is a variable of the type corresponding to a

particular class.
 Instances are often simply called objects.
 Unlike variables with primitive types (e.g., int), instances are

not created when the variable is declared.
 To create an instance from a class use new
 Simplified syntax:

 <class_name> <variable name>;
 <variable name> = new <class_name> ();

 Examples:
 Person aPerson;
 aPerson = new Person ();

Instance variables
 Instance variables are variables defined within a class, with

separate copies for each instance.
 This makes every object unique, even though they have the same

class.
 Just like different int variables are unique but all have the same

type!
 Instance variables are usually labelled private because they may

only be used by methods within this class.
public class Person

{

 private String firstName, lastName;

 private int age;

}

Methods
 A method is a block of statements within a class.

 It is considered a single unit, and named with an identifier.
 Just like a variable.

 It is used for common functions/subprograms and to set/retrieve values of
instance variables from outside the object.

 A method is called or invoked using dot-notation in the context of an
object.
 e.g., System.out.println (“Hello”);
 System.out is the object. println is the method executed on that object.

 When a method is called, execution jumps to the method and only comes
back when the method is finished.

Methods: Data In
 Parameters are used to send data to a method - within the

method they behave just like variables.
public void setName (String first, String last)

{

 firstName = first; lastName=last;

}

 Calling methods must provide matching values (arguments)
for every parameter.
 e.g., aPerson.setName (“Alfred”, “Tshabalala”);

 Formal parameters (first) vs. Actual parameters (“Alfred”)

Methods: Data Out
 Values can be returned from a typed method.

public int getAge ()

{

 return age;

}
 return must be followed by an expression with the same type

as the header (int in above example).

 So what is an untyped method?
 One whose type is indicated as void.

 return can be used to simply leave the method.

Method Syntax
 Simplified syntax:

public <type> <method_name> (<list_of_parameters>)

{

 <list_of_statements>

}

 Example:
public int doAdd (int aValue, int anotherValue)

{

 int sum = aValue+anotherValue;

 return sum;

}

Methods: Quick Quiz
public class Planet {

 private String name;

 public void setName (String aName) {

 name = aName;

 }

}

...

Planet earth = new Planet ();

 Which of these work?

 earth.setName ();
 earth.setName (2.345);
 earth.setName (“Mars”);

 earth.setName (“Mercury”, “Venus”, “Earth”);
 earth.setName (“The”+“ Dude’s ”+“Planet”);

Problem
 Write a class that represents complex numbers.
 Use this class to perform simple arithmetic on

complex numbers.

Methods to factor common code
...

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

...

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

...

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

...

public void yay ()

{

 System.out.println (“YAY it works);

 System.out.println (“a=“+a);

}

...

d.yay ();

d.yay ();

d.yay ();

Methods with parameters
…
System.out.println (“YAY it works”);
System.out.println (“a=“+12);
…
System.out.println (“YAY it works”);
System.out.println (“a=“+13);
…
System.out.println (“YAY it works”);
System.out.println (“a=“+14);

public void yay (int someNumber)

{

 System.out.println (“YAY it works);

 System.out.println (“a=“+someNumber);

}

…

x.yay (12);

x.yay (13);

x.yay (14);

Methods with parameters/return values

...
c=a*a+2*a*b+b*b;
...
d=e*e+2*e*f+f*f;
...
g=h*h+2*h*i+i*i;

public int doCalc (int n1, int n2)

{

 return (n1*n1+2*n1*n2+n2*n2);

}

…

c = x.doCalc (a, b);

d = x.doCalc (e, f);

g = x.doCalc (h, i);

Local and Instance Variables
 Local variables are defined within a method or block (i.e.,

{ and }). Local variables can even be defined in a for
statement.
 e.g., for (int a=1; a<10; a++)

 Instance variables are defined within a class, but outside any
methods, and each object has its own copy.

 A variable has scope when it can be used and lifetime when
it exists.

this
 this is a special instance variable that exists in every

instance.
 this refers to the current object.
 Calling this.someMethod() is the same as calling
someMethod().

 What is the point of this?

equals and toString
 equals is a special method with a single parameter being of the same

type, returning whether or not the two objects are equal.

public boolean equals (Person aPerson)

{

 return this.name.equals (aPerson.name);

}

 toString is a special method with no parameters that returns a String
representation of the object.

public String toString ()

{

 return (name+” ”+surname);

}

Problem
 Write a program to calculate the roots of a quadratic

polynomial.

Problem
 Write a program to calculate whether or not a

student will get DP and can write the examination in
CSC1015F.

Problem
 Write a numerology calculator using object-oriented

programming. For any two given birthdates, calculate the
compatibility between people as a simple 0-100 integer.

 Use any formula that makes sense.

Overloading
 Overloading means having multiple methods with

the same name and different parameter lists (but
same return type) within a single class.

class Averages
{
 public int average (int x, int y)
 {
 return (x + y)/2;
 }
 public int average (int a, int b,
 int c)
 {
 return (a + b + c)/3;
 }
}

Averages ave;
ave = new
Averages();

int a = ave.average
 (1,2);
int b = ave.average
 (1,2,3);

Why overload?
 A programmer using the class can use the same

method name for different parameters if the name is
sensible.

 Remove the need for lots of unique names for
methods that essentially do the same thing.

Problem
 Modify the Complex number class to use overloading

to avoid multiple multiplication methods.

Constructors
 An object is initialised (given initial values) by means of a

special method called a constructor.

 Every class may have one or more of these special methods
with no return type and the same name as the class.

public class Person

{

 public Person (String firstname)

 { … }

}

Person aPerson = new Person (“hussein”);

Initialising Objects with Constructors
 Create an object using new operator followed by the

name of the class and the parameters/arguments to a
constructor.

 Constructors can be overloaded.
 Normally include a constructor with no arguments so you

can say:
 Person aPerson = new Person();

 Constructors cannot be invoked directly.

Problem
 Write a OO program to calculate some basic statistics

for a class test – including average, minimum and
maximum marks (and track the names of best/worst
students).

Problem
 Add suitable constructors to the Complex number

class.

Other ways to initialise objects
 Assume variables are initialised to “zero”. Java does

this automatically for primitive instance variables!

 Initialise instance variables in the class definition.
public Person

{

 String firstname = “John”;

 String lastname = “”;

 public Person (String fname, String lname)

 {… }

StringTokenizer
 Class to separate a String into multiple words.

 Typical Use:
String as = “Hello World”;

StringTokenizer st = new StringTokenizer (as);

while (st.hasMoreTokens())

{

 System.out.println (st.nextToken());

}

Encapsulation
 Encapsulation in Java is the combining of data and

methods into single units.

 This allows us to treat the object as a single unit,
preventing errors when keeping track of multiple
related variables and methods.

Information Hiding
 Information hiding means we don’t allow

programmers to see details that they don’t need to
see.

 This means fewer accidental programming errors.

 Java enables this with the public and private prefixes/
modifiers.

public and private

instance variable method

public accessible from
anywhere
public int x;

accessible from anywhere
public int getAge ();

private accessible from
methods in same
class
private int x;

accessible from methods
in same class
private int getAge();

Accessors and Mutators
 Accessors are methods that allow you to access one (or

more) private instance variable(s).

public int getAge ()

{

 return age;

}
 Mutators are methods that allow you to set the value of one (or

more) private variable(s).
public void setAge (int anAge)

{

 age = anAge;

}

Why accessors and mutators?
 Control access to instance variables by providing only

some accessors and mutators = information hiding.

 Allow additional sanity checks when assigning values
for instance variables.
 e.g., check that a date is valid

	Slide 1
	Objects
	Classes
	Instances
	Instance variables
	Methods
	Methods: Data In
	Methods: Data Out
	Method Syntax
	Slide 10
	Slide 11
	Why methods ?
	Why parameters ?
	Why return values ?
	Local and Instance Variables
	this
	equals and toString
	Slide 18
	Slide 19
	Slide 20
	Overloading
	Why overload?
	Example
	Constructors
	Initialising Objects with Constructors
	Slide 26
	Slide 27
	Other ways to initialise objects
	StringTokenizer
	Encapsulation
	Information Hiding
	public and private
	Accessors and Mutators
	Why accessors and mutators?

