Name:

Please fill in your Student Number and Name.

Student Number

Student Number:

University of Cape Town ~ Department of Computer Science

Computer Science 1011H/1016S ~ 2008

January Exam

Question Max Internal External Question Max Internal External
1 25 7 25
2 10
3 15
4 5
5 10
6 10
TOTAL 100
Marks : 100
Time : 180 minutes
Instructions:

a) Answer all questions.
b) Write your answers in the space provided.

¢) Show all calculations where applicable.

Question 1: Recursion, Exceptions and File handling [25]

Study the program below carefully and answer the questions that follow.

import java.io.*;
import java.util.*;

public class Exam2008Supp {
public static void main(String[] args)
throws FileNotFoundException f{

Scanner scan = null;
PrintWriter pw = null;

try {

}

scan = new Scanner (new FileInputStream("fileA.txt"));
pw = new PrintWriter (new FileOutputStream("fileB.txt"));
pw.println("Stack:");

int level = scan.nextInt();

pw.println (Stack (level, ""));

catch (FileNotFoundException e) {

}

pw.println (e.getMessage());,

catch (InputMismatchException e) {

pw.println("Input exception occurred”);

}
finally {

pw.println("Completed."); pw.close();,
}

}

public static String Line(int n, char C) {
String tmp="";
for(int i=0;i<n;i++)

tmp+=C;

return tmp;

}

public static String Tri(int n,String shift) {
if (n>0) {

String tmp = shift+Line(n*2-1,'*')+'\n';
return tmp + Tri(n-1,shift+" ");

}
else
return "'";
}
public static String Stack (int n,String offset) {
//code hidden
}

a) Write a recursive definition for the method Line in the program listed above. Note that no
marks will be awarded for iterative solutions. [3]

public static String Line(int n, char C) {

}

b) For different values of the input parameters, the method Stack produces output as follows:
Stack(l,””) returns the Stack(2,””) returns the
string: string:

* *okk
*
*
Stack(4,””) returns the
string: Stack(3,””) returns the
%k ok ok Kk ok & ok String.’
ok ok ok Kk ok %* ok %k ok ok
%* %k ok * ok *
* *
%k ok ok Kk ok * ok *
% ok ok *
* *
%k ok ok
*
*
etc

Write a recursive definition for the method Stack. Note that no marks will be awarded for
iterative solutions. [4]

public static String Stack(int n,String offset) {

¢) Explain clearly what a StackOverflowError is and why this type of error can occur in
recursive functions. (2]

3

d) Explain clearly what checked exceptions are in Java and give an example of one from the
program above. (3]

e) List three conditions under which a FileNotFoundException would be thrown by the program
listed above. [3]

f) Assume that, before the program is run, the files contain the following text:

fileA. txt: fileB. txt:
ABE 4 5 32
5
Now write down the exact contents of each of these files after the program is run. [3]

g) Define the concept of a stream in the Java programmng language. [1]

h) Give an example of a standard stream used in the program above. [1]

i) Explain clearly why it is a good idea to include the line pw.close () ; in the finally block in
the program above. [2]

j) Explain why Java binary files are portable, whereas binary files from other programming
languages (like C++) are not. [3]

Question 2: UML, Abstract classes, Inheritance and Polymorphism [10]

Use the following code to answer the questions that follow.

public class Polymorphism {

public static void main (String[] args) {
A refl = new C();
B ref2 = (B) refl,;
System.out.println(ref2.g9());

}

public class A {
protected String name = "CSC1016S";
private int f() { return 0; }
public int g() { return 3; }

}

public class B extends A {

private int f£() { return 1; }
public int g() { return £(); }

}

public class C extends B {
public int f() { return 2; }

}

a) Draw a UML diagram to illustrate the relationships among classes A, B and C. In each class
diagram, all the class members should be described with their corresponding accessibility. [4]

b) What will be the result of attempting to compile and run the program Polymorphism? Select
the one correct answer below. [2]

i. The program will fail to compile.

ii. The program will compile without error and print @ when run.
iii. The program will compile without error and print 1 when run.
iv. The program will compile without error and print 2 when run.
v. The program will compile without error and print 3 when run.

¢) Explain the keyword protected and compare it with the private and public keywords. [2]

d) Which statements below are valid? Select all that apply. [2]

i. Variable name can be accessed inside class A
ii. Variable name can be accessed inside class B
iii. Variable name can be accessed inside class C
iv. Variable name can be accessed inside class Polymorphism

O\ |

Question 3: Interfaces and Sorting [15]
Use the following program to answer the questions that follow.

public class GeneralizedSelectionSort
{
/**
Precondition: numberUsed <= a.length;
The first numberUsed indexed variables have values.
Action: Sorts a so that a[0],a[l],...,a[numberUsed - 1] are in
increasing order by the compareTo method.
*/
public static void sort (Comparable[] a, int numberUsed)
{
int index, indexOfNextSmallest;
for (index = 0; index < numberUsed - 1; index++)
{ //Place the correct value in a[index]:
indexOfNextSmallest = indexOfSmallest (index, a, numberUsed);
interchange (index, indexOfNextSmallest, a);
//al[0],a[l],..., al[index] are correctly ordered and these are
//the smallest of the original array elements. The remaining
//positions contain the rest of the original array elements.

}
/**

Returns the index of the smallest value among
a[startIndex], a[startIndex+1], ... a[numberUsed - 1]
*/
private static int indexOfSmallest (int startIndex,
Comparable[] a, int numberUsed)

{
Comparable min = a[startIndex];
int indexOfMin = startIndex;
int index;
for (index = startIndex + 1; index < numberUsed; index++)
if (a[index].compareTo (min)<0)//if a[index] is less than min
{
min = af[index];
indexOfMin = index;
//min is smallest of a[startIndex] through a[index]
}
return indexOfMin;
}
/**

Precondition: i and j are legal indices for the array a.
Postcondition: Values of a[i] and a[j] have been interchanged.
*/
private static void interchange (int i, int j, Comparable[] a)
{
Comparable temp;
temp = af[i];
ali] = aljl;
aljl temp; //original value of a[i]

a) Explain what a Comparable interface is and what it is used for. [2]

b) List and explain the main differences between interfaces and abstract classes (at least 2). 2]

c) Write a class called Student that implements the Comparable interface. Order is based on
student mark and then name. [4]

To answer this question, declare the class, constructor, private mark and name variables, then
implement the compareTo method that should cover all the comparison cases.

d) Write a driver program, called test that uses GeneralizedSelectionSort to sort an array of
Student objects. [3]

To answer this question, create an array of 3 Student objects, initialize them, and sort the
array based on the given GeneralizedSelectionSort. The three objects are: Student(9,
“Abba”), Student(7,”Anna”) and Student (9,”Bertus”).

e) What is the order of the objects after running the sort? [2]

f) If there is no compareTo() method in the Student class, can we compile the program test
successfully? Explain why or why not. [2]

Question 4: Data Structures [5]
The following is a partial definition of a binary tree.

public class BinaryTree

{
private class Node
{
private int data;
private Node left;
private Node right;
public Node (int newData, Node newLeft, Node newRight)
{
data = newData;
left = newLeft;
right = newRight;
}
}
private Node root;
private void showElements ... // incomplete
}

Complete the method showElements which performs inorder traversal of the tree and prints
each item in the tree. [5]

11

Question 5: Data Structures [10]
The following is a partial definition of a simple linked list.

public class LinkedList
{

private class Node

{
private String data;
private Node next;

public Node (String newItem, Node nextValue)
{

item = newItem,

next = nextValue,

}

}//End of Node inner class
private Node head;

public void add(String newData, Node nextValue)

{
}

public boolean delete ()

{
}

a) Fill in the method named add, which stores a new item at the start of the list. [3]

b) Fill in the method named delete, which removes the item at the start of the list and returns true.
If the list is empty, it returns false. [4]

c) Rewrite the partial definition above (excluding the methods add and delete) so that the list
becomes a doubly linked list. [3]

Question 6: GUIs [10]
Study the following program and answer the questions that follow.

import javax.swing.?*;
import java.awt.event.*;
import java.awt.?*;

public class ActionFace extends JFrame implements ActionListener

{

private boolean x;

public void actionPerformed (ActionEvent e)

{
x = true;
repaint();

}

public static void main (String[] args)

{
ActionFace drawing = new ActionFace();
drawing.setVisible (true);

}

public ActionFace()

{
setSize (400, 400);
setDefaultCloseOperation (JFrame.EXIT ON_CLOSE);
setTitle ("Hello There!");
setLayout (new BorderLayout());
JButton actionButton = new JButton("Action");
actionButton.addActionListener (this);
add (actionButton, BorderLayout.SOUTH)
x = false;

}

public void paint (Graphics g)

{
super.paint (qg);
if (x)
{

g.setColor (Color.RED);
g.drawArc (150, 200, 100, 50, 0, 180);
}
else
g.drawArc (150, 200, 100, 50, 180, 180);

g.drawOval (100, 100, 200, 200);
g.filloval (155, 160, 20, 10);
g.filloval (230, 160, 20, 10);

}

}

14

a) Draw the GUI produced by the program. [7]

= Hello There!

b) What does the program do when the Action button is clicked? [3]

15

Question 7: Ethics, Cyberlaw and Development [25]

a) Give a short definition of Utilitarianism. [2]

b) Discuss the ways in which legality (the law) may or may not coincide with ethicality (ethics).
Try to give examples (which need not be related to computing) of the various possibilities. [8]

c) Critically discuss the question: “Is Computing a Profession?” Consider amongst other things the
extent to which the features of a profession are already present. [9]

d) Discuss two important ways in which the Digital Divide applies (or shows itself) in South
Africa. (6]

16

Appendix: Question 1 Program

import java.io.*;
import java.util.*;

public class Exam2008Supp {
public static void main(String[] args)
throws FileNotFoundException {

Scanner scan = null;
PrintWriter pw = null;

try {
scan = new Scanner (new FileInputStream("fileA.txt"));

pw = new PrintWriter (new FileOutputStream("fileB.txt"));
pw.println("Stack:");
int level = scan.nextInt();
pw.println(Stack (level, ""));
}
catch (FileNotFoundException e) {
pw.println (e.getMessage());,
}
catch (InputMismatchException e) {
pw.println ("Input exception occurred”);

}
finally {

pw.println("Completed."); pw.close();,
}

}

public static String Line(int n, char C) {
String tmp="";
for(int i=0;i<n;i++)
tmp+=C;
return tmp;

}

public static String Tri(int n,String shift) {
if (n>0) {
String tmp = shift+Line(n*2-1,'*')+'\n’;
return tmp + Tri(n-1,shift+" ");

}
else
return "";
}
public static String Stack (int n,String offset) {
//code hidden
}

17

Appendix: Question 2 Program
public class Polymorphism {

public static void main (String[] args) {
A refl = new C();
B ref2 = (B) refl;
System.out.println(ref2.g9());

}

public class A {
protected String name = "CSC1016S";

private int f() { return 0; }
public int g() { return 3; }

}

public class B extends A {

private int f() { return 1; }
public int g() { return £(); }

}

public class C extends B {
public int f() { return 2; }

}

18

Appendix: Question 3 Program

public class GeneralizedSelectionSort
{
/**
Precondition: numberUsed <= a.length;
The first numberUsed indexed variables have values.
Action: Sorts a so that a[0],a[l],...,a[numberUsed — 1] are in
increasing order by the compareTo method.
*/
public static void sort (Comparable[] a, int numberUsed)
{
int index, indexOfNextSmallest;
for (index = 0; index < numberUsed - 1, index++)
{ //Place the correct value in a[index]:
indexOfNextSmallest = indexOfSmallest (index, a, numberUsed);,
interchange (index, indexOfNextSmallest, a);
//a[0],a[l],..., a[index] are correctly ordered and these are
//the smallest of the original array elements. The remaining
//positions contain the rest of the original array elements.

}
/**

Returns the index of the smallest value among
a[startIndex], a[startIndex+1], ... a[numberUsed - 1]
*/
private static int indexOfSmallest (int startIndex,
Comparable[] a, int numberUsed)

{
Comparable min = a[startIndex];
int indexOfMin = startIndex;
int index;
for (index = startIndex + 1; index < numberUsed; index++)
if (a[index].compareTo (min)<0)//if a[index] is less than min
{
min = af[index];
indexOfMin = index;
//min is smallest of a[startIndex] through a[index]
}
return indexOfMin;
}
/**

Precondition: i and j are legal indices for the array a.
Postcondition: Values of a[i] and a[j] have been interchanged.
*/
private static void interchange (int i, int j, Comparable[] a)
{
Comparable temp;
temp = af[i];
ali] = aljl;
aljl temp; //original value of a[i]

19

Appendix: Question 6 Program

import javax.swing.?*;
import java.awt.event.*;
import java.awt.?*;

public class ActionFace extends JFrame implements ActionListener

{

private boolean x;

public void actionPerformed (ActionEvent e)

{
x = true;
repaint();

}

public static void main (String[] args)

{
ActionFace drawing = new ActionFace();
drawing.setVisible (true);

}

public ActionFace()

{
setSize (400, 400);
setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;
setTitle ("Hello There!");
setLayout (new BorderLayout());
JButton actionButton = new JButton ("Action");
actionButton.addActionListener (this);
add (actionButton, BorderLayout.SOUTH);
x = false;

}

public void paint (Graphics g)

{
super.paint (g);
if (x)
{

g.setColor (Color.RED);
g.drawArc (150, 200, 100, 50, 0, 180);
}
else
g.drawArc (150, 200, 100, 50, 180, 180);

g.drawOval (100, 100, 200, 200);
g.filloval (155, 160, 20, 10);
g.filloval (230, 160, 20, 10);

}

}

20

	University of Cape Town ~ Department of Computer Science
	Computer Science 1011H/1016S ~ 2008
	January Exam
	Question 1: Recursion, Exceptions and File handling [25]
	Question 2: UML, Abstract classes, Inheritance and Polymorphism [10]
	Question 3: Interfaces and Sorting [15]
	Question 4: Data Structures [5]
	Question 5: Data Structures [10]
	Question 6: GUIs [10]
	Question 7: Ethics, Cyberlaw and Development [25]
	Appendix: Question 1 Program
	Appendix: Question 2 Program
	Appendix: Question 3 Program
	Appendix: Question 6 Program

