University of Cape Town Department of Computer Science

Computer Science CSC116S

Test 3-5 October 2005

- Answer all questions.
- All questions that refer to elements of programming make reference to the Java programming language as studied in class.
- Good luck !

Marks: 40	-Approximate marks per question are shown in brackets Time: 40 minutes
- The use of calculators is permitted	

This paper consists of 6 questions and 6 pages (including this cover page).

Section 1. Number Systems, Boolean Algebra and Logic

Question 1. [15 marks]
Show all calculations for the following questions.
a) Convert 117.375_{10} to radix 2 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[2]
b) Convert 345_{8} to hexadecimal.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c) Use 4-bit 2 's complement binary addition to calculate $6_{10}-2_{10}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d) What is the value of 01000001011000000000000000000000 in IEEE 754 format?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e) In IEEE 754 format, what is the difference between exponent overflow and exponent underflow? What values can be used as approximations in each case?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
f) Using an example, show how the alignment of two floating point numbers, for addition, can result in a loss of precision.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2. [5 marks]

a) If $A=0, B=1$ and $C=0$, what is the value of $F=A+(\bar{A} \cdot B)+C$?
\qquad
\qquad
[1]
b) Using a truth table, prove De Morgan's Law : $\bar{A} \cdot \bar{B}=\overline{A+B}$
\qquad

Section 2. MIPS

Refer the the attached MIPS instruction set specification when answering these questions.

Question 3. [1 marks]
What is the size, in bits, of a register in the MIPS machine?

Question 4. [3 marks]

Explain the purpose for which the following registers in the MIPS machine are used
a) Instruction Register
\qquad
\qquad
\qquad
b) Program Counter
\qquad
\qquad
\qquad
c) Register \$0
\qquad
\qquad
\qquad

Question 5. [2 marks]

Give the 4 steps that the Control Unit of a computer does.
\qquad
\qquad
\qquad
\qquad

Question 6. [14 marks]

Write a MIPS assembler program that does the same as the following Java program. Note that the program may not make a lot of sense, but that it is logically correct.

```
Public static void main(String args[ ]) {
    int a=10, b=15, c=20;
    int ans;
    if (a>b) { ans = a + b + c; }
    else {
        ans = b a;
        System.out.println(ans);
    }
}
```

\qquad

