Number Systems and Logic

UCT Dept of Computer Science CSC116 2005

Number Representations

- Numeric information is fundamental in computers – they encode data and instructions.
- Numerical data is stored efficiently for humans and computers.
 - Usually stored in computer formats and converted for humans!
- □ Notation: N_r for number N using radix r
 - radix refers to number of possible symbols for each digit.
- □ General radix *r* number representation:
 - $d_p d_{p-1} d_{p-2} ... d_2 d_1 d_0 .. d_{-1} d_{-2} ... d_{-q}$
 - Numeric value is: $\Sigma_{i=-q...p} d_i r^i$

Decimal Codes

- Common representation for humans.
- \square Radix = 10.
 - Possible values for digits: 0-9
- Example:

$$1041.2_{10} = 1*10^3 + 0*10^2 + 4*10^1 + 1*10^0 + 2*10^{-1}$$

 \square n-digit decimal number: 0_{10} to $(10^{n}-1)_{10}$

Binary Codes

- Computers use presence/absence of voltage.
- \square Radix = 2.
 - Possible values for digits: 0 and 1
- Example:
 - $1001.1_2 = 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1}$ = 9.5_{10}
 - $11.01 = 1*2^{1} + 1*2^{0} + 0*2^{-1} + 1*2^{-2}$ = 3.25_{10}
- \square n-bit binary number: 0_{10} to $(2^{n}-1)_{10}$
- □ Largest 8-bit (unsigned) number: $11111111_2 = 255_{10}$

Decimal to Binary Conversion

Algorithm:

```
quot = number; i = 0;
   repeat until quot = 0
       quot = quot/2;
       digit i = remainder;
       i++;
Example:
   Convert 37<sub>10</sub> to binary.
```

Calculation:

37/2 = 18rem 1 least sig. digit 18/2 = 9rem 0 □ 9/2 = 4 □ 4/2 = 2 rem 1

rem 0 □ 2/2 = 1 □ 1/2 = 0 rem 0

rem 1 most sig. digit

Result:

 $37_{10} = 100101_2$

Quick Decimal to Binary

- Algorithm:
 - Let i = largest power of 2 less than or equal to the number.
 - $N = N 2^{i}$
 - Set digit i of result to 1
 - repeat until N = 0
- Example:
 - Convert 37₁₀ to binary.
 - Calculation:
 - N >= 32, so digit 5 is 1 and N=5
 - □ N >= 4, so digit 2 is 1 and N=1
 - \square N >= 1, so digit 0 is 1 and N=0
 - Result:
 - $37_{10} = 100101_2$
- Note: Use this only to check your answers!

Converting Fractional Numbers

Algorithm

```
i = 0
repeat until N == 1.0 or i == n
N = FracPart(N);
N *= 2;
digit i = IntPart(N);
i++
```

- Example
 - Convert 0.125₁₀ to binary
 - Calculation:

```
 \begin{array}{lll} & 0.125*2 = 0.25; & & IntPart = 0 & most significant digit \\ & 0.250*2 = 0.50; & & IntPart = 0 \\ & 0.500*2 = 1.00; & & IntPart = 1 & least significant digit \\ \end{array}
```

- Result:
- $0.125_{10} = 0.001_2$
- Convert integer and fractional parts separately.
- Many numbers cannot be represented accurately:
 - $0.3_{10} = 0.0[1001]..._2$ (bracket repeats, limited by bit size)

Binary Addition

- Adding binary numbers:
 - 1+0=0+1=1
 - 0 + 0 = 0
 - 1 + 1 = 0 carry 1
- Possibility of overflow

```
Add 109_{10} to 136_{10}:

01101101_2 + 10001000_2 = 11110101_2 = 245_{10}

Add 254_{10} to 2_{10}:

11111110_2 + 00000010_2 = [1]00000000_2 = 256_{10}
```

- We only have 8 bits to store answer…so it's zero!
- Program can generate an "exception" to let us know.
- Usually number of bits is quite large: e.g., MIPS R4000 32-bits.

Signed Numbers

- Can use left-most bit to code sign.
 - 0=positive and 1=negative
 - Gives symmetric numbers from -(2⁷-1)...2⁷-1 AND two zeros!
 - Addition not straight forward (bad for hardware implementors).
- This is nonsensical and wasteful: can use extra bit pattern.
- □ Try one's complement representation:
 - negative numbers obtained by flipping signs.
 - positive numbers unchanged.
 - e.g. -5_{10} = complement(00000101₂) = 11111010₂
- Left-most bit still indicates sign.

1's Complement Addition

- Using 1's Complement, it is easier to subtract number: complement one number and add.
- Example
 - Calculate 5-6.
 - **5-6**
 - = 00000101 + complement(00000110)
 - = 00000101 + 11111001
 - = 11111110
 - = complement(00000001)
 - = -1₁₀
- A carry is added into right-most bit.
- Can still overflow: can check sign bits.
 - Only numbers with same sign can overflow.
 - Check: if input sign != output sign then overflow.

1's Complement Example

■ Evaluate 10–7 using 8-bit one's complement arithmetic:

```
10 - 7
= 00001010 + complement(00000111)
= 00001010 + 11111000
= 00000010 carry 1
= 00000010 + 00000001
= 00000011
= 3<sub>10</sub>
```

2's Complement Addition

- □ 1's Complement still has two zeros.
- An alternative to address this is two's complement
 - Complement then add 1
 - Our number range now asymmetric: -2⁷...2⁷-1
 - Used extra zero bit pattern

```
2 = 0010, 1 = 0001, 0 = 0000, -1 = 1111, 2 = 1110
```

■ Now when we add, discard carry

```
10 - 7
= 00001010 + 2complement(00000111)
= 00001010 + 11111001
= 00000011 carry 1 (discard)
= 3
```

□ Same overflow test can be used.

Binary Coded Decimal

- Can use Binary Coded Decimal (BCD) to represent integers.
 - Map 4 bits per digit (from 0000 to 1001)
- Wasteful: only 10 bit patterns required 6 are wasted. Binary code is more compact code.
 - Example:
 - $256_{10} = 100000000_2 = 0010\ 0101\ 0110_{BCD}$
 - ... 9 vs 12 bits in this case
- Not practical; complicates hardware implementation.
 - How to add/subtract, deal with carries etc?

Octal and Hexadecimal

- Base 8 (octal) and base 16 (Hexadecimal) are sometimes used (both are powers of 2).
- □ Octal (0NNN...N) uses digits 0-7
- □ Hex (0xNNN...N) uses "digits" 0-9,A-F
- \blacksquare Examples: $17_{10} = 10001_2 = 21_8 = 11_{16}$
- Conversion as for decimal to binary:
 - divide/multiply by 8 or 16 instead
- □ Binary to octal or hexadecimal:
 - group bits into 3 (octal) or 4 (hex) from LS bit.
 - pad with leading zeros if required.

Octal/Hexadecimal Conversion 1/2

- $\begin{array}{l} \blacksquare \quad 0100011011010111_2 \\ = \quad (000) \ (100) \ (011) \ (011) \ (010) \ (111) \\ = \quad 43327_8 \\ = \quad (0100) \ (0110) \ (1101) \ (0111) \\ = \quad 46D7_{16} \end{array}$
- □ Note padding at front of number.

Octal/Hexadecimal Conversion 2/2

□ To convert from hex/octal to binary: reverse procedure

$$FF_{16} = (1111)(1111)_2$$

 $377_8 = (011)(111)(111)_2$

NOTE: for fractional conversion, move from left to right and pad at right end:

$$0.11001101011_2 = 0. (110) (011) (010) (110)$$

= 0.6326_8
 $0.11_2 = 0.(110)_2 = 0.6_8$

- Convert fractional/integer part separately.
- □ When converting to hex/oct it may be easier to convert to binary first.

Floating Point Numbers

- Fixed point numbers have very limited range (determined by bit length).
- 32-bit value can hold integers from -2³¹ to 2³¹-1 or smaller range of fixed point fractional values.
- Solution: use *floating point* (scientific notation) Thus $0.00000000000000976 \Rightarrow 9.76*10^{-14}$
- □ Consists of two parts: mantissa & exponent
 - Mantissa: the number multiplying the base
 - **Exponent:** the power
- The **significand** is the part of the mantissa after the decimal point

Floating Point Range

- Range of numbers is very large, but accuracy is limited by significand.
- □ So, for 8 digits of precision, 976375297321 = 9.7637529*10¹¹,

and we lose accuracy (truncation error)

We can normalise any floating point number:

 $34.34*10^{12} = 3.434*10^{13}$

- Shift point until only one non-zero digit is to left.
 - add 1 to exponent for each left shift
 - subtract 1 for each right shift

Binary Floating Point

- We can use FP notation for binary: use base of 2
 - $0.11001*2^{-3} = 1.11001*2^{-4} = 1.11001*$ $2^{11111100}$ (2's complement exponent)
- □ For binary FP numbers, normalise to:
 - 1.xxx...xxx*2yy...yy
- □ Problems with FP:
 - Many different floating point formats; problems exchanging data.
 - FP arithmetic not associative: x + (y + z) != (x + y) + z

Floating Point Formats

- IEEE 754 format introduced: single (32-bit) and double (64-bit) formats; standard!
 - Also extended precision 80 bits (long double).
- □ Single precision number represented internally as
 - sign bit
 - followed by exponent (8-bits)
 - then the fractional part of normalised number (23 bits)
- □ The leading 1 is implied; not stored.
- Double precision
 - has 11-bit exponent and
 - 52-bit significand
- □ Single precision range: 2*10⁻³⁸ to 2*10³⁸
- □ Double range: 2*10⁻³⁰⁸ to 2*10³⁰⁸

Floating Point Templates

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 S 11-bit Exponent														S	gní	_	_	8	7		6 pits	5		1	3	2	1	0]
	Significand (cont'd) 32-bits IEEE 754 - Double (64-bit) floating point format																												
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																													
S	S Exponent 8 bits Significand 23 bits																												
	IEEE 754 - Single (32-bit) floating point format																												

Floating Point Exponents

- □ The exponent is "biased": no explicit negative number.
- □ Single precision: 127, Double precision 1023
- So, for single precision:
 exponent of 255 is same as 255-127 = 128, and 0 is 0 127 = -127 (can't be symmetric, because of zero)
- Most positive exponent: 111...11, most negative: 00....000
- Makes some hardware/logic easier for exponents (easy sorting/compare).
- □ Numeric value of stored IEEE FP is actually:

```
(-1)^S * (1 + significand) * 2^{exponent - bias}
```

Real to IEEE754 Single

- Example
 - Convert -0.75 to IEEE Single Precision
- Calculation
 - Sign is negative: so S = 1
 - Binary fraction:

```
0.75*2 = 1.5 (IntPart = 1)
```

$$0.50*2 = 1.0 (IntPart = 1), so $0.75_{10} = 0.11_{2}$$$

- Normalise: 0.11*2⁰ = 1.1*2⁻¹
- Exponent: -1, add bias(127) = 126 = 011111110;
- □ Answer: 1 01111110 100...000000000
 - s 8 bits
- 23 bits

IEEE754 Single to Real

- Example
 - What is the value of the FP number: 1 10000001 1001000000000000000000
- Calculation
 - Negative number (s=1)
 - Biased exponent: 10000001 = 128+1 = 129
 - Unbiased exponent = 129-127 = 2
 - Significand: 0.1001 = 0.5 + 0.0625 = 0.5625
- \blacksquare Result = -1 * (1 + 0.5625)*2² = -6.25₁₀

IEEE 754 Special Codes

- □ IEEE 754 has special codes for zero, error conditions (0/0 etc).
- **Zero**: exponent and significand are zero.
- □ **Infinity**: exp = 1111...1111, significand = 0
- **NaN** (not a number): 0/0; exponent = 1111...1111, significand != 0
- □ Underflow/overflow conditions:

FP Operations and Errors

- Addition/Subtraction: normalise, match to larger exponent then add, normalise.
- Error conditions:
 - **Exponent Overflow** Exponent bigger than max permissable size; may be set to "infinity".
 - Exponent Underflow Negative exponent, smaller than minimum size; may be set to zero.
 - Significand Underflow Alignment may causes loss of significant digits.
 - Significand Overflow Addition may cause carry overflow; realign significands.

Character Representations

- Characters represented using "character set".
- Examples:
 - ASCII (7/8-bit)
 - Unicode (16-bit)
 - EBCDIC (9-bit)
- ASCII American Standard Code for Information Interchange
 - Widely used; 7-bits used for std characters etc.; extra for parity or foreign language.

Character Codes

- ASCII codes for Roman alphabet, numbers, keyboard symbols and basic network control.
- Parity-bit allows error check (crude) as opposed to Hamming codes, which can be self-correcting.
- Unicode is very popular today: subsumes ASCII, extensible, supported by most languages and OSes.
 - Handles many languages, not just Roman alphabet and basic symbols.

Bit/Byte Ordering

- Endianness: ordering of bits or bytes in computer
 - Big Endian: bytes ordered from MSB to LSB
 - Little Endian: bytes ordered from LSB to MSB
- Example: how is Hex A3 FC 6D E5 (32-bit) represented?
 - Big Endian: A3FC6DE5 (lowest byte address stores MSB)
 - Little Endian: E56DFCA3 (lowest byte address stores LSB)
- □ Problems with multi-byte data: floats, ints, etc
- MIPS Big Endian, Intel x86 Little Endian
- Bit ordering issues as well: endian on MSb/LSb
- Can check using bitwise operators...

Boolean Algebra & Logic

- Modern computing devices are digital rather than analog
 - Use two discrete states to represent all entities: 0 and 1
 - Call these two logical states TRUE and FALSE
- All operations will be on such values, and can only yield such values.
- George Boole formalised such a logic algebra as "Boolean Algebra".
- Modern digital circuits are designed and optimised using this theory.
- We implement "functions" (such as add, compare, etc.) in hardware, using corresponding Boolean expressions.

Boolean Operators

□ There are 3 basic logic operators

Operator	Usage	Notation
AND	A AND B	A.B
OR	A OR B	A+B
NOT	NOT A	Ā

- A and B can only be TRUE or FALSE
- □ TRUE represented by 1; FALSE by 0

Truth Tables

- Use a truth table to show the value of each operator (or combinations thereof).
 - AND is TRUE only if both args are TRUE
 - OR is TRUE if either is TRUE
 - NOT is a unary operator: inverts truth value

A	В	F=A.B	F=A+B	$F = \overline{A}$	F=B
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	1
1	1	1	1	0	0

NAND, NOR and XOR

- NAND is FALSE only both args are TRUE [NOT (A AND B)]
- NOR is TRUE only if both args are FALSE [NOT (A OR B)]
- XOR is TRUE is either input is TRUE, but not both

Α	В	F=A.B	F=A+B	F=A⊕B
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

Logic Gates

- □ These operators have symbolic representations: "logic gates".
- □ These are the building blocks for all computer circuits.
- Specify arbitrary F using truth table; then derive Boolean expression.

Finding a Boolean Representation

- □ F = F(A,B,C); F called "output variable"
- Find F values which are TRUE:

```
So, if A=0, B=1, C=0, then F=1.

So, F_1 = \overline{A}.B.\overline{C}

That is, we know our output is

TRUE for this expression (from the table).

Also have F_2 = \overline{A}.B.C \& F_3 = A.B.\overline{C}

F TRUE if F_1 TRUE or F_2 TRUE or F_3 TRUE

\Rightarrow F = F_1 + F_2 + F_3
```

Cases for F FALSE follows from F TRUE

Α	В	U	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	C
1	0	1	C
1	1	0	1
1	1	1	О

Algebraic Identities

- □ Commutative: A.B = B.A and A+B = B+A
- □ Distributive:

$$A.(B+C) = (A.B) + (A.C)$$

 $A+(B.C) = (A+B).(A+C)$

- □ Identity Elements: 1.A = A and 0 + A = A
- □ Inverse: A.A = 0 and A + A = 1
- Associative:

$$A.(B.C) = (A.B).C \text{ and } A+(B+C) = (A+B)+C$$

□ DeMorgan's Laws:

$$\overline{A.B} = \overline{A} + \overline{B}$$
 and $\overline{A+B} = \overline{A}.\overline{B}$