UCT CSC116 2005 :: Number Systems :: Supp [20 marks]

Question 1: Number Systems [15]

Show all calculation for the following questions.

1. Convert 1011011.101_{2} to decimal. [2]
```
1011011.101 = 1x2 + 1x24 + 1x2 + 1x2 + + 1x20 + 1x2-1 + 1x2-3
= 64 + 16 + 8 + 2 + 1 + 0.5 + 0.125
= 91.62510 [1 mark for whole and 1 for fraction]
```

2. Convert AB23 ${ }_{16}$ to base 8. [2]

AB23 $1_{16}=(1010)(1011)(0010)(0011)_{2}[1]$
$=(001)(010)(101)(100)(100)(011)_{2}=125443_{8}[1]$
3. Use 4-bit 1 's complement addition to calculate $-6_{10}-1_{10}$. [3]
$-\sigma_{10}-1_{10}$
$=1$ comp (0110) +1 comp(0001)
$=1001+1110$ [1]
= 0111 carry 1 - add [1]
$=1000$
$=1 \mathrm{comp}(0111)$
$=-7_{10} \quad[1]$
4. How do we test for an overflow in 1's complement addition? [1]
if both numbers have the same sign and the sign of the sum is different, then it is an overflow.
5. Represent the floating point number 17.25_{10} in single-precision IEEE 754 format. [3]
sign is positive, so $s=0$
significand: $17.25_{10}=10001.01_{2}=1.000101 \times 2^{4}$
actual exponent $=4$
biased exponent $=4+127=131=10000011_{2}$
answer: 01000001100010100000000000000000
6. In IEEE 754 format, it is not necessary to store the leading digit before the point. Why? [2]
after normalisation the leading digit is always a 1 so this can be assumed.
7. During conversion to IEEE 754 format, an exponent cannot have an actual value of 128. Why? [2]

128 would have a biased value of 255, but this is used to represent infinity and not-a-number cases.

Question 2: Boolean Algebra and Logic [5]

1. 2. If $A=1, B=1$ and $C=0$, what is the value of

$$
\begin{equation*}
\mathrm{F}=(\mathrm{A}+\mathrm{C}) \cdot(\mathrm{B}+\mathrm{C}) \tag{1}
\end{equation*}
$$

$$
F=(1+0)(1+0)=1
$$

2. Using a truth table, prove De Morgan's Law: $\overline{\mathrm{A} \cdot \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$ [4]
$\left.\left.\begin{array}{|l|l|l|l|l|l|l|}\hline A & B & \wedge & \wedge & \wedge A+\wedge \\ A\end{array} \begin{array}{l}A . \\ B\end{array}\right) \begin{array}{l}\wedge(A \cdot B \\ B\end{array}\right)$
[1 mark per line ... it is not necessary to show every column as long as LHS/RHS are there]
