
University of Cape Town

Department of Computer Science

CSC3003S Final Exam

2007

Marks : 35

Time : 3 hours

Instructions:

• Answer all questions from Section A and 3 questions from Section B.

• Show all calculations where applicable.

Section A [Answer Question ONE – this is compulsory]

Question 1 [8 marks]

1) What is the purpose of each of the following stages in a hypothetical compiler? [4]

a) IR code generation

convert abstract/concrete syntax tree to intermediate representation tree [1]

b) Parsing

derive grammatical/syntactical structure of program [1]

c) Lexical analysis

break input stream into tokens [1]

d) Maximal Munch

tile IR tree to select machine instructions [1]

2) Modern compilers are often divided into a front-end and back-end.

a) Which of the 4 stages above are front-end activities and which are back-end? [2]

front-end: lexical analysis [1/2], parsing [1/2]; back-end: code generation [1/2], maximal
munch [1/2]

b) Discuss 2 advantages of separating the front-end from the back-end. [2]

easier to retarget compiler to new machine [1], easier to apply optimisations to IR [1], easier
to build compiler for new language [1]

Section B [Answer 3 questions ONLY]

Consider the grammar and the LR(1) automaton for this grammar in Figures 1 and 2 below:

Figure 1: A grammar for differences of numbers

Figure 2: Deterministic LR(1) automaton for the grammar in Figure 1

 Question 2: LR(1) Parsing [9 marks]

1) Complete rows 13 and 14 of the LR(1) parsing table in Figure 3 below:

Figure 3: LR(1) table for the grammar in Figure 1

Use the template below for your answer:

Answer:

6 marks - 1 mark for each entry above, excluding error entries

2) Use the completed LR(1) parsing table from the previous question to parse the string n-n-n.
Show only the first 3 steps of the parsing process.

Answer:

3 marks – 1 mark per step

Question 3: LALR(1) and SLR(1) Parsing [9 marks]

1) Complete state 2 of the LALR(1) automaton in Figure 4 below:

1 mark

2) Complete state 6 of the LALR(1) automaton in Figure 4 below:

5 marks – 1 mark per element

Figure 4: LALR(1) table for the grammar in Figure 1

3) Complete the missing look-ahead in state 1 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.

Answer: 1 mark

4) Complete the missing look-ahead in state 2 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.

Answer: 1 mark

5) Complete the missing look-ahead in state 3 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.

Answer: 1 mark

Figure 5: SLR(1) table for the grammar in Figure 1

Question 4: Code Analysis [9 marks]

a) Scope is a key concept in modern programming languages and compilers need to cater for this.

a. Write a short method (in C, C++ or Java) that attempts to access an out-of-scope
variable. Assume there are no global or instance variables available to this method. [1]

void test () { a = 1; }

b. What mechanism is used by a compiler to detect such out-of-scope variables? [1]

symbol tables

c. Briefly discuss 2 other context-sensitive errors that can be detected with the same
mechanism. [2]

array index out of bounds [1], expression not type consistent [1], memory not allocated [1],
…

b) When the program is deemed error-free, activation records are created for each subprogram.

a. What is the purpose of the static link in an activation record? [1]

points to activation record of statically nested parent

b. What is the purpose of the dynamic link in an activation record? [1]

points to caller’s activation record

c. What are the other 4 fields that can appear in a conceptual activation record? [2]

parameters [1], local vars [1], return address [1], return value [1]

d. A display can be used for the same purpose as the static link. What is one advantage of
using a display? [1]

no backing up of pointers on return [1]

Question 5: Code Generation [9 marks]

a) A modern compiler such as GCC allows programmers to specify how much inlining the
compiler should apply.

a. Explain with an example what inlining is. [2]

replace call to subprogram with subprogram body

sub a (int b) { x = b } a(5);  x = 5

b. Inlining can be considered to be a peephole technique. Explain what a peephole
optimisation technique is. [1]

applies to localised bit of code only

c. Briefly discuss 2 other optimisations that may be applied to IR trees. [2]

constant folding [1], constant propagation [1], common subexpression elimination [1],…

b) After optimisations are applied, instructions can be selected using a tiling algorithm.

a. Describe the steps of an algorithm to select instructions by tiling. [3]

start at root; find largest matching tile and cover nodes [1]; repeat for subtrees until whole
tree is covered [1]; generate instructions in reverse order [1]

b. This algorithm may be optimal – what does optimal mean in this context? [1]

no two tiles can be combined to form one with a lower cost [1]

	University of Cape Town
	Department of Computer Science
	CSC3003S Final Exam
	2007
	Section A [Answer Question ONE – this is compulsory]
	Question 1 [8 marks]
	Section B [Answer 3 questions ONLY]
	 Question 2: LR(1) Parsing [9 marks]
	Question 3: LALR(1) and SLR(1) Parsing [9 marks]
	
	Question 4: Code Analysis [9 marks]
	Question 5: Code Generation [9 marks]

