

COMPILERS
Semantic Analysis

hussein suleman
uct csc3003s 2008

Semantic Analysis
 The compilation process is driven by the syntactic

structure of the program as discovered by the
parser.

 Semantic routines:
 interpret meaning of the program based on its syntactic

structure
 it has two functions:

 finish analysis by deriving context-sensitive information
 begin synthesis by generating the IR or target code

 Associated with individual productions of a
context free grammar or subtrees of a syntax
tree.

Context Sensitive Analysis - Why
 What context-sensitive issues can be

determined?
 Is X declared before it is used?
 Are any names declared but not used?
 Which declaration of X does this reference?
 Is an expression type-consistent?
 Do the dimensions of a reference match the declaration?
 Where can X be stored? (heap, stack, ,,,)
 Does *p reference the result of a malloc()?
 Is X defined before it is used?
 Is an array reference in bounds?
 Does function foo(…) produce a constant value?

Context Sensitive Analysis - How
 How to check symbols and their semantics

at various points in the program?
 Process program linearly (roughly, in-order tree

traversal).
 Maintain a list of currently defined symbols and

what they mean as the program is processed –
this is called a Symbol Table.

Symbol Tables
 Associate lexical names (symbols) with

their attributes.
 Can contain:

 variable names
 defined constants
 procedure/function/method names
 literal constants and strings
 source text labels
 compiler-generated temporaries
 subtables for structure layouts (types) (field

offsets and lengths)

Symbol Table Attributes
 The following attributes would be kept in a

symbol table:
 textual name
 data type
 dimension information (for aggregates)
 declaring procedure
 lexical level of declaration
 storage class (base address)
 offset in storage
 if record, pointer to structure table
 if parameter, by-reference or by-value?
 can it be aliased? to what other names?
 number and type of arguments to functions/methods

Binding
 As the declarations of types, variables, and

functions are processed, identifiers are
bound to “meanings” in the symbol table.

 A symbol table is a set of bindings.

 … But this binding is not static – it changes
over the course of the program.

Scope
 An identifier has scope when it is visible

and can be referenced.
 An out-of-scope identifier cannot be

referenced.
 Identifiers in open scopes may override

older/outer scopes temporarily.
 2 Types of scope:

 Static scope is when visibility is due to the
lexical nesting of subprograms/blocks.

 Dynamic scope is when visibility is due to the
call sequence of subprograms.

Basic Static Scope
 Usually, a name begins life where it is

declared and ends at the end of its block.

 void foo() {
 int k;
 …….
 }

Why Scope?
 Scope is not necessary.

 Languages such as assembler have exactly
one scope: the whole program.

 Modern programming languages have
more than one scope.
 Information hiding and modularity.

 Goal of any language is to make the
programmer’s job simpler.
 One way: keep things isolated.
 Make each thing only affect a limited area.
 Make it hard to break something far away.

Changing Scope
 Identifiers come into scope at the beginning of a

subprogram/block and go out of scope at the end.

 Example (in C++):

void testfunc ()
{
 int a; // a enters scope;
 for (int b=1; b<10; b++) // b in scope for for
 {
 int c; // c enters scope
 …
 } // b,c leave scope
 …
} // a leaves scope

Static Scope
 Consider the Pascal program (which uses static scoping):

program test;
var a : integer;

 procedure proc1;
 var b : integer;
 begin
 end;

 procedure proc2;
 var a, c : integer;
 begin
 proc1;
 end;

begin
 proc2;
end.

in scope: a (from test)

in scope: a, c (from proc2)

in scope: b (from proc1), a (from test)

Dynamic Scope
 Consider the Pascal-like code (assume dynamic scoping):

program test;
var a : integer;

 procedure proc1;
 var b : integer;
 begin
 end;

 procedure proc2;
 var a, c : integer;
 begin
 proc1;
 end;

begin
 proc2;
end.

in scope: a (from test)

in scope: a, c (from proc2)

in scope: b (from proc1) a, c (from proc2)

Static vs. Dynamic Scope
 Dynamic scope makes it easier to access

variables with lifetime, but it is difficult to
understand the semantics of code outside
the context of execution.

 Static scope is more restrictive – therefore
easier to read – but may force the use of
more subprogram parameters or global
identifiers to enable visibility when
required.

Scope in a symbol table
 Most modern programming languages

have nested static scope.
 The symbol table must reflect this.

 What additional information can reflect
nested scope?
 A name query must access the most recent

declaration, from the current scope or some
enclosing scope.

 Innermost scope overrides declarations from
outer scopes.

Scope and Symbol Table Operations

 What symbol table operations do we
need?
 void put (Symbol key, Object value)

 binds key to value

 Object get(Symbol key)
 returns value bound to key

 void beginScope()
 remembers current state of table

 void endScope()
 restores table to state at most recent scope that has

not been ended

Attribute Information
 Attributes are internal representations of

declarations.
 Symbol table associates names with

attributes.
 Names may have different attributes

depending on their meaning:
 variables: type, procedure level, frame offset
 types: type descriptor, data size/alignment
 constants: type, value
 methods: formals (names/types), result type,

block information (local decls.), frame size

Symbol Table Implementation
 Implemented as a collection of dictionaries

in which each symbol is placed.

 Many different possible data structures:
 linked list
 hash table
 binary tree

Symbol Table Lookup
 Basic operation is to find the entry for a

given symbol.
 Each symbol table may have a pointer to

its parent scope.
 Lookup: if symbol in current table, return

it, otherwise look in parent.

 Hash tables and binary trees can be used
more efficiently.

Types of Implementation
 Imperative

 Auxiliary data structures are modified as the
analysis progresses, always reflecting only the
current state.

 Functional
 Auxiliary data structures are maintained intact

as the analysis progresses, with new versions
created when needed – thus previous and
current states are all available at any time.

Hash Table
 beginScope/put

 Imperative - Chain new entries to beginning of
table, thus overriding older entries.

 Functional - Create copy of hash table array.

 endScope
 Imperative – Remove entries from head of each

linked list.
 Each entry can point to the next one that should be

removed.

 Functional – Dispose of array.

Binary Tree
 put

 Functional – Insert new entries into a new
subtree, duplicating nodes up to the root.

 endScope
 Functional – Delete all nodes in new subtree.

valueC 3

valueA 4

valueA 2

valueB 1

valueB 1
root before second “valueA”

root after second “valueA”

Symbols vs. Names
 Names are the textual entities found in the

source code.
 Symbols are entities assigned to each

name for more efficient processing during
compilation.

 Example:
 Name: valueA

 Symbol: V001
 Name: valueB

 Symbol: V002

 Remember perfect hash functions?

Type Checking
 Static semantics should be checked

after/as the symbol table is populated.
 Is every name defined before it is used?
 Does the type of each subexpression conform

to what is expected?
 Are the types on either side of an assignment

compatible?

 The tree can be walked/visited to perform
these checks.
 May need multiple passes – so retain symbol

table across passes.

Type Equivalence
 Two approaches:

 Name equivalence: each type name is a
distinct type.

 Structural equivalence: two types are
equivalent iff. they have the same structure
(after substituting type expressions for type
names).

 Example (structural):
typedef int bignumber;
int c;
bignumber b =c;

Error Handling
 If errors are detected, correct program

representation and continue analysis to
detect other errors.

 Example:
int a, b;
String c;
c = a;
b = a;

	COMPILERS Semantic Analysis
	Semantic Analysis
	Context Sensitive Analysis - Why
	Context Sensitive Analysis - How
	Symbol Tables
	Symbol Table Attributes
	Binding
	Scope
	Basic Static Scope
	Why Scope?
	Changing Scope
	Static Scope
	Dynamic Scope
	Static vs. Dynamic Scope
	Scope in a symbol table
	 Scope and Symbol Table Operations
	Attribute Information
	Symbol Table Implementation
	Symbol Table Lookup
	Types of Implementation
	Hash Table
	Binary Tree
	Symbols vs. Names
	Type Checking
	Type Equivalence
	Error Handling

