
University of Cape Town
Department of Computer Science

Computer Science CSC116S

Test 3 - 5 October 2005

• Answer all questions.

• All questions that refer to elements of programming make reference to the Java
programming language as studied in class.

• Good luck !

Marks: 40

Time: 40 minutes

• Approximate marks per question are
shown in brackets

• The use of calculators is permitted

NAME:
Surname Initials

STUDENT NO: COURSE CODE: CSC

This paper consists of 6 questions and 6 pages (including this cover page).

Mark Allocation

Quest Marks Internal External Quest Marks Internal External
1 [15] 4 [3]
2 [5] 5 [2]
3 [1] 6 [14]

Total Total

Grand Total

Final Mark

Internal Examiner: External Examiner:

1

Section 1. Number Systems, Boolean Algebra and Logic

Question 1. [15 marks]

Show all calculations for the following questions.

a) Convert 117.37510 to radix 2.

2 117
2 58 r 1
2 29 r 0
2 14 r 1
2 7 r 0
2 3 r 1
2 1 r 1

0 r 1 [1]
.375 * 2 = 0.750 intpart =0
.750 * 2 = 1.5 intpart =1
.5 * 2 = 1.0 intpart = 1 [1]
answer: 1110101.011_2

[2]

b) Convert 3458 to hexadecimal.

345_8 = (011)(100)(101)_2 [1]
=(0)(1110)(0101)_2 = E5_16 [1]

[2]

c) Use 4-bit 2’s complement binary addition to calculate 610 − 210.

6_10 2_10
= 0110 + 2comp(0010)
= 0110 + 1110 [1]
= 0100 carry 1 discard [1]
= 4_10 [1]

[3]

2

d) What is the decimal value of 0 10000010 11000000000000000000000
in IEEE 754 format?

sign = 0 so positive
biased exponent = 10000010 = 130_10
actual exponent = 130 127 = 3 [1]
significand = .11 = (.5 + .25) = .75 [1]
value: (-1)ˆ0 * (1 + .75) * 2ˆ3 = 1.75 * 8 = 14 [1]

[3]

e) In IEEE 754 format, what is the difference between exponent overflow and expo-
nent underflow? What values can be used as approximations in each case?

overflow is when the exponent is too large (positive) to be represented [1] while
underflow is when the exponent is too small (negative) to be represented [1]. over-
flow is approximated with infinity and underflow with zero. [1]

[3]

f) Using an example, show how the alignment of two floating point numbers, for
addition, can result in a loss of precision.

If we use 4 bit significands to add 1.0001x20 and 1.0001x2−1, after alignment
the second value is truncated to 0.1000x20, which is different from the actual
value of 0.10001x20. [2]

[2]

3

Question 2. [5 marks]

a) If A = 0, B = 1 and C = 0, what is the value of F = A+ (A · B) + C?

F = 0 + (1.1) + 0 = 1 [1]

b) Using a truth table, prove De Morgan’s Law : A ·B = A+B

A B ˜A ˜B ˜A.˜B A+B ˜(A+B)
0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 1 0 0 0 1 0

One mark per line. Need only show LHS vs RHS

[4]

4

Section 2. MIPS

Refer the the attached MIPS instruction set specification when answering these ques-
tions.

Question 3. [1 marks]

What is the size, in bits, of a register in the MIPS machine?

32 bits [1] [1]

Question 4. [3 marks]

Explain the purpose for which the following registers in the MIPS machine are used

a) Instruction Register

Instruction Register — Holds a copy of the current instruction being obeyed. [1]

b) Program Counter

Program counter — Holds the address in Main memory of the current instruc-
tion being obeyed [1]

c) Register $0

Register $0 — holds the value zero and this value can never be changed. It is
useful because the value 0 is frequently used in the CPU [1]

Question 5. [2 marks]

Give the 4 steps that the Control Unit of a computer does.

Load Instruction
Increment the Program counter
Execute the Instruction
Go to step 1

2 marks if correct.

[2]

5

Question 6. [14 marks]

Write a MIPS assembler program that does the same as the following Java program.
Note that the program may not make a lot of sense, but that it is logically correct.

Public static void main(String args[]) {
int a=10, b=15, c=20;
int ans;
if (a>b) { ans = a + b + c; }
else {

ans = b a;
System.out.println(ans);

}
}

Solution :

.data [1]
ans: .word 0
a: .word 10
b: .word 15
c:.word 20 [1]

.text

.globl main [1]

Main: lw $1, a $1 = a
lw $2, b $2 = b [1]

bgt $1, $2, plus #jump to plus if a>b [1]

sub $3, $2, $1 #$3 = b-a [1]
sw $3, ans # store in memory [1]

li $2, 1 # print an int $2=1 [1]
add $4, $3, $0 #put ans in $4 [1]
syscall # print [1]
j end # jump to end [1]

plus: add $3, $1, $2 # $3 = a+b [1]
lw $4, c # $4=c [1]
add $3, $3, $4 # $3= a+b + c [1]
sw $3, ans

end: jr $ra # exit from program [1]

max marks 14

[14]

6

