

Introduction to
Computing

Hussein Suleman <hussein@cs.uct.ac.za>
February 2008

UCT Department of Computer Science
Computer Science 1015F

What is Computer
Science

Why Computing is Important 1/5
 Earth Simulator Centre in Japan provides

advance notice of natural disasters to
preserve human life!

Reference: http://www.es.jamstec.go.jp/esc/eng/

Why Computing is Important 2/5
 Computer Aided Tomography (CAT scans) are

computer-reconstructed views of the internal
organs that help in diagnosing patients.

Reference: Wikipedia

Why Computing is Important 3/5
 The world’s information is available at our

fingertips!

Why Computing is Important 4/5
 Games, Movies, MSN Messenger, Facebook …

Reference:
World of Warcraft,
The Burning Crusade,
Blizzard Entertinment

Why Computing is Important 5/5
 R1.8 billion

was spent
online in
2005 in
South Africa
just buying
airline
tickets!

Reference: Goldstuck Report, January 2006

What is Computer Science?
 Computer Science (CS) is the study of:

 Computer software
 Algorithms, abstractions and efficiency
 Theoretical foundation for computation

 What you learn in Computer Science:
 Principles of computation
 How to make machines perform complex tasks
 How to program a computer
 What current technology exists and how to use it

Some areas in Computer Science
 Theoretical Computer Science
 Programming Languages
 Algorithms and Data Structures
 Software Engineering
 Computer Architecture
 Networking and Security
 Computer Graphics, Vision, Virtual Reality
 Parallel and Distributed Systems
 Digital Libraries, Databases
 Usability, Socially-Aware Computing

5 Branches of Computing
 Computer Science

 Foundations and principles
 Information Systems

 Business processes & information
 Computer Engineering

 Hardware and communications
 Software Engineering

 Software development processes
 Information Technology

 Application of computing

IT Prog. – Most
specialisations

IT Prog. – Computer eng.

EE/CE

IT Prog. – Bus. computing

IS

Reference: ACM Computing Curricula: Overview

IS

CS Postgraduate

What is a Researcher / Scientist?
 A researcher

generates/locates
knowledge.

 A scientist generates/
locates knowledge
using the scientific
method.

Observe

Publish

Theorise

Conclude

Analyse

Experiment

Computing Dimensions

Research

Application

Machine-oriented

People-oriented

Interface design
and testing

Virtual
environmentsSupercomputing

Database
administration

Careers in Computing 1/3

Careers in Computing 2/3

Careers in Computing 3/3

Spectrum of Qualifications/Degrees
 Diploma

 Learn about core technology and application
 Bachelors

 Learn about principles and core technology
 Bachelors (Honours)

 Learn about advanced technology and how to interpret research
 Masters

 Learn how to do research
 Doctorate

 Make significant new contribution to human knowledge

 Industry Certifications : CCNA, MCSE, etc.
 Learn about specific technology and application

 Computing College Diplomas
 Learn about core/specific technology and application

Computing at UCT
 Department of Computer Science (Science

Faculty)
 Offers BSc degrees in Computer Science (with

various specialisations)
 Department of Information Systems

(Commerce Faculty)
 Offers BCom degrees and BBusSci degrees in

Information Systems
 Department of Electrical Engineering

(Engineering Faculty)
 Offers BSc (Eng) degrees in Electronic Engineering

or Computer Engineering

Computer Science @UCT
 Website: www.cs.uct.ac.za
 Location: 3rd floor, Computer Science Building
 Staff: ~15 academics, 2 tech staff, 4 admin

staff
 Students: 1st year (500), 2nd year (120), 3rd

year (100), Hons (40), MSc (80), PhD (20)

 What academics do: original research (1st
priority), teaching, admin, community service

http://www.cs.uct.ac.za/

Academic Staff in CS
 Head of Department and Professor

 Ken MacGregor
 Professors

 Edwin Blake, Pieter Kritzinger
 Associate Professors

 Sonia Berman, Gary Marsden
 Senior Lecturers

 Antoine Bagula, Audrey Mbogho, James Gain, Michelle Kuttel,
Hanh Le, Patrick Marais, Anet Potgieter, Hussein Suleman

 Lecturers
 Gary Stewart

 Contract Staff
 Andrew Hutchison

Current Research Groups
 Advanced Information Management

 Databases, distributed computing
 Agents

 Artificial intelligence, complex adaptive systems
 Collaborative Visual Computing

 Graphics, usability, virtual environments
 Data Network Architectures

 Networking, software engineering
 Digital Libraries

 Search engines, repositories, interoperability
 High Performance Computing

 Scientific computing, cluster/grid computing
 Security

 Network security
 Telecommunications

 Traffic engineering, bandwidth management

 Computer
Hardware

Hardware
 Hardware refers to the physical parts of the

computer.
 Hardware is sometimes referred to as computer

components and peripherals.
 E.g., Motherboard, Hard Disk/Drive

 Software refers to the set(s) of instructions
given to the computer to execute one or more
tasks.
 Software is sometimes referred to as programs.
 E.g., Microsoft Office, Firefox

Early Calculation 1/2
Early Chinese abacus can be used to
add, subtract, multiply and divide.

Mechanical calculators invented by
Schickard, Pascal, Leibniz, etc. used
cogs and wheel to compute.

Slide rules performed
multiplication and division using
logarithms – in popular use until
about 1970.

Reference: Wikipedia

Early Calculation 2/2
In early 1800s, Jacquard used
punched cards to control a loom.

Hollerith used punched cards for the
1890 US census (his company
eventually became IBM!).

Babbage’s difference engine (1830)
calculated tables of polynomial
values.

Analogue Computing

Vannevar Bush (1930)
built a differential
analyzer that used
wheels/discs to perform
integration.

Babbage designed (but never built) the first general-
purpose programmable computer – the analytical
engine.

Vacuum Tubes
ENIAC (1945) was one
of many early
programmable digital
computers, using
vacuum tubes for
computation and patch
cables for manual
programming.

1960s to Present
First transistors and integrated circuits and
finally microprocessors, revolutionised
computing, made them small, cheaper and more
general-purpose.

ZX80 (1980)
Apple MAC (1985)IBM PC (1980)

The Von Neumann Architecture
 This describes how a conceptual

computing device works:
 Memory stores data and instructions.
 Control Unit (CU) obtains and executes

instructions.
 Arithmetic Logic Unit (ALU) does

calculations.
 Accumulator is internal ALU storage for

some data.
 Input is process of getting data into

machine.
 Output is process of obtaining data

from machine.

 Most modern computers are Von
Neumann machines!

Parts of a Modern Computer 1/2

Monitor: for displaying output

System Unit: CPU, Memory,
Hard drive, Floppy drive, …

Keyboard and Mouse: for input

Parts of a Modern Computer 2/2
 Central Processing Unit (CPU): microchip that performs core

computation. It usually contains the ALU and CU.
 Memory (primary storage): microchips that store data which can be

accessed while computer is switched on.
 Random Access Memory (RAM) is volatile and modifiable.
 Read-Only Memory (ROM) cannot be changed.

 Hard drive, Floppy drive (secondary storage): store data on
magnetic discs permanently i.e., the data is not lost when the computer
is switched off.

 Input/Output devices: transfers data from operator to machine and
vice versa.

 Operating System: software system that manages resources on
computer and executes application programs, e.g., Windows XP, Ubuntu
Linux.

The IBM PC and compatibles ...
 Original IBM PC (1981), 8088, 4.77MHz
 XT (1983), 8086, 10MHz
 AT (1984), 80286, 20MHz
 80386 (1986), 33MHz
 80486 (1989), 66MHz
 Pentium I (93), 133MHz

 II (97), 400MHz
 III (99) 1GHz
 IV (2000) 3GHz

 Intel Core 2 (2006), 2GHz


Can Computers Keep Getting Faster?
 Moore's Law:

 Number of transistors (speed of computers) doubles
every two years.

 Stopped at Pentium 4!
 Not possible to cram more transistors

 Heat dissipation
 Power consumption

 Now use more cores per CPU – currently quad-
core, but soon possibly many more cores.

 Computer scientists must “think in parallel”!

Computer
Software

Algorithms
 An algorithm is a sequence of steps

performed to accomplish a task.
 Everyday tasks require algorithms but we

usually do not think about them.
 E.g., putting on shoes

 Algorithms must be precise so that they are
 Repeatable
 Have a predictable outcome
 Can be executed by different people

Algorithm to Boil Water in Kettle
1. Take the lid off kettle
2. If there is enough water already, go to step 7
3. Put kettle under tap
4. Open tap
5. Wait until kettle is full
6. Close tap
7. Replace lid on kettle
8. Plug kettle into power outlet
9. Turn kettle on
10.Wait for water to boil
11.Turn kettle off
12.Remove plug from power outlet

Algorithm to Take Minibus Taxi to Town
1. Make sure you have enough money
2. Wait at bus stop
3. Flag down taxi as it approaches
4. Get into taxi (somehow)
5. Collect fare from behind you, add your money and

pass it forward
6. Shout at driver to stop
7. When taxi stops, prod other passengers to make

them move out
8. Get out of taxi
9. Give thanks for a safe trip!

Programs
 A program is a set of instructions given to a computer,

corresponding to an algorithm to solve a problem.
 The act of writing a program is called programming.

 Programs are written in a precise language called a
programming language.

 Sample Program (in Java):
class HelloWorld
{
 public static void main (String [] args)
 {
 System.out.println (“Hello World”);
 }
}

Classes of Programming Languages
 The language directly understood by a computer is called

machine language.
 E.g., B4 4C CD 21 terminates a program on a PC

 Assembly language is a low-level language with mnemonics
(codes) used for each instruction to make programming easier
for humans.
 E.g.,

MOV AH,4Ch
INT 21h

 Low level languages are languages geared towards machines
(computers).

 High-level languages are languages that are easier for
humans to use.
 E.g., Java, C++, Pascal

Popular Programming Languages
 C++

 Can be used by engineers and scientists for high
performance applications.

 Pascal
 Can be used for teaching computer programming.

 Perl, Python
 Can be used for rapid application development.

 PHP
 Can be used for Web-based applications.

 C#
 Can be used for Windows applications.

Tools for Programming
 A compiler is a program that converts/translates a

program from a high-level language (what we can
understand easily) to a low-level language (what the
computer can understand).

 The low-level program is then executed by the CPU
directly (if it is already in machine code) or via an
interpreter or virtual machine.

 A debugger is a special tool to help find errors in a
program.

Fundamental Elements of Programs
 Sequence

 Each step is followed by another step

 Selection
 A choice may be made among alternatives

 Iteration
 A set of steps may be repeated

 Any language with these 3 constructs can
express any classical algorithm.

Process of Programming
 Programs work as follows:

 Ingest information from the real world (input).
 Process data internally.
 Send computed data back to real world (output).

 Because of different input, each time a
program executes the results can be different.

 Final and intermediate data must be stored in
memory in simple variables and complex data
structures.

Types of Programming Languages 1/2
 Imperative Languages

 Programs state explicitly how problem is to be
solved.

 Programs are broken down into named modules of
sequential code.

 e.g., FORTRAN, COBOL

 Object-Oriented Languages
 Special case of imperative languages.
 Real world is modeled as data+actions that can be

performed on data.
 e.g., Java, Smalltalk

Types of Programming Languages 2/2
 Declarative Languages

 Programs state what is to be solved – engine seeks
out solution!

 Programs are stated as rules.
 e.g., Prolog, XSL

 Functional Languages
 Programs state how problem is solved by applying

and composing functions.
 Programs are stated as functions.
 e.g., LISP, Mathematica

Java
 There are many different types of computer

languages, and many different languages.

 This course is based on Java.

 Java is a general-purpose object-oriented
programming language invented in the
mid-90s by Sun Microsystems.

How We Program in Java
 We write classes.
 Each class is a template for the computer to

create objects in memory – usually
representations of some real-world concept.

 Ensure all classes know how to interact with
other classes as is necessary.

 Execute the program by telling Java what the
starting class is – Java then executes the main
action/method from this class.
 This first class/action can then create other objects

and perform other actions.

