Number Systems and
Logic

UCT Dept of Computer Science
CSC116 2005

Number Representations

o Numeric information is fundamental in
computers - they encode data and
instructions.

o Numerical data is stored efficiently for
humans and computers.

» Usually stored in computer formats and
converted for humans!

o Notation: N, for number N using radix r
» radix refers to number of possible symbols for

each digit.

o General radix r number representation:

dydo.yd ... dydydo.d_id,.dg

= Numeric value is: X, , dir

Decimal Codes

o Common representation for humans.
o Radix = 10.
= Possible values for digits: 0-9
o Example:
1041.2,, = 1*103 + 0*%102 + 4*10! +
1*100 + 2*10-1
o n-digit decimal number: 0,, to (10"-
1)1o

Binary Codes

o Computers use presence/absence of
voltage.
o Radix = 2.
m Possible values for digits: 0 and 1
o Example:
w 1001.1, = 1*23 + 0%22 4+ 0*21 + 1*20 4 1*2-1
= 9.5,
m 11.01 = 1%21 + 1%20 4 Q*2-1 4 1%2-2
= 3.25;,
o n-bit binary number: 0,, to (2"-1),,

o Largest 8-bit (unsigned) number:
11111111, = 255,

Decimal to Binary Conversion

o Algorithm:
quot = number; i = 0;
repeat until quot = 0
quot = quot/2;
digit i = remainder;
i++;
o Example:
= Convert 37,, to binary.
= Calculation:
37/2 =18 rem 1 least sig. digit

18/2 =9 rem 0

9/2 =4 rem 1

4/2 =2 rem 0

2/2 =1 rem 0

1/2 =0 rem 1 most sig. digit
= Result:

37,,= 100101,

Quick Decimal to Binary

o Algorithm:

m Let i = largest power of 2 less than or equal to the
number.

m N=N-2
m Set digiti of result to 1
m repeatuntiN =0

o Example:

= Convert 37,, to binary.

m Calculation:
N >= 32, so digit 5is 1 and N=5
N >= 4, so digit 2 is 1 and N=1
N >= 1, so digit 0 is 1 and N=0

= Result:
37,, = 100101,

o Note: Use this only to check your answers!

Converting Fractional Numbers

o Algorithm
i=0
repeat until N ==1.00ri==n
N = FracPart(N);
N *= 2;
digit i = IntPart(N);
i++
o Example
= Convert 0.125,, to binary
= Calculation:

0.125*2 = 0.25; IntPart = 0 most significant digit

0.250*2 = 0.50; IntPart = 0

0.500*2 = 1.00; IntPart = 1 least significant digit
= Result:

= 0.125,, = 0.001,
o Convert integer and fractional parts separately.
o Many numbers cannot be represented accurately:
= 0.3,,=0.0[1001]... , (bracket repeats, limited by bit size)

Binary Addition

o Adding binary numbers:
= 1+0=0+1=1
= 0+0=0
ml+1=0carryl
o Possibility of overflow
Add 109,,to 136,,:
01101101, + 10001000,
Add 254, to 2,,:
11111110, + 00000010, = [1]00000000, = 256,

o We only have 8 bits to store answer...so it's zero!

o Program can generate an “exception™ to let us
know.

o Usually number of bits is quite large: e.g., MIPS
R4000 32-bits.

11110101, = 245,

Signed Numbers

o Can use left-most bit to code sign.
» O=positive and 1=negative
= Gives symmetric numbers from -(27-1)...27-1 AND two
zeros!
m Addition not straight forward (bad for hardware
implementors).
o This is nonsensical and wasteful: can use extra
bit pattern.

o Try one's complement representation:
m negative numbers obtained by flipping signs.
m positive numbers unchanged.
® e.g. -5,, = complement(00000101,) = 11111010,

o Left-most bit still indicates sign.

I’s Complement Addition

o Using 1’s Complement, it is easier to subtract
number: complement one number and add.

o Example
= Calculate 5-6.
= 5-6
= 00000101 + complement(00000110)
= 00000101 + 11111001
=11111110
= complement(00000001)
= -1,9
o A carry is added into right-most bit.

o Can still overflow: can check sign bits.
= Only numbers with same sign can overflow.
m Check: if input sign !'= output sign then overflow.

I’s Complement Example

o Evaluate 10-7 using 8-bit one’s
complement arithmetic:
10 -7
= 00001010 + complement(00000111)
= 00001010 + 11111000
= 00000010 carry 1
= 00000010 + 00000001
= 00000011
= 310

2’s Complement Addition

o 1’s Complement still has two zeros.

o An alternative to address this is two’s
complement
» Complement then add 1
®= Our number range now asymmetric: -27...27-1
m Used extra zero bit pattern
2 =0010, 1 = 0001, 0 =0000, -1 =1111,2 =1110
o Now when we add, discard carry
10-7
= 00001010 + 2complement(00000111)
= 00001010 + 11111001
= 00000011 carry 1 (discard)
=3
o Same overflow test can be used.

Binary Coded Decimal

o Can use Binary Coded Decimal (BCD) to
represent integers.
= Map 4 bits per digit (from 0000 to 1001)

o Wasteful: only 10 bit patterns required - 6
are wasted. Binary code is more compact
code.
= Example:

256,, = 100000000, = 0010 0101 01104,
... 9 vs 12 bits in this case

o Not practical; complicates hardware
implementation.
= How to add/subtract, deal with carries etc?

Octal and Hexadecimal

o Base 8 (octal) and base 16 (Hexadecimal)
Sr)‘e sometimes used (both are powers of
o Octal (ONNN...N) uses digits 0-7
o Hex (OxXNNN...N) uses “digits” 0-9,A-F
o Examples: 17,, = 10001, = 215 = 11,
o Conversion as for decimal to binary:
» divide/multiply by 8 or 16 instead

o Binary to octal or hexadecimal:
m group bits into 3 (octal) or 4 (hex) from LS bit.
= pad with leading zeros if required.

Octal/Hexadecimal Conversion 1/2

o 0100011011010111,
= (000) (100) (011) (011) (010) (111)
= 43327,
= (0100) (0110) (1101) (0111)
= 46D7,,

o Note padding at front of nhumber.

Octal/Hexadecimal Conversion 2/2

o To convert from hex/octal to binary:
reverse procedure
FF,e = (1111)(1111),
377¢ = (011)(111)(111),
o NOTE: for fractional conversion, move
from left to right and pad at right end:
0.11001101011, = 0. (110) (011) (010) (110)
= 0.63264
0.11, = 0.(110), = 0.64
o Convert fractional/integer part separately.

o When converting to hex/oct it may be
easier to convert to binary first.

Floating Point Numbers

o Fixed point numbers have very limited range
(determined by bit length).

o 32-bit value can hold integers from -231 to 231-1
or smaller range of fixed point fractional values.

o Solution: use floating point (scientific notation)
Thus 0.0000000000000976 = 9.76*10°14

o Consists of two parts: mantissa & exponent
= Mantissa: the number multiplying the base
= Exponent: the power

o The significand is the part of the mantissa after
the decimal point

Floating Point Range

o Range of numbers is very large, but
accuracy is limited by significand.
o So, for 8 digits of precision,
976375297321 = 9.7637529*1014,
and we lose accuracy (truncation error)
o We can normalise any floating point

number:
34.34*%1012 = 3.434*1013
o Shift point until only one non-zero digit is
to left.
= add 1 to exponent for each left shift
m subtract 1 for each right shift

Binary Floating Point

o We can use FP notation for binary: use
base of 2
0.11001*23 =1.11001*2%4 = 1.11001 *
211111100 (2's complement exponent)
o For binary FP numbers, normalise to:
1. XXX, XXX*2YY-YY

o Problems with FP:

= Many different floating point formats;
problems exchanging data.

= FP arithmetic not associative: x + (y + z) '= (x
+vy)+z

Floating Point Formats

o IEEE 754 format introduced: single (32-bit) and
double (64-bit) formats; standard!
m Also extended precision - 80 bits (long double).
o Single precision number represented internally as
® sign bit
= followed by exponent (8-bits)
» then the fractional part of normalised humber (23 bits)
o The leading 1 is implied; not stored.
o Double precision
= has 11-bit exponent and
m 52-bit significand
o Single precision range: 2*10-38 to 2*1038
o Double range: 2*10-308 to 2*1(0308

10

Floating Point Templates

[21] 20 20 28 27] 28] 28] 24] 23] 22 21[20[19 18] 17] 6] 18] 1a] 13 12[11[10] o] 8] 7 e[8] 4] 3[2[1 o]
3| 11-bit Exporient Signticand 20 bits

[Signiticand {cont'd) 32 bits |

IEEE 754 - Double (84-bit) flaating peint lormat

30| 20 28] 27| 26| 25 24 23] 22| 21|20 19| 18] 17 16] 15| 14| 13] 12 11] 10| 5| 8| 7| 6] 5| 4| 3| 2 1] o
Exponent 8 bits ignfi d 23 bits

©|g

IEEE 754 - Bingle {32-bit) floating pelnt format

Floating Point Exponents

o The exponent is “biased'”: no explicit negative
number.

o Single precision: 127, Double precision 1023

o So, for single precision:

exponent of 255 is same as 255-127 = 128, and 0is O -
127 = -127 (can't be symmetric, because of zero)

o Most positive exponent: 111...11, most negative:

00....000

o Makes some hardware/logic easier for exponents
(easy sorting/compare).

o Numeric value of stored IEEE FP is actually:
(-1)s* (1 + significand) * 2exponent - bias

11

Real to IEEE754 Single

o Example
m Convert -0.75 to IEEE Single Precision
o Calculation
m Sign is negative: so S =1
= Binary fraction:
0.75*2 = 1.5 (IntPart = 1)
0.50*2 = 1.0 (IntPart = 1), so0 0.75,, = 0.11,
= Normalise: 0.11*20 = 1,1*2-1
= Exponent: -1, add bias(127) = 126 = 01111110;
o Answer: 1 01111110 100...000000000

S 8 bits 23 bits

IEEE754 Single to Real

o Example

= What is the value of the FP nhumber:
1 10000001 10010000000000000000000

o Calculation
= Negative number (s=1)
= Biased exponent: 10000001 = 128+1 = 129
= Unbiased exponent = 129-127 = 2
» Significand: 0.1001 = 0.5+0.0625 = 0.5625

o Result = -1 * (1 + 0.5625)*22 = -6.25,,

12

IEEE 754 Special Codes

o IEEE 754 has special codes for zero, error
conditions (0/0 etc).

0 Zero: exponent and significand are zero.

o Infinity: exp = 1111...1111, significand
=0

o NaN (not a number): 0/0; exponent =
1111...1111, significand '= 0

o Underflow/overflow conditions:

Range of Single Precision FPs

Expressible) Expressible
ositive Fositive

" sitive
Ovedlow Numbers Undedflow | Undedlow MNumbers Overdlow

-4 119 -1 -126 -4 1m
—(l-2 P2 -2 0 2 (-2 2

13

FP Operations and Errors

o Addition/Subtraction: normalise, match to
larger exponent then add, normalise.

o Error conditions:
= Exponent Overflow Exponent bigger than

max permissable size; may be set to “infinity”.

= Exponent Underflow Negative exponent,
smaller than minimum size; may be set to
zero.

= Significand Underflow Alignment may
causes loss of significant digits.

= Significand Overflow Addition may cause
carry overflow; realign significands.

Character Representations

o Characters represented using “character
set”.

o Examples:
= ASCII (7/8-bit)
= Unicode (16-bit)
= EBCDIC (9-bit)
o ASCII - American Standard Code for
Information Interchange

= Widely used; 7-bits used for std characters
etc.; extra for parity or foreign language.

14

Character Codes

o ASCII codes for Roman alphabet,
numbers, keyboard symbols and basic
network control.

o Parity-bit allows error check (crude) as
opposed to Hamming codes, which can be
self-correcting.

o Unicode is very popular today: subsumes
ASCII, extensible, supported by most
languages and OSes.

= Handles many languages, not just Roman
alphabet and basic symbols.

Bit/Byte Ordering

o Endianness: ordering of bits or bytes in computer
m Big Endian: bytes ordered from MSB to LSB
m Little Endian: bytes ordered from LSB to MSB

o Example: how is Hex A3 FC 6D E5 (32-bit)
represented?
m Big Endian: ABFC6DES (lowest byte address stores MSB)

m Little Endian: E56DFCA3 (lowest byte address stores
LSB)

Problems with multi-byte data: floats, ints, etc
MIPS Big Endian, Intel x86 Little Endian

Bit ordering issues as well: endian on MSb/LSb
Can check using bitwise operators...

OoOooao

15

Boolean Algebra & Logic

O

Modern computing devices are digital rather than
analog

= Use two discrete states to represent all entities: 0 and 1
= Call these two logical states TRUE and FALSE

All operations will be on such values, and can
only yield such values.

George Boole formalised such a logic algebra as
“Boolean Algebra”.

Modern digital circuits are designed and
optimised using this theory.

We implement “functions” (such as add,
compare, etc.) in hardware, using corresponding
Boolean expressions.

Boolean Operators

m]

m]
O

There are 3 basic logic operators

Operator |Usage Notation

A and B can only be TRUE or FALSE
TRUE represented by 1; FALSE by 0

16

Truth Tables

o Use a truth table to show the value of each operator (or

combinations thereof).
AND is TRUE only if both args are TRUE
OR is TRUE if either is TRUE
NOT is a unary operator: inverts truth value

A |B |[F=A.B |F=A+B |[F=A |F=B
000 0 1 1
0110 1 1 0
1/0/0 1 0 1
111 1 0 0
NAND, NOR and XOR

o NAND is FALSE only both args are TRUE

[NOT (A AND B)]
[NOT (A OR B)]

not both

o NOR is TRUE only if both args are FALSE

o XOR is TRUE is either input is TRUE, but

R R O|lO|X>
= O~ Ol

F=
1
0
0
0

F=
0
1
1
0

Logic Gates

0 These operators have symbolic
representations: “logic gates”.

o These are the building blocks for all
computer circuits.

o Specify arbitrary F using truth table; then
derive Boolean expression.

Logic Gate Symbols

A A
B F B =

NAND

A
F F

B

NOR
A

F
B
XOR

18

Finding a Boolean Representation

o F = F(A,B,C); F called “output variable”

o Find F values which are TRUE:
So, if A=0, B=1, C=0, then F = 1.

So, F, =A.B.C

That is, we know our output is
TRUE for this expression (from the table).

Also have F, = A.B.C&F, = A.B.C

F TRUE if F; TRUE or F, TRUE or F; TRUE

~F=F +F,+F;

Cases for F FALSE follows from F TRUE

RlRrRrRLROOCO|IO|>
H R lOOR R OOl

R ORrR O O/ OO
ORI OO/RrHFH|IO|O|TM

Algebraic Identities

o Commutative: A.B = B.A and A+B = B+A
o Distributive:

A.(B+C) = (A.B) + (A.C)

A+(B.C) = (A+B).(A+C)
o Identity Elements: 1.A=Aand 0+ A=A
oInverse: AA=0andA+A=1
O Associative:

A.(B.C) = (A.B).C and A+(B+C) = (A+B)+C
o DeMorgan's Laws:

A.B = A + B and

A+B = A.B

19

