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Instructions:

* Answer all questions from Section A and 3 questions from Section B.

» Show all calculations where applicable.

Section A [ Answer Question ONE - this is compulsory ]

Question 1 [ 8 marks ]
1) What is the purpose of each of the following stages in a hypothetical compiler? [4]
a) IR code generation
convert abstract/concrete syntax tree to intermediate representation tree [1]
b) Parsing
derive grammatical/syntactical structure of program [1]
¢) Lexical analysis
break input stream into tokens [1]
d) Maximal Munch
tile IR tree to select machine instructions [1]

2) Modern compilers are often divided into a front-end and back-end.

a) Which of the 4 stages above are front-end activities and which are back-end? [2]
front-end: lexical analysis [1/2], parsing [1/2]; back-end: code generation [1/2], maximal
munch [1/2]

b) Discuss 2 advantages of separating the front-end from the back-end. [2]

easier to retarget compiler to new machine [1], easier to apply optimisations to IR [1], easier
to build compiler for new language [1]



Section B [ Answer 3 questions ONLY ]

Consider the grammar and the LR(1) automaton for this grammar in Figures 1 and 2 below:

S’ -=
-

#

-=
==
-=

S
== EHHE R
—~ B3 AmE MmN
i
=]

==

Figure 1: A grammar for differences of numbers
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Figure 2: Deterministic LR(1) automaton for the grammar in Figure 1



Question 2: LR(1) Parsing [ 9 marks ]

1) Complete rows 13 and 14 of the LR(1) parsing table in Figure 3 below:

- { ) # S E T
1 s5 e s7 [ e 52 s6 sd
2 e e e e 53
3/ace
4 rd e e 4
5 s e e r5
6 58 e e 12
7 sl1 e sl4 e e s12 s10
3 s5 e s7 [ e s9
9 e 13 e e r3
10 e rd e rd e
11 e s e r5 e
12 e s13 e 513 e
13
14
15 | sll e s14 e e s16
16 e r3 e r3 e
17 s15 e 518 e
18 o e r6 e

Figure 3: LR(1) table for the grammar in Figure 1

Use the template below for your answer:

|n - ( ) # S E T
13
14
Answer:
|n - ( ) # S E T
13 e 6 e e 16
_14 51l e 514 e e sl7 s10

6 marks - 1 mark for each entry above, excluding error entries

2) Use the completed LR(1) parsing table from the previous question to parse the string n-n-n.
Show only the first 3 steps of the parsing process.

Answer:



a @ n-n-n#  shift

b D n ® -n-n# reduce 5
c @ T @ -n-n# reduce 4

3 marks — 1 mark per step

Question 3: LALR(1) and SLR(1) Parsing [ 9 marks ]

1) Complete state 2 of the LALR(1) automaton in Figure 4 below:
E->T- [#-11

1 mark
2) Complete state 6 of the LALR(1) automaton in Figure 4 below:
T->(E) [#-]]
E->E-T [#-)]
E-=T [#_ } ]
T-=n [#-}1
T->-{E) [#-)]

5 marks — 1 mark per element
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Figure 4: LALR(1) table for the grammar in Figure 1



3) Complete the missing look-ahead in state 1 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.
Answer: B 7 mark

4) Complete the missing look-ahead in state 2 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.

[#-3]

Answer: 1 mark

5) Complete the missing look-ahead in state 3 of the LALR(1) automaton in Figure 5 below.
Motivate your answer.

Answer: [#-1] 1 mark
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Figure 5: SLR(1) table for the grammar in Figure 1



Question 4: Code Analysis [ 9 marks ]
a) Scope is a key concept in modern programming languages and compilers need to cater for this.

a. Write a short method (in C, C++ or Java) that attempts to access an out-of-scope
variable. Assume there are no global or instance variables available to this method. [1]

void test () {a=1;}
b. What mechanism is used by a compiler to detect such out-of-scope variables? [1]
symbol tables

c. Briefly discuss 2 other context-sensitive errors that can be detected with the same
mechanism. (2]

array index out of bounds [1], expression not type consistent [1], memory not allocated [1],

b) When the program is deemed error-free, activation records are created for each subprogram.
a. What is the purpose of the static link in an activation record? [1]
points to activation record of statically nested parent
b. What is the purpose of the dynamic link in an activation record? [1]
points to caller’s activation record
c. What are the other 4 fields that can appear in a conceptual activation record? [2]
parameters [1], local vars [1], return address [1], return value [1]

d. A display can be used for the same purpose as the static link. What is one advantage of
using a display? [1]

no backing up of pointers on return [1]

Question 5: Code Generation [ 9 marks ]

a) A modern compiler such as GCC allows programmers to specify how much inlining the
compiler should apply.

a. Explain with an example what inlining is. [2]
replace call to subprogram with subprogram body
suba(intb) {x=b}a(5), 2x=5

b. Inlining can be considered to be a peephole technique. Explain what a peephole
optimisation technique is. [1]

applies to localised bit of code only
c. Briefly discuss 2 other optimisations that may be applied to IR trees. [2]
constant folding [1], constant propagation [1], common subexpression elimination [1], ...
b) After optimisations are applied, instructions can be selected using a tiling algorithm.
a. Describe the steps of an algorithm to select instructions by tiling. [3]

start at root; find largest matching tile and cover nodes [1]; repeat for subtrees until whole
tree is covered [1]; generate instructions in reverse order [1]

b. This algorithm may be optimal — what does optimal mean in this context? [1]

no two tiles can be combined to form one with a lower cost [1]
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