
University of Cape Town

Department of Computer Science

CSC3005h Class Test

2006

Marks : 35

Time : 45 minutes

Instructions:

• Answer all questions.

• Show all calculations where applicable.

Question 1: Symbol Tables and Activation Records [10]

a) What is a symbol table? [2]

a list of names and associated attributes

b) Briefly describe 3 context-sensitive tests that can be conducted with the aid of a symbol table.
[3]

declaration before use

duplicate declarations

unused variables

array within bounds

etc.

c) What is an activation record? [2]

the layout of data necessary to support invocation of a subprogram

d) In many instances activation record fields are stored in registers for faster execution. Briefly
describe one instance where stack memory may be necessary. [1]

nested subprograms, too many variables, large data structures, etc.

e) What is the purpose of the static link in a frame for a statically-scoped language? [2]

points to static parent to resolve non-local references

Question 2: Intermediate Code [15]

a) Discuss 2 advantages of using intermediate representations. [2]

separation of front/back ends, easier to apply optimisations to

b) Using the attached IR language, convert the following C-like expression to an unoptimised IR
tree. Assume b and c are stack variables at offsets k_b and k_c respectively from the frame
pointer TEMP(FP). Assume a and x are as-yet-undefined constants. Provide the final tree and
do not use the Nx/Cx/Ex expression types/objects. [3]

b = a + 2 + 5; c = 1 + x + 3

SEQ(MOVE(MEM(+(TEMP(FP),CONST(k_a))), +(+(CONST(a),CONST(2)),CONST(5))),

MOVE(MEM(+(TEMP(FP),CONST(k_c))), +(+(CONST(1),CONST(x)),CONST(5))))

Minus one mark for each major error.

c) Generate a new tree, applying constant folding as an optimisation. [2]

SEQ(MOVE(MEM(+(TEMP(FP),CONST(k_a))), +(CONST(a),CONST(7))),

MOVE(MEM(+(TEMP(FP),CONST(k_c))), +(CONST(4),CONST(x))))

Minus one mark for each major error.

d) Discuss 2 other optimisations that may be applied to IR trees. [2]

inlining – replace subprogram calls with body of subprogram

unreachable code elimination – remove code that nevers gets executed

constant propagation – convert uses of a constant name to its value

etc.

e) What is a basic block? [2]

a linear sequence of statements starting with a label and ending with a jump

f) What benefit is there in rearranging basic blocks into traces? [2]

we could possibly eliminate redundant jumps

g) Eliminate the ESEQs from the following IR tree by converting it to a canonical form, using the
attached simplification rules. Show all steps. [2]

MOVE (ESEQ (LABEL L1, ESEQ (LABEL L2, TEMP a)), CONST 5)

MOVE (ESEQ (SEQ (LABEL L1, LABEL L2), TEMP a), CONST 5)

SEQ (SEQ (LABEL L1, LABEL L2), MOVE (TEMP a, CONST 5))

Question 3: Code Generation [10]

a) Use the iterative liveness analysis algorithm to calculate the live-in and live-out sets for each of
the following statements in a program. Show succ, use, def, out and in sets. [8]

if (x > 1)

then y = x * x;

else y = (1 / x) * (1 / x);

return y+1;

Hint: The relevant formulae are:

])[][(][][

][][
][

ndefnoutnusenin

sinnout
nsuccs

−∪=

=
∈
�

Succ [1] # Code Use [1] Def [1] Out [2] In [2]

23 1 If x > 1 X X X

4 2 Y = x^2 X Y Y X

4 3 Y = (1/x)^2 X Y Y X

4 Return y+1 Y Y

convergence (last 2 columns repeated) [1]

b) Draw an interference graph for this program. What is the minimum number of registers needed
to support execution of this program? [2]

X Y

1

	University of Cape Town
	Department of Computer Science
	CSC3005h Class Test
	2006
	Question 1: Symbol Tables and Activation Records [10]
	Question 2: Intermediate Code [15]
	Question 3: Code Generation [10]

