
University of Cape Town

Department of Computer Science

CSC3003S Class Test Rewrite

2007

Marks : 20

Time : 45 minutes

Instructions:

• Answer all questions from Section A and 3 questions from Section B.

• Show all calculations where applicable.

Section A [Answer Question ONE – this is compulsory]

Question 1

a) Before any code can be generated, context-sensitive analysis is applied to check for errors.
Discuss 3 types of errors that can be detected. [3]

fwd declarations, unused decls, type inconsistency, null ptr dereference, array out of bounds,
etc.

b) Although intermediate representations are widely accepted, there are still disadvantages.
Discuss 2 disadvantages in using intermediate representations in compilers. [2]

disad: additional processing, mismatch between IR and real MC, etc.

Section B [Answer 3 questions ONLY]

Question 1: Activation Records

a) For what types of programs do we NOT need to store activation records on a stack? [1]

no recursion

b) Assuming stack-based activation records, draw the full activation record stack corresponding to
the function not_main at the position marked “%%%”, as called by the function main in the
following program: [4]

function main

start

 call output not_main (1, 2)

stop

function integer not_main (x, y)

start %%%

 return x + y

stop

not_main: -----------------------+

 | parm x=1 |

 | parm y=2 |

 | return value |

 | static_link ------------------+

 | dynamic_link --------------+ |

 | return address (main) | | |

main : --------------------------+ <--+ |

 | | |

 +----------------------------+ <-----+

Minus one mark for each missing field.

Question 2: Basic Blocks and Traces

a) Why must traces not overlap? [1]

to ensure no statement is executed twice

b) Why must traces cover all nodes of the IR tree? [1]

to ensure every statement is executed

c) Separate the following program into basic blocks, generate a set of traces and then optimise the
resulting code. Show each step of the process. [3]

label a:

 statement 1

 jump c

label b:

 statement 2

label c:

 jump b

[1] basic blocks

label a:

 statement 1

 jump c

label b:

 statement 2

 jump c

label c:

 jump b

[1] traces

label a:

 statement 1

 jump c

label c:

 jump b

label b

 statement 2

 jump c

[1] optimisation

label a:

 statement 1

label c:

label b:

 statement 2

 jump c

Question 3: Optimisations

a) What is the difference between peephole optimisation and global optimisation? [1]

peephole optimisation applies only to small portion of code as opposed to entire
program/module

b) Briefly discuss 2 types of peephole optimisations and provide code examples to indicate the
effect of each. [4]

constant folding: 1+2 => 3

constant propagation: x=1; y=x => x=1; y=1

loop unrolling: for (int i=0; i<2; i++) x[i]=0 => x[0]=0; x[1]=0

etc.

Question 4: Instruction Selection

a) Describe the steps of the maximal munch algorithm. [3]

Start at top of tree

Find largest matching tile and cover nodes

Repeat for remaining subtrees

Generate instructions in reverse order

b) Maximal munch is an optimal algorithm. What is the different between an optimal algorithm
and an optimum algorithm? [2]

Optimal = no 2 tiles can be replaced by one with lower cost

Optimum = no lower cost tiling

	University of Cape Town
	Department of Computer Science
	CSC3003S Class Test Rewrite
	2007
	Section A [Answer Question ONE – this is compulsory]
	Question 1
	Section B [Answer 3 questions ONLY]
	Question 1: Activation Records
	Question 2: Basic Blocks and Traces
	Question 3: Optimisations
	Question 4: Instruction Selection

