University of Cape Town
Department of Computer Science

CSC3003S Final Exam

2007
Marks : 35
Time : 3 hours
Instructions:

* Answer all questions from Section A and 3 questions from Section B.

» Show all calculations where applicable.

Section A [Answer Question ONE - this is compulsory]

Question 1 [8 marks]
1) What is the purpose of each of the following stages in a hypothetical compiler? [4]
a) IR code generation
convert abstract/concrete syntax tree to intermediate representation tree [1]
b) Parsing
derive grammatical/syntactical structure of program [1]
¢) Lexical analysis
break input stream into tokens [1]
d) Maximal Munch
tile IR tree to select machine instructions [1]

2) Modern compilers are often divided into a front-end and back-end.

a) Which of the 4 stages above are front-end activities and which are back-end? [2]
front-end: lexical analysis [1/2], parsing [1/2]; back-end: code generation [1/2], maximal
munch [1/2]

b) Discuss 2 advantages of separating the front-end from the back-end. [2]

easier to retarget compiler to new machine [1], easier to apply optimisations to IR [1], easier
to build compiler for new language [1]

Section B [Answer 3 questions ONLY]

Consider the grammar and the LR(1) automaton for this grammar in Figures 1 and 2 below:

S’ -=
-

#

-=
==
-=

S
== EHHE R
—~ B3 AmE MmN
i
=]

==

Figure 1: A grammar for differences of numbers

((

/[S->E # \ [/ T->(E) # \ [T->(E))

| E->E-T # | | E->E-T) | | BE->E-T) |, (
f \ — 4 f \ =

| E->E-T - | | E->T) \ E->T) t \
| E->T - | T E->T. - | T->n) | T T->m) ‘ \
| T-»n - E->T- # | T->(B)) | T->(E)) |)
| T->(B) - | L | E->E-T - | E->E-T - | /
| BT s | BesT - E-»T - |

\ T->n # . Y T->n -

\T->e(B) #/ 0 T->n. - \T->«(B) -/ n - T->n. -

E->E-.T # E->E-.T) 17
" :Eﬁ; 6 / E->E-.T - T->(E.) - E->E-.T - -
iy ; 'T . - | T>a# Wl T->(E) # T->n))
>
E-sEwT - \ T->(E) # |l\ E->E.-T) T->(E)))-

E >E.-T - T->n -

T->(E) -

T->n -
T->-(E) -

r->SH.
E->E-T- §# T->(E) - E->E-T-) T->(E) -
E->E-T. - T->(E)« E->E-T. - T->(E)«

Figure 2: Deterministic LR(1) automaton for the grammar in Figure 1

Question 2: LR(1) Parsing [9 marks]

1) Complete rows 13 and 14 of the LR(1) parsing table in Figure 3 below:

- {) # S E T
1 s5 e s7 [e 52 s6 sd
2 e e e e 53
3/ace
4 rd e e 4
5 s e e r5
6 58 e e 12
7 sl1 e sl4 e e s12 s10
3 s5 e s7 [e s9
9 e 13 e e r3
10 e rd e rd e
11 e s e r5 e
12 e s13 e 513 e
13
14
15 | sll e s14 e e s16
16 e r3 e r3 e
17 s15 e 518 e
18 o e r6 e

Figure 3: LR(1) table for the grammar in Figure 1

Use the template below for your answer:

|n - () # S E T
13
14
Answer:
|n - () # S E T
13 e 6 e e 16
_14 51l e 514 e e sl7 s10

6 marks - 1 mark for each entry above, excluding error entries

2) Use the completed LR(1) parsing table from the previous question to parse the string n-n-n.
Show only the first 3 steps of the parsing process.

Answer:

a @ n-n-n# shift

b D n ® -n-n# reduce 5
c @ T @ -n-n# reduce 4

3 marks — 1 mark per step

Question 3: LALR(1) and SLR(1) Parsing [9 marks]

1) Complete state 2 of the LALR(1) automaton in Figure 4 below:
E->T- [#-11

1 mark
2) Complete state 6 of the LALR(1) automaton in Figure 4 below:
T->(E) [#-]]
E->E-T [#-)]
E-=T [#_ }]
T-=n [#-}1
T->-{E) [#-)]

5 marks — 1 mark per element

o (B
1/ N RN

8 -=88 [] f_j \,\ (
[ssE Wl N e

| B-sE-T -1 T g B T f | '

. E->T [§-] ,}—< >—{. !

| Tl __ __ \ f

\ T-» (B} [#-1 / — 2 n N /

.‘-\\ "4 n 4
N < T->n. [#-)] > S~ e
1 ‘uE — s
R N,
- E->E-+T [#- — 2
(S->Ee [- /T’ [;#};] T> (Ex) [#—}])
>
E->E»-T [# E->E-T [#-}1
< _ssdt 11 > T ())] S

T““._

J; 8 e "'---._!0
-

TIE < E->E-T. [#-)] > <T"m")] >
< 8 ->8#] > T— o

— e

Figure 4: LALR(1) table for the grammar in Figure 1

3) Complete the missing look-ahead in state 1 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.
Answer: B 7 mark

4) Complete the missing look-ahead in state 2 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.

[#-3]

Answer: 1 mark

5) Complete the missing look-ahead in state 3 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.

Answer: [#-1] 1 mark

— (
1/ ™, TN
. \, / 0
SS";S# A /T->0E) A1
= [E->«E-T [#-)1 | '

| E->eE-T | [E->E-T [#-)] |
| ET:«T [E)}] }—(E =T D>—(E->T [#-)] |
| T-sn [#-)] TT"("E‘) [‘;1]}]
- (E) [#-)1/ > ;

% 4 n n
N (Toon |:| } \/ .

E -
S Ny 4 BT [# ” .. N
s ' S->E» [#]) - ,;’”; o] - T->(Be) [#-)
E->Ee-T - E->E--T
< §'->S+4]) - —[# ” T >+ (E) - 1] g)

R R S
1].__.---‘ \ e <E—}E—T- [#_]D <T >(E)» [#)]>

Figure 5: SLR(1) table for the grammar in Figure 1

Question 4: Code Analysis [9 marks]
a) Scope is a key concept in modern programming languages and compilers need to cater for this.

a. Write a short method (in C, C++ or Java) that attempts to access an out-of-scope
variable. Assume there are no global or instance variables available to this method. [1]

void test () {a=1;}
b. What mechanism is used by a compiler to detect such out-of-scope variables? [1]
symbol tables

c. Briefly discuss 2 other context-sensitive errors that can be detected with the same
mechanism. (2]

array index out of bounds [1], expression not type consistent [1], memory not allocated [1],

b) When the program is deemed error-free, activation records are created for each subprogram.
a. What is the purpose of the static link in an activation record? [1]
points to activation record of statically nested parent
b. What is the purpose of the dynamic link in an activation record? [1]
points to caller’s activation record
c. What are the other 4 fields that can appear in a conceptual activation record? [2]
parameters [1], local vars [1], return address [1], return value [1]

d. A display can be used for the same purpose as the static link. What is one advantage of
using a display? [1]

no backing up of pointers on return [1]

Question 5: Code Generation [9 marks]

a) A modern compiler such as GCC allows programmers to specify how much inlining the
compiler should apply.

a. Explain with an example what inlining is. [2]
replace call to subprogram with subprogram body
suba(intb) {x=b}a(5), 2x=5

b. Inlining can be considered to be a peephole technique. Explain what a peephole
optimisation technique is. [1]

applies to localised bit of code only
c. Briefly discuss 2 other optimisations that may be applied to IR trees. [2]
constant folding [1], constant propagation [1], common subexpression elimination [1], ...
b) After optimisations are applied, instructions can be selected using a tiling algorithm.
a. Describe the steps of an algorithm to select instructions by tiling. [3]

start at root; find largest matching tile and cover nodes [1]; repeat for subtrees until whole
tree is covered [1]; generate instructions in reverse order [1]

b. This algorithm may be optimal — what does optimal mean in this context? [1]

no two tiles can be combined to form one with a lower cost [1]

	University of Cape Town
	Department of Computer Science
	CSC3003S Final Exam
	2007
	Section A [Answer Question ONE – this is compulsory]
	Question 1 [8 marks]
	Section B [Answer 3 questions ONLY]
	 Question 2: LR(1) Parsing [9 marks]
	Question 3: LALR(1) and SLR(1) Parsing [9 marks]
	
	Question 4: Code Analysis [9 marks]
	Question 5: Code Generation [9 marks]

