University of Cape Town

Department of Computer Science

CSC3005h Class Test

2006

Marks : 35

Time : 45 minutes

Instructions:

- Answer all questions.
- Show all calculations where applicable.

Question 1: Symbol Tables and Activation Records [10]

a)	What is a symbol table? [2]	
b)	Briefly describe 3 context-sensitive tests that can be conducted with the aid of a symbol table. [3]]
c)	What is an activation record?[2]]
d)	In many instances activation record fields are stored in registers for faster execution. Briefly describe one instance where stack memory may be necessary. [1]	7]
e)	What is the purpose of the static link in a frame for a statically-scoped language? [2]]
Question 2: Intermediate Code [15]		
a)	Discuss 2 advantages of using intermediate representations. [2]]
b)	Using the attached IR language, convert the following C-like program to an <i>unoptimised</i> IR tree. Assume b and c are stack variables at offsets k_b and k_c respectively from the frame pointer TEMP(FP). Assume a and x are as-yet-undefined constants. Provide the final tree and do not use the Nx/Cx/Ex expression types/objects. [3]	r t
	b = a + 2 + 5; c = 1 + x + 3	
c)	Generate a new tree, applying constant folding as an optimisation. [2]	
d)	Discuss 2 other optimisations that may be applied to IR trees. [2]]
e)	What is a basic block? [2]]
f)	What potential benefit is there in rearranging basic blocks into traces? [2]]
g)	Eliminate the ESEQs from the following IR tree by converting it to a canonical form, using the attached simplification rules. Show all steps. [2]	;]
	MOVE (ESEQ (LABEL L1, ESEQ (LABEL L2, TEMP a)), CONST 5)	

Question 3: Code Generation [10]

a) Use the iterative liveness analysis algorithm to calculate the live-in and live-out sets for each of the following statements in a program. Show succ, use, def, out and in sets. [8]

```
if ( x > 1 )
    then y = x * x;
    else y = ( 1 / x ) * ( 1 / x );
return y+1;
```

Hint: The relevant formulae are:

$$out[n] = \underbrace{\Xi_{in}[s]}_{s \in succ[n]} in[n] = use[n] \cup (out[n] - def[n])$$

b) Draw an interference graph for this program. What is the minimum number of registers needed to support execution of this program? [2]