

Java Basics

UCT Department of Computer Science

Computer Science 1015F

Hussein Suleman
<hussein@cs.uct.ac.za>

February 2009

Java Programs and Byte-Code
 Source code is the program/instructions written in

Java (high level language).
 The Java compiler converts source code into byte-

code (low level language).
 The Java virtual machine (JVM) converts the byte-

code into machine code and executes it.

Source code:
HelloWorld.java

Byte code:
HelloWorld.class

Hello World

Compile (javac) Run (java)

Skeleton Java Program
// some comments at the top of program

public class ClassName
{
 public static void main (String[] args)
 {
 // put sequence of instructions/statements here
 }
}

Example Program

Test1.java:

public class Test1
{
 public static void main (String[] args)
 {
 System.out.println (“Hello World”);
 }
}

output:

Hello World

What It Means
This
class/program is
accessible from
outside (the file)

We are going
to define a
class /
program

The
class/program is
to be called Test1

This set of instructions is
accessible from outside
(the class) and can be
used immediately

The set of
instructions is to
be called main

Print Hello
World to the
screen

How we find the
extra data typed in
after the name of
the program

Once it is done, no data
is sent back for more
processing

public class Test1
{
 public static void main (String[] args)
 {
 System.out.println (“Hello World”);
 }
}

Simple Classes Simplified
 All instructions must appear within a class with the

same name as the file (except for the .java extension).
 main is the name/identifier given to a set of

instructions – this is called a method.
 Every program must have a main method.
 When the JVM is asked to run the program/class, it

loads the byte-code and then tries to execute the
instructions in the main method.

Problem
 Write a program to print out the lyrics of the chorus of

Britney Spears' song “Gimme More”.

Classes and Objects

Instruction1
instruction2
instruction3
...

classY

Instructiona
instructionb
instructionc
...

classX

Instruction1
instruction2
instruction3
...

object2

Instruction1
instruction2
instruction3
...

object3

Instructiona
instructionb
instructionc
...

object1

Classes:
•Templates to create objects.
•Written by programmers and compiled.
•Stored in files.

Objects:
•Correspond to classes.
•Created by JVM.
•Stored in memory.

HelloWorld Class and Object

main
{
 System.out.println (“Hello World”);
}

HelloWorld.java source file written by programmer

main:
BytecodeInstructiona
Bytecodeinstructionb
...

HelloWorld.class bytecode file created by compiler

main:
MachineInstructiona
Machineinstructionb
...

HelloWorld object in memory of JVMcompile

run

Program Syntax and Style
 Semicolon needed after every statement.
 Case-sensitivity

 STUFF vs stuff vs STuff vs stUFF

 Indented programs are easier to read.
 Everything after // is a comment

// a sample method
public void test
{
 System.out.println (“Hi”); // write Hi on screen
}

Comments
 Brief description, author, date at top of class.
 Brief description of purpose of each method (if more

than one).
 Short explanation of non-obvious parts of code within

methods.
// test program to print to screen

// hussein suleman

// 16 february 2009

public class HelloWorld

...

Syntax and Logic Errors
 Syntax errors are when your program does not

conform to the structure required.
 e.g., class spelt incorrectly
 The program will not compile successfully.

 Logic errors are when your program compiles but
does not work as expected.
 You MUST test your program.

Identifiers
 In source file, HelloWorld is an identifier.
 Identifiers are used to name parts of the program.

 start with _ or letter, and followed by zero or more
of _, letter or digit

preferred style: ClassName, everythingElseLikeThis
 Reserved words:

 class, public, void, …
 Not reserved but has special meaning:

main, String, ...

Identifiers: Quick Quiz
 Which are valid identifiers:

 12345
 JanetandJustin
 _lots_of_money_
 “Hello world”
 J456
 cc:123

 Which are good identifiers?

Primitive Data Types
 byte, short, int, long (Integers)
 float, double (Real numbers)
 char
 boolean
 String (not really, but almost)

Integers: Literals
 Literals are actual data values written into a program.
 Numerical literals can be output just like text, but after

sensible conversions:
 System.out.println (12);

 12
 System.out.println (“No:” + 12);

 No:12
 System.out.println (12 + 13);

 25
 System.out.println (“No:” + (12 + 13));

 No:25

Integers: Expressions
 Common operations

 + (plus), - (minus), / (divide), * (times), % (mod)
 11 + 11 / 2 = 16 … how ?

 precedence of operators:
high: ()
middle: * / %
 low: + -

 left associative if equal precedence.
 integer operations when both “operands” are integers.

Integers: Quick Quiz
 What is the value of each expression:

 (12 + 34)

 (1 + 2) / (3 - 4)

 5 % 2 + 2 % 5

 1/1/2/3

 4/(3/(2/1))

Integers: Types
name size smallest largest

byte 1 byte -128 127

short 2 bytes -32768 32767

int 4 bytes -2147483648 2147483647

long 8 bytes approx. -9*1018 approx. 9*1018

Floating-point numbers
 10.0, 0.386, 1.2345, 3.141,

2.6e12, 5.34e-79
 Two types:

 float 4 bytes 1.4e-45 … 3.4e+38
double8 bytes 4.9e-324 … 1.7e+308

 Same precedence and meaning of operations, except
for mixed type expressions
 (10 / 4.0f) * 4
 Must use suffix to force calculations to be floating point!

Problem
 Write a program to calculate the number of precious

seconds you spend at lectures in a semester,
assuming you have 5 lectures a day, lectures on 4
days a week, and there are 12 weeks in a semester.

Variables
 Variables are sections of memory where data can be

stored.
 Most variables have names (identifiers) by which they

can be referred.
 e.g., aValue, theTotal

 Variables are defined by specifying the type of data
and the name (or list of names).
 int aValue;
 float a, b, c;
 String aName;

Assignment and Output (I/O)
 Putting a value into a variable:

int a, b;
a = 1;
b = a + 5;
int c = 1; // initialization
a = c = 2; // assignment with right associativity

 LHS is usually a variable, RHS is an expression

 Output values of variables just like literals
 e.g., System.out.println (“The value is ” + a);

Problem
 Write a program to calculate your subminima and final

mark for CSC1015F. Initialize variables for each
component mark at the top of the main method so the
marks can be changed relatively easily.

Problem
 Write a program to calculate the minimum of 4 integer

values using the Math.min method, which returns the
minimum of 2 numbers. Initialize variables for these 4
values at the top of the main method so the values
can be changed relatively easily.

char and boolean
 char represents characters – single letters, numbers,

symbols, etc.
e.g., 'A', '1', '#'
Characters are from the Unicode set.

 boolean represents true or false.
This is used for comparisons and decision-making.
e.g., false

Objects
 Objects are computer representations of real-world

objects in memory.
e.g., System.out
Also called an instance.

 Objects contain data and methods (instructions that
can operate on the data).
println is a method.
Methods often require extra data (parameters) to

specify what is to be done.

Strings
 Basically sequences of characters (letters, digits,

symbols).
e.g., “howzit gaz’lum”

 Strings can be concatenated (joined) with +
e.g., “Cape” + “Town”

 The data type of Strings is String.
 All Strings are objects so have methods for various

useful functions.

String methods
 length returns the number of characters in the string

e.g., “CapeTown”.length()
Calling this method is just like an expression

– it has a value than can be used further.
 equals (anotherString) indicates if

anotherString has the same value
 substring (start,end) returns part of a string

from start to just before end
 indexOf (aString) returns position of aString

(see textbook or Java API for more methods)

Problem
 Suppose we have a variable:
 “the quick brown fox jumped over the lazy dog”.
 Write a program to extract the colour of the quick fox

from the sentence using only String manipulations.
Make sure your program will work even if the String is
different, as long as there is a quick something fox in
it!

The Output Statement
 To output text to the screen (console):

 System.out.print (“Hello world”);
 System.out.println (“ abc”+”def”);
 System.out.print (“hey \”dude\” \\ wheres my
car\n”);

 System.out.flush (); // outputs incomplete
lines

 print outputs text without going to the next line.
 println outputs text and goes to the next line.
 + joins together 2 pieces of text.

What is System.out?
 System.out is an object.
 An object is a computer model of some real world

phenomenon.
 In this case System.out represents your screen.

 System.out contains a number of actions – things that
can be done to it. These are defined as sets of
instructions with names, called methods.

 println is a method.

The System.out.println method
 The stuff within (parentheses) tells println what to

print.
 The dots between identifiers are used to indicate

containment.
 println is contained in out.
 out is contained in System.

 This is known as dot-notation.
 Just like main is a method of Test1,

 println is a method of System.out (or out).
 But someone else already wrote this - we just use it!

Output: Quick Quiz
 What is output by:

System.out.println (“The ”);

System.out.print (“ quick ”);

System.out.println (“ brown ”);

System.out.print (“ fox ”

 +“ jumped “);

System.out.print (“ over the lazy”);

System.out.println (“ dog.”);

Problem
 Write a program to print out the source code for a

Hello World Java program.

Increment / Decrement
 c++

 increment c by 1
 same as: c = c + 1

 c--
decrement c by 1
 same as: c = c - 1

 Pre/Postfix
 ++x prefix operator, increment before evaluation
 x++ postfix operator, increment after evaluation

 What does x+=2 do ? And y*=3 ? z+=w++ ?

Variables: Quick Quiz
 What is the output of this code:

int countA = 1, countB=2, countC=3;
countA++;
countB = ++countA + 2 + countC;
countA = countC-- + countB / 4;
countC = --countC - 1;
System.out.print (countA+“:”+countB+“:”+countC);

Implicit Conversions
 If there is a type mismatch, the narrower range value

is promoted up
int i=1; float f=2.0f;
System.out.print (i+f);

 Cannot automatically convert down
e.g., int a = 2.345;

Explicit Conversions
 Use pseudo methods to “cast” a value to another type

int a = (int) 1.234;
2.0f + (float)7/3

 Use Math.ceil, Math.floor, Math.round methods for greater
control on floating-point numbers

 String.valueof (123)
 converts 123 to a String

Constants
 Like variables, but values cannot be changed after

initialisation.
 Prefix the data type with static final

 e.g., static final double Pi = 3.14159;
 Useful for fixed values used in many places in the

program - one future change will affect all uses.

Input
 Use Scanner to get values from users entered at the

keyboard during program execution

// tell the compiler we will use the Scanner class which is part
// of Java's built-in code (libraries)
import java.util.Scanner;

public class Test {
 public static void main (String[] args)
 {
 // create an object conforming to the Scanner class
 Scanner input = new Scanner (System.in);

 String aWord = input.next(); // get a word
 }
}

Scanner methods
 next

 Reads in the next word.
 nextInt

 Reads in the next integer.
 nextFloat

 Reads in the next float.
 nextLine

 Reads in complete line until ENTER is pressed.

(see textbook or Java API for more)

Problem
 Write a program to convert your age into dog years. Your

program must ask for a human years number and then
output the dog years equivalent.
 The formula is: 10.5 dog years per human year for the

first 2 years, then 4 dog years per human year for each
year after.

 [source:
http://www.onlineconversion.com/dogyears.htm]

 Now do it the other way around … dog->human

http://www.onlineconversion.com/dogyears.htm

Problem
 Write a program to simulate Eliza, the artificial

conversationalist. For example:
 What is your name?
 Hussein
 Tell me, Hussein, what is your problem today?
 My students are bored.
 You said your students are bored. Why do you say
that?

 They have that bored look.
 Are you sure they have that bored look?
 Yes
 ...

Output Formatting
 System.out.printf (format_string, expressions) is a method

to format output.
 format_string indicates the format of the output.

e.g., “%2d” is a decimal with width 2
 Expressions are used in place of the placeholders that

begin with % in the format_string.
 Examples:

 printf (“%03d”, 5);
005

 printf (“%-6s-%6s%n”, “left”, “right”);
left - right

Format Strings
 General format: %-0w.dt

 - = optional to left-justify, otherwise right-justify
 0 = optional to left-pad with zeroes instead of spaces
 w = width
 d = optional decimal places
 t = format specifier (data type)

 Some Format Specifiers
 d (decimal/integer)
 f (floating point number)
 e (E-notation floating point)
 s (String)
 c (character)

Problem
 Write a program to calculate compound interest,

according to the formula:

 A0 = Initial sum, R = Annual interest rate, N = Number
of periods per year, T = Number of years

 Use floating point numbers and use output formatting for
output.

 Hint: Math.pow calculates the power with a double result.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

