University of Cape Town Department of Computer Science

Computer Science CSC116S

Test 3 - 6 October 2004

- This test covers Number Systems, the Graphics class and Computer Architecture.
- Answer all questions.
- Good luck !

Marks: 35

• Approximate marks per question are shown in brackets

Time: 40 minutes

• The use of calculators is permitted Surname Initials NAME:

STUDENT NO: COURSE CODE: CSC

This paper consists of 6 questions and 7 pages (including this cover page).

Mark Allocation								
Quest	Marks	Internal	External	Quest	Marks	Internal	External	
1	[3]			4	[2]			
2	[5]			5	[6]			
3	[7]			6	[12]			
	Total				Total			
Grand Total Final Mark								
Internal Examiner:				External Examiner:				

Question 1. [3 marks]

Consider the Java statements below which write the strings "smile" and "nice" on a frame or canvas, and answer the questions that follow with respect to this code:

```
g.drawString("smile", 80, 240 );
g.drawstring("nice", 100, 200);
```

- a) Will the string "nice" appear *above* or *below* the string "smile!" in the output ? **above** [1]
- b) Name any one other drawing method that object g has.

```
setFont(), setColor(),drawLine(), drawRect(),
fill/drawPolygon(), fill/drawArc(), fill/drawOval() [1]
```

c) Which part of the letter "n" in "nice" will be located precisely at point 100, 200 and why do you think they arranged it that way? (i.e. give a reason for your answer)

bottom left - so that when you use drawLine at that point it underlines the whole word starting from the begining of "n" [1]

Question 2. [5 marks]

Answer the questions that follow with respect to the simple Java code shown below:

```
import java.awt.*;
import java.event.*;
class TestExample extends Frame implements MouseListener
{
    public TestExample( )
    {
        super ("Test Example");
        addMouseListener ( this );
        setSize ( 400, 400 );
        show( );
    }
   public void mouseClicked ( MouseEvent event )
    { System.out.println ("mouse clicked"); }
    public void mousePressed ( MouseEvent event )
    { System.out.println ("mouse pressed" ); }
    public void mouseResleased ( MouseEvent event )
    { System.out.println ("mouse released" ); }
   public void mouseExited ( MouseEvent event ) { }
   public void mouseEntered ( MouseEvent event ) { }
```

```
public static void main ( String[ ] args)
{
     new TestExample( );
   }
} // end of TestExample class
```

- a) If the user clicks the mouse once inside the frame when this program is run, what will the program output?
 mouse pressed
 mouse released
 mouse clicked
- b) What is the difference between "extends" and "implements" in line 3?

Keyword extends used to subclass Keyword implements used to provide the code for an interface

c) Provide a statement for the mouseEntered method so that it prints out a message to indicate at which point (x and y co-ordinates) the mouse entered the frame:

[2]

System.out.println ("Mouse entered at " + event.getPoint()); [1]

d) Can we use a drawOval statement in the body of mouseEntered to draw a small circle on the frame at the point where the mouse entered (Yes / No) ? Give a clear and complete reason for your answer.

No, because half of the circle will be out of the frame since the top-most point of the circle is at the edge of the frame [1]

Question 3. [7 marks]

a) Convert the decimal number 52 to binary:

52/2 = 26 r 0 26/2 = 13 r 0 13/2 = 6 r 1 6/2 = 3 r 0 3/2 = 1 r 1 1/2 = 0 r 1Ans = 110100

b) DO EITHER i OR ii

- i) Give the two's complement binary representation of the decimal value -52 **OR**
- ii) Convert the octal number 52 to decimal

i:

```
-52 = 2sComplement(110100)
= 001100
```

ii:

 $52base8 = 5*8^{1} + 2*8^{0}$ = 40 + 2 = 42 base 10

[1]

c) Show below how the decimal number -52 would be represented in IEEE single precision format, i.e. where there is one sign bit, then an 8-bit biased exponent, and finally a 23-bit significand:

S = 1 (negative sign) 52 = 110100 Normalise : 110100 = 1.101*2^5 Exponent : 5 + 127 (bias) = 132 = 10000100 Ans = 1 10000100 10100...0000 23 bits

[4]

[2]

Question 4. [2 marks]

Explain what the following registers are used for: a) Program counter Holds address of next instruction to execute [1] b) Instruction counter Holds the current instruction being obeyed [1]

Question 5. [6 marks]

a) Explain the steps that the control unit causes the computer to perform.
1. Load instruction
2. PC = PC + 4

3. Execute instruction

[2]

b) Illustrate your answer for the execution of the next instruction given the state of the computer below. Show how the relevant registers of the computer change at each step.

	Initially	Finally				
Memory PC	++ 16 ++	++ 20 (2) PC = PC + 4 ++				
16 addi \$4, \$5, 6 Reg 4	++ 3 ++	++ 8 ++				
20 Reg 5	++ 2 ++	++ 2 ++				
24 Reg 6	++ 4 ++	++ 4 ++				
Instruction Register	++ 	++ addi \$4,\$5,6 ++				
<pre>(3) Execute intruction: \$5 = 2\ </pre>						
8 => \$4						
6/						

[4]

Question 6. [12 marks]

Write a MIPS assembler program to do the same as the following java program:

```
import Keyboard;
public class FindMax
 {
    public static void main(String[] args)
    throws java.io.IOException
    {
        int x, big = 0;
        for (int i=0; i<10; i++)
        {
            x = Keyboard.readInt();
            if (x > big)
            { big = x; }
        }
        System.out.println("Big value = " + big );
    }
}
```

Comment all MIPS statements.

Given:

	.data
x:	.word 0
big:	.word 0
i:	.word 0
	.text
	.globl main

(continued on the next page)

main:

lw \$s0, big # \$s0 = big = 0 addi \$t0, \$0, 0 # initialise loop variables addi \$t1, \$0, 10 loop: # loop for i < 10, OR blt \$t1,\$t0, exit</pre> bge \$t0, \$t1, exit addi \$t0, \$t0, 1 # increment i addi \$v0, \$0, 5 # prepare to read an int syscall # answer stored in \$v0 ble v0, s0, loop # check if x > big (many variations of it) add \$s0, \$s0, \$v0 # big = x sw \$s0, big # store to memory loop j \$v0, \$0, 1 addi # prepare to print and int exit: add \$a0, \$0, \$s0 # put big in \$a0 syscall jr \$ra # exit program

[12]