COMPILERS

Activation Records

hussein suleman
uct csc305w 2005

Subprogram Invocation Mechanics

o Save status of caller.

O Process parameters.

o Save return address.

o Jump to called subprogram.
O ... do stuff ...

O Process value-result/result parameters
and function return value(s).

o Restore status of caller.
o Jump back to caller’s saved position.

Frames / Activation Records

o An activation record is
the layout of data needed

to support a call to a Function return value

rogram. 5
subprogra Local variables

o For languages that do not Parameters

allow recursion, each Dynamic link

subprogram has a single —
fixed activation record Static link

instance stored in Return address

memory (and no links).

Stack-based Recursion

o When recursion is implemented using a
stack, activation records are pushed onto
the stack at invocation and popped upon
return.

o Example:
int sum (int x)

{
if (x==0) return 0;
else return (x + sum (x-1));

}

volid main ()
{ sum (2); }

Recursion Activation Records

sum(2)

main

retvalue (?)
parm (x=2)
dynamiclink e
staticlink

return (main)

mainARI

sum(1)

sum(2)

main

retvalue (?)
parm (x=1)
dynamiclink e
staticlink

return (sum)

retvalue (?)
parm (x=2)
dynamiclink e
staticlink

return (main)

mainARI

sum(1) sum(0)

sum(2)

main

retvalue (?)
parm (x=0)
dynamiclink e
staticlink

return (sum)

retvalue (?)
parm (x=1)
dynamiclink e
staticlink

return (sum)

retvalue (?)
parm (x=2)
dynamiclink e
staticlink

return (main)

mainARI

Non-local References

o To access non-local names in statically-
scoped languages, a program must keep

track of the current referencing
environment.
o Static chains

= Link a subprogram'’s activation record to its
static parent.

o Displays

m Keep a list of active activation records.

Non-local Reference Example

o Example:
main {

int x;

sub SUBA {
sub SUBB {

x = 1;

}
SUBB;

}

sub SUBC {
int x;
int y;
SUBA;

}

SUBC;

breakpoint3

breakpoint2

breakpointl

breakpoint0

Static Chains

<
o
-}
n
local (x)
local (y)
8 dynamiclink e 8
a staticlink Lt B ; (:,))
return (main) '
£ |local (x) £
© PR =
E £

breakpointl

dynamiclink ®-
staticlink [P R . :
return (C)

local (x)
local (y)

dynamiclink e
staticlink ‘—‘

return (main)

local (x)

breakpoint2

1
oo

SUBA SUBB

SUBC

main

dynamiclink €

staticlink o-|--

return (A)

dynamiclink ®

staticlink o-}--

return (C)

local (x)
local (y)

return (main)

dynamiclink e
staticlink 0—‘

local (x)

breakpoint3

| etmie ot

Displays

SUBB ARI

| SUBB ARI|
o] ~o] o]
stack display stack display stack display
breakpointl breakpoint2 breakpoint3

Static Chains vs. Displays

o Static chains require more indirect
addressing — displays require a fixed
amount of work.

o Displays require pointer maintenance on
return — static chains do not.

o Displays require “backing up” of display
pointer — static chains require static links
in each activation record.

Dynamic Scoping

o Dynamically scoped languages can be
implemented using:

o Deep Access

= Follow the dynamic chains to find most recent
non-local name definition.

o Shallow Access
= Maintain a separate stack for each name.

Deep Access

o At breakpoint3, by

following dynamic @ dy”f"”l_“ck””k T
links from SUBB, the = Dot
closest definition of x Tomarmicine e
o < ynamiclin .
IS In SUBC % staticlink L :
D | return (C) PR
local (x)
o (Remember that for tocal (y)
static SCOpIng, by 8 dynamiclink
following static links, B | staticlink o[-
the closest definition return (main)
. . . [
is in main.) g local (x)

breakpoint3

Frame Pointers

o Stack frames are usually supported by:
m stack pointer - points to top of stack
= frame pointer - points to top of previous frame

frame
AR f pointer AR f
AR g tack AR g fra_me
;oaiﬁter pointer
After call to h() ARh | stack
—_— pointer
View Shifts

o On a Pentium machine,
= M[SP + 0] <-- FP
save old frame pointer
= FP <-- SP
move frame pointer to top of stack
m SP <--SP -K
move stack pointer to end of new frame

o On machines which use registers for frame
optimisation, remember to save registers
in temporary variables.

Register Handling

0 One set of registers are typically used by
many subprograms, so a value expected
by one may be overwritten by another.

o Solution:

= Make it the responsibility of the caller to save
registers first (caller-save)

= Make it the responsibility of the callee to save
registers first (callee-save)
o Optimise which registers need to be saved
as some values can be thrown away.

Parameter Passiﬁg

0 Registers are more efficient than copying
every parameter to the stack frame.

m Registers are limited so pass first k parameters
in registers and rest in frame.

o Nested subprogram calls require saving
and restoring so there is dubious cost
savings!

» leaf procedures, different registers, done with
variables, register windows

o How does C support varargs ?

Return Addresses

o Traditionally a stack frame entry.

o More efficient to simply use a register.

m Same saving procedure necessary as before
for non-leaf subprograms.

Temporaries and Labels

o Each time a local variable is encountered,
a unique temporary name is generated -
this temporary will eventually map to
either a register or a memory location
(usually on the stack).

o Each time a subprogram is encountered, a
unique label is generated.

o These must be unique to prevent naming
conflicts - the optimiser will deal with
efficiency.

Frame Implementation 1/2

o A Frame class corresponds to the frame
for each subprogram.

= During translation, frames are created to track
variables and generate prologue/epilogue
code.
o Frame can be an abstract class with
instantiations for different machine
architectures.

= Each instantiation must know how to
implement a “view shift” from one frame to
another.

Frame Implementation 2/2

o Each time a local variable is defined, a
method of Frame can be called to allocate
space appropriately (on stack frame or in
registers).
= f.allocLocal (false)
= Parameter indicates if variable requires

memory (escapes) or not - should we allocate
stack space or temporary?

o Allocating a temporary for each variable
can be slow - future stages will optimise
by reusing both registers and space.

10

Stack vs. Registers

o Why use registers?
= Faster and smaller code

o If registers are so great, why use stack?
variables used/passed by reference

nested subprograms

variable is not simple or just too big

arrays

registers are needed for other purposes

too many variables

11

