University of Cape Town

Department of Computer Science

CSC3003S Class Test

2007

Marks : 20

Time : 45 minutes

Instructions:

- Answer all questions from Section A and 3 questions from Section B.
- Show all calculations where applicable.

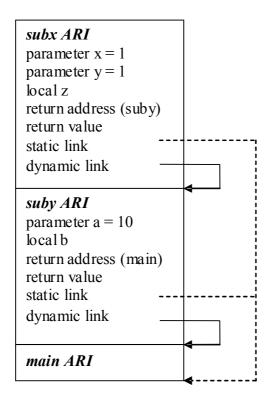
Section A [Answer Question ONE – this is compulsory]

Question 1

a)	What is the purpose of the conte	xt-sensitive analysis phase of s	semantic analysis?	[1]
----	----------------------------------	----------------------------------	--------------------	-----

- b) Besides context-sensitive analysis, what is the other task carried out by the semantic routines of a compiler? [1]
- c) Discuss 1 advantage and 1 disadvantage in using intermediate representations in compilers. [2]
- d) During the process of generating machine code, when should registers be used instead of memory? [1]

Section B [Answer 3 questions ONLY]


Question 1: Symbols and Types

a)	What is scope and why is it desirable to have multiple scop	pes?	[2]
b)) What is the difference between name and structural ty example.	type equivalence?	Discuss with an [3]
-			

Question 2: Activation Records

a)	What is	an ac	tivation	record?						[1]
			-	_	 	-	~ ~ ~ ~			

b) Write a skeletal program that will result in the following activation record. [4]

Question 3: Code Generation

a) Using the attached IR language, convert the following C-like expression to an unoptimised IR tree. Assume **a** and **b** are stack variables at offsets k_a and k_b respectively from the frame pointer TEMP(FP). Provide the final tree and do not use the Nx/Cx/Ex expression types/objects. You may use the binary operator shorthand instead of the BINOP nodes. [3]

a = (b + 5) * 10

 b) State the formula used to calculate memory offsets for element A[i, j] of a 2-dimensional array. Assume either row-major or column-major order. [2]

A : array [L1..U1, L2..U2] of type T

Question 4: Basic Blocks and Traces

a)	What is a basic block?	[2]

[1]

- b) What benefit is there in rearranging basic blocks into traces?
- c) In preparation for instruction selection, what modifications do we need to make to code where a CJUMP is followed by a label other than its true and false labels? Illustrate with an example. [2]