UCT Department of Computer Science
= Computer Science 1015F

Object Oriented

Programming
Hussein Suleman <hussein@cs.uct.ac.za>
March 2007
Objects
o Objects are computer representations of real-world
objects.

m e.g., aPerson, timTheTurtle, planetEarth

o Objects are modelled on computer as complex data
types, defining possibly multiple values AND various
operations that may be applied to those values.

o This style of programming is called Object Oriented
Programming (OOP).

o Why OOP?

g UNIVERSITY OF CAPE TOWN Computer Science E

Classes

o Classes are templates to create objects.

o Classes define the data and associated
operations (methods) for objects of a
particular type.

public class ClassName

{
// data and methods here
}

O A class is a type, just like int, boolean, etc.

o One class in every file must be public -
exposed to the outside.

O Separate files = modular programming

E UNIVERSITY OF CAPE TOWN Computer Science

Instances

o An instance is a variable of the type corresponding
to a particular class.

o Instances are often simply called objects.
o Unlike variables with primitive types (e.g., int),

instances are not created when the variable is
declared.

o To create an instance from a class use new
m Simplified syntax:
<class_name> <variable name>;

<variable name> = new <class_name> ();
= Examples:
Person aPerson;

aPerson = new Person ();

E UNIVERSITY OF CAPE TOWN Computer Science

Instance variables

o Instance variables are variables defined within a
class, with separate copies for each instance.

o This makes every object unique, even though they
have the same class.
m Just like different int variables are unique but all have the
same type!
o Instance variables are usually labelled private
because they may only be used by methods within
this class.

public class Person

{
private String firstName, lastName;
private int age;

}

E UNIVERSITY OF CAPE TOWN Computer Science

Methods

o A method is a block of statements within a class.
o It is considered a single unit, and named with an identifier.
= Just like a variable.
o It is used for common functions and to set/retrieve values of
instance variables from outside the object.
o A method is called or invoked using dot-notation in the
context of an object.
= e.g., System.out.println ("Hello");

m System.out is the object. println is the method executed on that
object.

o When a method is called, execution jumps to the method and
only comes back when the method is finished.

E UNIVERSITY OF CAPE TOWN Computer Science

Why methods ?

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

System.out.println (“YAY it works”);

System.out.println (“a=%“+a);

System.out.println (“YAY it works”);

System.out.println (“a=%“+a);

6 UNIVERSITY OF CAPE TOWN Computer Science E

... because

public void yay ()
{
System.out.println (“YAY it works);

System.out.println (“a=“+a);

d.yvay ();
d.yay ();
d.vay ();

6 UNIVERSITY OF CAPE TOWN Computer Science E

Why parameters ?

System.out.
.println (“a="“+12);

System.out

System.out
System.out

System.out
System.out

println (“YAY it works”);

6 UNIVERSITY OF CAPE TOWN

.println (“YAY it works”);
.println (“a="“+13);

.println (“YAY it works”);
.println (“a=“+14);

Computer Science E

... because

public void yay (int someNumber)

{

X

x.yay (14);

.yay (12);
x.yay (13);

System.out.println

System.out.println

6 UNIVERSITY OF CAPE TOWN

(“YAY it works);

(“a=“+someNumber) ;

Computer Science E

Methods: Data In

o Parameters are used to send data to a method -
within the method they behave just like variables.
public void setName (String first, String last)

{

firstName = first; lastName=last;
}
o Calling methods must provide matching values
(arguments) for every parameter.
m e.g., aPerson.setName (“Alfred”, “Tshabalala”);
o Formal parameters (first) vs. Actual parameters
(“Alfred”)

E UNIVERSITY OF CAPE TOWN Computer Science

Methods: Data Out

o Values can be returned from a typed method.
public int getAge ()
{

return age;

}
o return must be followed by an expression with

the same type as the header (int in above
example).

o So what is an untyped method?
= One whose type is indicated as void.
m return can be used to simply leave the method.

E UNIVERSITY OF CAPE TOWN Computer Science

Why return values ?

c=a*a+2*a*b+b*b;

d=e*et+2*e*f+f*f;

g=h*h+2*h*i+i*i;

6 UNIVERSITY OF CAPE TOWN Computer Science E

... because

public int doCalc (int nl, int n2)
{

return (nl*nl+2*nl*n2+n2*n2);

c = x.doCalc (a, b);
d = x.doCalc (e, £f);

x.doCalc (h, 1);

Q
Il

6 UNIVERSITY OF CAPE TOWN Computer Science E

Method Syntax

o Simplified syntax:

public <type> <method_name>

{
<list_of_ statements>
}
o Example:

public int doAdd
{

(

int avalue,

int sum aValue+anotherValu

return sum;

6 UNIVERSITY OF CAPE TOWN

(<list_of_parameters>)

int anotherValue)

e;

Computer Science E

Methods: Quick Quiz

public class Planet {
private String name;
public void setName (String aName)

name = aName;

}

Planet earth new Planet ();

o Which of these work?

earth.setName ();

earth.setName (2.345);
earth.setName (“Mars”);
earth.setName (“Mercury”, "“Wenus”,
earth.setName (“The”+"“ Dude’s

6 UNIVERSITY OF CAPE TOWN

{

“Earth”) ;

"+“Planet”) ;

Computer Science E

Classes and Methods

o Class defines a template for creating objects.
o Methods are sets of statements defined within a

class.
H e.g., main
o To use a class, create an object of that type.
B e.g., Turtle t = new Turtle ();
o To use a method, call it from its object with dot
notation.
B e.g., t.move (400);

E UNIVERSITY OF CAPE TOWN Computer Science

Local and Instance Variables

o Local variables are defined within a method or block
(i.e., { and }). Local variables can even be defined
in a for statement.
®me.g., for (int a=1l; a<l1l0; a+t+)

o Instance variables are defined within a class, but
outside any methods, and each object has its own

copy.

o A variable has scope when it can be used and
lifetime when it exists.

Computer Science

E UNIVERSITY OF CAPE TOWN

this

O this is a special instance variable that exists in
every instance.

o this refers to the current object.

o Calling this.someMethod () is the same as
calling someMethod ().

o What is the point of this?

E UNIVERSITY OF CAPE TOWN Computer Science

equals and toString

O equals is a special method with a single parameter
being of the same type, returning whether or not the
two objects are equal.

public boolean equals (Person aPerson)

{

return this.name.equals (aPerson.name);
b
o toString is a special method with no parameters that
returns a String representation of the object.
public String toString ()
{

return (name+"” “+surname);

b

E UNIVERSITY OF CAPE TOWN Computer Science

10

Problem

o Write a program to calculate the roots of a
quadratic polynomial.

g UNIVERSITY OF CAPE TOWN Computer Science

Problem

o Write a program to calculate whether or not a
student will get DP and can write the
examination in CSC1015F.

g UNIVERSITY OF CAPE TOWN Computer Science

11

Problem

o Write a numerology calculator using object-
oriented programming. For any two given
birthdates, calculate the compatibility between
people as a simple 0-100 integer.

= Use any formula that makes sense.
(RS/5MS).

How do ywou and your
partner match up? Sms
F D\ﬁ' MATCH JOHM TRACY to
9°

[s \'?s,k - 35050 to find out!
)\% d

E UNIVERSITY OF CAPE TOWN Computer Science

Overloading

o Overloading means having multiple methods
with the same name and different parameter
lists (but same return type) within a single

class.
class Averages Averages ave;
{ ave = new Averages();
public int average (int x, inty)
{ int a = ave.average (1,2);
return (a + b)/2; int b = ave.average (1,2,3);
¥
public int average (int a, int b, intc)
{
return (a + b + ¢)/3;
¥

b

E UNIVERSITY OF CAPE TOWN Computer Science

12

Why overload?

o A programmer using the class can use the
same method name for different parameters if
the name is sensible.

o Remove the need for lots of unique names for
methods that essentially do the same thing.

E UNIVERSITY OF CAPE TOWN Computer Science

Overloading & Automatic Type Conversion

o Java favours overloading if there is an option.

o For example,
class Something
{
public void doSomething (float x) { .. }
public void doSomething (int a) { .. }

Something s = new Something();
s.doSomething (1) ;

E UNIVERSITY OF CAPE TOWN Computer Science

13

Example

o Program using overloading of methods.

g UNIVERSITY OF CAPE TOWN Computer Science

Constructors

o An object is initialised (given initial values) by means
of a special method called a constructor.

o Every class may have one or more of these special
methods with no return type and the same name as
the class.

public class Person

{

public Person (String firstname)
{ ..}
}

Person aPerson = new Person (“hussein”);

g UNIVERSITY OF CAPE TOWN Computer Science

14

Initialising Objects with Constructors

o Create an object using new operator followed
by the name of the class and the
parameters/arguments to a constructor.

o Constructors can be overloaded.

= Normally include a constructor with no arguments
SO you can say:

Person aPerson = new Person|();

o Constructors cannot be invoked directly.

E UNIVERSITY OF CAPE TOWN Computer Science

Problem

o Write a OO program to calculate some basic
statistics for a class test - including average,
minimum and maximum marks (and track the
names of best/worst students).

E UNIVERSITY OF CAPE TOWN Computer Science

15

Other ways to initialise objects

o Assume variables are initialised to “zero”.
Java does this automatically for primitive
instance variables!

O Initialise instance variables in the class
definition.

public Person

{

String firstname = “John”;
String lastname = “";
public Person (String fname, String lname)

{..}

g UNIVERSITY OF CAPE TOWN Computer Science

StringTokenizer

o Class to separate a String into multiple words.

o Typical Use:
String as = “Hello World”;
StringTokenizer st = new StringTokenizer (as);
while (st.hasMoreTokens())
{
System.out.println (st.nextToken());

g UNIVERSITY OF CAPE TOWN Computer Science

16

Encapsulation

0 Encapsulation in Java is the combining of
data and methods into single units.

o This allows us to treat the object as a single
unit, preventing errors when keeping track of
multiple related variables and methods.

E UNIVERSITY OF CAPE TOWN Computer Science

Information Hiding

0 Information hiding means we don’t allow
programmers to see details that they don't
need to see.
= This means fewer accidental programming errors.

o Java enables this with the “public” and
“private” prefixes/modifiers.

E UNIVERSITY OF CAPE TOWN Computer Science

17

public and private

class

private int x;

instance variable |method

public |accessible from accessible from anywhere
anywhere public int getAge ();
public int x;

private |accessible from accessible from methods
methods in same |in same class

private int getAge();

E UNIVERSITY OF CAPE TOWN

Computer Science

Accessors and Mutators

o Accessors are methods that allow you to access one
(or more) private instance variable(s).
public int getAge ()

{

return age;

o Mutators are methods that allow you to set the value
of one (or more) private variable(s).

public void setAge (int anAge)

{

age = anAge;

}

E UNIVERSITY OF CAPE TOWN

Computer Science

18

Why accessors and mutators?

o Control access to instance variables by
providing only some accessors and mutators
= information hiding.

o Allow additional sanity checks when assigning
values for instance variables.
® e.g., check that a date is valid

E UNIVERSITY OF CAPE TOWN Computer Science

Example

o Program using modifiers to enable or disable
information hiding.

E UNIVERSITY OF CAPE TOWN Computer Science

19

Static Methods

o Static methods are methods associated with
a class but not any particular instance.

®m e.g., Math.abs, Math.round, Math.ceil,
Math.sqgrt, Math.floor,

class Number

public int value;
public static average (int a, intb)
{ return (a+b)/2; }

b

... Number x = new Number();

... Number y = new Number();

Number.average

E UNIVERSITY OF CAPE TOWN Computer Science

Why static methods?

o Sometimes you want to perform a frequent
task without creating objects, such as
mathematical calculation.

O main is static because it is invoked when no
instance of its class is created!

E UNIVERSITY OF CAPE TOWN Computer Science

20

Creating static methods

o Use the word static in the header to create a static
method.
O remember ...
® public static void main (String [] args)
o To invoke:
= Use within the class, like any other method.
m Outside the class, prefix with name of class and dot.

o Restriction

= Since they are not related to any instance, they cannot access
instance variables or call other non-static methods!

= However, they can call other static methods!

E UNIVERSITY OF CAPE TOWN Computer Science

Static Variables

o Static variables are variables associated
with a class but not any particular instance.
® e.g., Math.PI

class Number

{ X
public int value; Number.average
public static int average; : 9
¥ y
... Number x = new Number();
... Number y = new Number();
E UNIVERSITY OF CAPE TOWN Computer Science

21

Why static variables?

o To define constant values for external use
without the need for instances.

o To share data among multiple instances of the
same class.

E UNIVERSITY OF CAPE TOWN Computer Science

Creating static variables

o Use the word static in the header to create a
static variable.

o Examples:
B private static int studentCount;
m public static final int meaningOfLife = 42;
final denotes that the variable is a constant.
O To use:
= Within the class, use like any other variable.

= Outside the class, prefix with name of class and
dot.

Computer Science

E UNIVERSITY OF CAPE TOWN

22

Wrapper Classes

o Wrapper classes correspond to each
primitive type (int, float, etc). and convert
them to object equivalents.

o Why wrapper classes?

= OOP gives you facilities for advanced manipulation
of data - primitive data types do not.

o Examples:
= Integer anlnteger = new Integer (42);
= Double aDouble = new Double (2.3);

E UNIVERSITY OF CAPE TOWN Computer Science

Manipulating Content of Wrapper Instances

o Convert primitive type to wrapper using constructor:
B Integer iObject = new Integer (12);

o Convert wrapper to primitive using accessor:

B int i = iObject.intValue();

o Use static methods to parse Strings:
®m int j = Integer.parselnt (“22");

o Use non-static methods to manipulate content:
B Character ¢ = new Character (‘a’);

B c.toUpperCase(); c.toLowerCase(); ..

E UNIVERSITY OF CAPE TOWN Computer Science

23

Automatic Boxing and UnBoxing

o Java (5.0 and onwards) automatically
converts to/from wrapper classes. This is
called boxing and unboxing respectively.

o Traditionally, we would write:
B Integer x = new Integer (45);

m int y = x.intValue();

o Now we can just write:

B Integer x = 45;

Bint v = x;

E UNIVERSITY OF CAPE TOWN Computer Science

Summary

o Overloading - eliminates need for lots of names for
the same thing.

o Constructors - initialise objects when created.

o Information Hiding - protects programmers from
making accidental errors.

o Static methods - eliminate need for instance for
global function.

o Static variables - enable sharing of information
across instances.

o Wrapper classes — make everything into an object!

E UNIVERSITY OF CAPE TOWN Computer Science

