
  

COMPILERS
Basic Blocks and 

Traces

hussein suleman
uct csc3003s 2008



  

Evaluation Order
 Its useful to evaluate the subexpressions 

of an expression in any order.
 Some IR trees can contain side effects.
 ESEQ and CALL can contain side effects

 assignment 
 I/O

 It there were no side effects in these 
statements then the order of evaluation 
would not matter.



  

IR/MC mismatches
 CJUMP jumps to one of two labels not one 

label and next instruction.
 ESEQ nodes within expressions make 

order of evaluation significant.
 CALL nodes within expressions make order 

of evaluation of parameters significant.
 CALL nodes within the argument of other 

CALL nodes make allocation of formal-
parameter registers difficult.



  

Canonical Trees
 1: No SEQ or ESEQ
 2: CALL can only be subtree of EXP(. .) or 

MOVE(TEMP t,. .)
 Transformations:

 lift ESEQs up tree until they can become SEQs 
 turn SEQs into linear list



  

Simplification Rules
 ESEQ(s1, ESEQ(s2, e)) =>

 ESEQ(SEQ(s1,s2), e)
 BINOP(op, ESEQ(s, e1), e2) => 

 ESEQ(s, BINOP(op, e1, e2))
 MEM(ESEQ(s, e1)) => 

 ESEQ(s, MEM(e1))
 JUMP(ESEQ(s, e1)) => 

 SEQ(s, JUMP(e1))
 CJUMP(op, ESEQ(s, e1), e2, l1, l1) => 

 SEQ(s, CJUMP(op, e1, e2, l1, l2))
 MOVE(ESEQ(s, e1), e2) 

 = SEQ(s, MOVE(e1, e2))
 BINOP(op, e1, ESEQ(s, e2)) => 

 ESEQ(MOVE(TEMP t, e1), ESEQ (s, BINOP(op,TEMP t, e2)))
 CJUMP(op, e1, ESEQ(s, e2), l1, l2) =>

 SEQ(MOVE(TEMP t, e1), SEQ(s, CJUMP(op,TEMP t, e2, l1, l2)))
 CALL(f , a) = 

 ESEQ(MOVE(TEMP t, CALL( f , a)), TEMP(t))



  

General Technique
 For subexpressions of a node, e1..en, 

 [e1, e2, … ESEQ(s,ei), … , en-1, en]
 if s commutes with e1..ei-1 (independent),

 (s; [e1, e2, … ei, … , en-1, en]
 otherwise,

 SEQ(MOVE(TEMP t1, e1),
 SEQ(MOVE(TEMP t2, e2),
 … SEQ(MOVE(TEMP ti-1, ei-1)…))
 [TEMP t1, TEMP t2, … TEMP ti-1, ei, … , en-1, en]

 In general, extract children, reorder and 
then reinsert children



  

Basic Blocks
 Divide linear sequence of nodes in each 

subprogram into basic blocks, where:
 execution always starts at top and stops at 

bottom
 first statement is a LABEL
 last statement is a JUMP or CJUMP
 no intervening LABELs, JUMPs or CJUMPs

 Basic blocks are easier to work with for 
future optimisations since they can be 
rearranged, while maintaining logic.



  

Basic Blocks Algorithm
 Scan sequence of statements from start to 

end
 If LABEL, start new block
 If JUMP or CJUMP, end block

 If a block does not start with a LABEL
 Create new LABEL

 If a block does not end with JUMP/CJUMP
 Create new JUMP to next LABEL

 Add terminal “JUMP done” for end of 
subprogram.



  

Traces
 We want to rearrange basic blocks to 

optimise the number and nature of jumps.
 A trace is a sequence of statements that 

can be consecutively executed during the 
program execution (e.g., b1, b3, b6 below)
 block b1: LABEL a … JUMP b
 block b3: LABEL b … JUMP c
 block b6: LABEL c … CJUMP ?,a

 Every program has many overlapping 
traces – we want a single set that covers 
all the instructions.



  

Trace Generation
 Put all basic blocks into a list Q
 while Q is not empty

 Start a new (empty) trace T
 Remove an element b from Q

 while b is not marked
 Mark b
 Append b to T
 Check succesors if b for unmarked node and make this 

the new b
 End the trace T



  

JUMP considerations
 We prefer CJUMP followed by its false 

label, since this translates to MC 
conditional jump.

 If CJUMP followed by its true label,
 switch true and false labels, and negate 

conditonal
 If CJUMP (cond, a, b, lt, lf) followed by 

some other label, replace with:
 CJUMP (cond, a, b, lt, lfprime)
 LABEL lfprime
 JUMP (NAME lf)

 Remove all JUMPs followed by their target 
LABELs.


	COMPILERS Basic Blocks and Traces
	Evaluation Order
	IR/MC mismatches
	Canonical Trees
	Simplification Rules
	General Technique
	Basic Blocks
	Basic Blocks Algorithm
	Traces
	Trace Generation
	JUMP considerations

