University of Cape Town Department of Computer Science

Computer Science CSC116S

Test 3 - 5 October 2005

- Answer all questions.
- All questions that refer to elements of programming make reference to the Java programming language as studied in class.
- Good luck!

Marks:	40	 Approximate marks per question are shown in brackets
Time:	40 minutes	• The use of calculators is permitted
	Surname	Initials
NAME:		
STUDE	NT NO:	COURSE CODE: CSC

This paper consists of 6 questions and 6 pages (including this cover page).

Mark Allocation							
Quest	Marks	Internal	External	Quest	Marks	Internal	External
1	[15]			4	[3]		
2	[5]			5	[2]		
3	[1]			6	[14]		
	Total				Total		
	Grand Tot Final Ma						
Interna	Internal Examiner:			Extern	al Exami	ner:	

Section 1. Number Systems, Boolean Algebra and Logic

Question 1. [15 marks]

ow	all calculations for the following questions.	
ı) (Convert 117.375_{10} to radix 2.	
-		
-		
-		
_		[
(Convert 345_8 to hexadecimal.	
-		
_		
-		
-		[
Į	Use 4-bit 2's complement binary addition to calculate $6_{10}-2_{10}$.	
-		
_		
-		
-		
-		
		ſ

What is the value of 0 10000010 1100000000000000000000 in IEEE 754 format?
[3]
In IEEE 754 format, what is the difference between exponent overflow and exponent underflow? What values can be used as approximations in each case?
[3]
Using an example, show how the alignment of two floating point numbers, for addition, can result in a loss of precision.
[2]

Que	estion 2. [5 marks]	
a)	If $A=0, B=1$ and $C=0$, what is the value of $F=A+(\overline{A}\cdot B)+C$?	
		[1]
b)	Using a truth table, prove De Morgan's Law : $\overline{A}\cdot \overline{B}=\overline{A+B}$	

[4]

Section 2. MIPS

Refer the the attached MIPS instruction set specification when answering these questions.

Question 3.	[1 marks]	
What is the size	e, in bits, of a register in the MIPS machine	?
		[1]
Question 4.	[3 marks]	
Explain the pur	pose for which the following registers in th	e MIPS machine are used
a) Instruction	ı Register	
		[1]
b) Program (Counter	
		[1]
c) Register \$	0	
		[1]
Question 5.	[2 marks]	
Give the 4 step	s that the Control Unit of a computer does.	
		[2]

Question 6. [14 marks]

Write a MIPS assembler program that does the same as the following Java program. Note that the program may not make a lot of sense, but that it is logically correct.

```
Public static void main(String args[ ]) {
   int a=10, b=15, c=20;
   int ans;
   if (a>b) { ans = a + b + c; }
   else {
      ans = b a;
      System.out.println(ans);
   }
}
```