Graphics in Java

hussein suleman
uct cs 116 2005

What are graphics?

o Graphic primitives: lines, squares,
rectangles, circles, ellipses, arcs,
polygons, text, etc.

/ HelloWoria
N

Built-in 2D Graphics Frameworks

o AWT Graphics (Slack)
= drawRect (40, 40, 100, 30)
o Swing Graphics
= Method-oriented
drawRect (40, 40, 100, 30)

= “"Object”-oriented
draw (new Rectangle2D.Float (40, 40, 100, 30))
= draws a rectangle
fill (new Rectangle2D.Float (40, 40, 100, 30))
= draws a filled rectangle

Component Coordinate System

o All graphics must be drawn as part of or on a
Swing/AWT component.

o All coordinates are then relative to that
component.

I

0,0 positive x axis

‘\

Component

v

positive y axis

Event-driven Graphics 1/2

o Graphics should NOT be drawn in the main
program.
= When a program is minimised and maximised,

the graphics will not be redrawn.

o Instead, override the pre-defined paint
or paintComponent method to specify how
Java/0S should redraw the component
whenever necessary.

= The OS will then redraw the component
whenever it is moved, resized, maximised,
uncovered, etc.

Event-driven Graphics 2/2

operating system/Java

| class ... program
‘ program starts + { . .
~__»void Paint (...)
‘ UI is drawn f T {
user A user does [S
moves stuff and
window [* UI ;
changes . class MainClass
i {
program * void main (...) { ...}
what you write ends Y

what Java does for you

Example 1: Painting

class DrawPanel extends JPanel
{
// override the painting routine of the component
protected void paintComponent (Graphics gr)
{
// first call the superclass’s method
super.paintComponent (gr);

// then get a “handle” to the window for drawing
Graphics2D canvas = (Graphics2D)gr;

// issue a series of drawing commands

canvas.draw (new Rectangle2D.Float (100, 100, 400, 400));
canvas.draw (new Line2D.Float (159, 159, 441, 441));
canvas.draw (new Line2D.Float (159, 441, 441, 159));
canvas.draw (new Ellipse2D.Float (100, 100, 400, 400));
canvas.drawString ("Hello World", 280, 520);

Painting Example Swing 1/2

class TestFrame extends JFrame implements ActionListener

{
public DrawPanel dp;

public TestFrame ()
{
super ("Example One");
setSize (600, 600);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

JPanel pane = new JPanel();
pane.setLayout (new BorderLayout ());
JPanel pane2 = new JPanel();
pane2.setlLayout (new FlowLayout ());

JButton exit = new JButton ("Exit");
exit.addActionListener (this);

Painting Example Swing 1/2

dp = new DrawPanel ();

pane2.add (exit);
pane.add ("North", pane2);
pane.add ("Center", dp);

setContentPane (pane);
setVisible (true);

}

public void actionPerformed (ActionEvent e)

{

System.exit (0);
}

Painting Example Main Class

public class examplel
{
public static void main (String [] arguments
{
// set user interface style
try {

UIManager.setLookAndFeel
(UIManager.getSystemLookAndFeelClassName ());

} catch (Exception e) {};

new TestFrame () ;

Paint Example Output

Helloworld

Graphics Primitives: Line

O new Line2D.Float (x1, yl, x2, y2)

ix2

Graphics Primitives: Rectangle

O new RectangleZD.Float (x, y, width,
height)

X

height

width

Graphics Primitives: Ellipse

Onew Ellipse2D.Float (x, y, width,
height)

height

width

Graphics Primitives: Arc

O new ArcZ2D.Float (x, y, width,
height, startangle, extent, type)

m type is in {Arc2D.PIE, Arc2D.CHORD, Arc2D.OPEN?}
m angles are in degrees

‘ startangle
y T £

,,,,,,,, i | height

Graphics Primitives: RoundedRect

O new RoundRectangleZ2D.Float (x, vy,
width, height, arcw, arch)

X
y
4 1)
™ arcw arch
height
- /

width

Graphics Primitives: Polygon

O new Polygon (int [] xpoints, int []
ypoints, int npoints)

int x [] = {x1, x2, x3}; |
inty [1=<y1,y2, y3}; x2!
p = new Polygon (X%, y, 3);

Graphics Primitives: Text

O drawString (text_string, x, V)

X

Hello World!

Line Attributes

O setColor (Color c)

» e.g., Color.blue, Color.red, Color.green

= sets the colour to be used for all subsequent
graphics.

O setStroke (new BasicStroke (weight,
cap, Jjoin))

= cap is in {BasicStroke.CAP_ROUND/CAP_BUTT/CAP-SQUARE}
= join is in {BasicStroke.JOIN_ROUND/JOIN_MITER/JOIN_BEVEL}

= sets the type of line and the way one line joins
another at corners.

Text Attributes

O setFont (Font £)

= sets the font to be used for all subsequent text
drawn.

B new Font (name, style, weight)
€.d., new Font (“TimesRoman”, Font.PLAIN, 12)

o Font names also include “serif” and
“SansSerif”.

O Font styles also include BOLD and ITALIC.

10

Problem

o Draw the following
figure using Java’s
graphics primitives:

(O

Coordinate Transformations

O scale (scalex, scalex)

m scales all subsequent coordinates in graphics
primitive operations by scalex in x direction
and scaley in y direction.

O translate (diffx, diffy)

= moves the origin of the axes to the location
specified. 1

| diffx,diffy

11

Example 2: Mouse Interaction

class DrawPanel extends JPanel
implements ActionListener, MouseMotionListener, MouseListener

JButton zoomin, zoomout;
float shiftx, shifty, scale;
float startx, starty;

int boy;

// set up panel
DrawPanel (JButton zin, JButton zout)

{
zoomin = zin;
zoomout = zout;
reset ();

}

// set default values in variables
public void reset ()

{
scale = 1.0f;
shiftx = 0;
shifty = 0;
boy = 100;

}

Mouse Interaction: Painting

public void drawBoy (Graphics2D canvas, int x, int y
{
canvas.translate (x, y);
canvas.setColor (Color.blue);
canvas.setStroke (new BasicStroke (3.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND)) ;
canvas.draw (new Ellipse2D.Float (20, 0, 60, 60));
canvas.fill (new Ellipse2D.Float (28, 16, 12, 8));
canvas.fill (new Ellipse2D.Float (60, 16, 12, 8));
canvas.setStroke (new BasicStroke (5.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND)) ;
canvas.draw (new Line2D.Float (50, 18, 50, 30));
canvas.setStroke (new BasicStroke (3.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND)) ;
canvas.fill (new Arc2D.Float (40, 30, 20, 20, 0, -180, Arc2D.PIE));
canvas.draw (new Rectangle2D.Float (44, 60, 12, 40));
canvas.fill (new RoundRectangle2D.Float (18, 80, 64, 120, 10, 10));

int handlx[] = {20,0,0,10,10,20}; int handly[] = {90,100,180,180,110,104};
canvas.draw (new Polygon (handlx,handly,handlx.length));
int hand2x[] = {80,100,100,90,90,80}; int hand2y[] = {90,100,180,180,110,104};

canvas.draw (new Polygon (hand2x,hand2y,hand2x.length));

(
int leglx[] = {40,40,30,10,10,30,30}; int legly[] = {198,280,290,290,280,280,198};
canvas.draw (new Polygon (leglx,legly,leglx.length));
int leg2x[] = {60,60,70,90,90,70,70}; int leg2y[] = {198,280,290,290,280,280,198};
)

canvas.draw (new Polygon (leg2x,leg2y,leg2x.length));
canvas.translate (-x, -y);

protected void paintComponent (Graphics gr)
{
super.paintComponent (gr);
Graphics2D canvas = (Graphics2D)gr
canvas.translate (shiftx, shifty);
canvas.scale (scale, scale);
drawBoy (canvas, boy, 100);

12

Mouse Interaction: Actions

public void actionPerformed (ActionEvent e

{

if (e.getSource() == zoomin)
scale *= 1.20f;

else 1f (e.getSource() == zoomout)
scale /= 1.20f;

else
reset () ;

repaint ();

public void mouseDragged (MouseEvent m)
{

shiftx += (m.getX() - startx);

shifty += (m.getY() - starty);

startx = m.getX();

starty = m.getY();

repaint ();

}

public void mouseMoved (MouseEvent m) {}
public void mouseClicked (MouseEvent m) {}
public void mouseEntered (MouseEvent m) {}

public void mouseExited (MouseEvent m) {}
public void mousePressed (MouseEvent m)

{

startx = m.getX();

starty = m.getY();

}

public void mouseReleased (MouseEvent m) {}

Mouse Interaction: Frame 1/2

class TestFrame extends JFrame implements ActionListener
{
public DrawPanel dp;

public TestFrame ()
{
super ("Graphics Editor");
setSize (600, 600);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

JPanel pane = new JPanel();
pane.setLayout (new BorderLayout ());
JPanel pane2 = new JPanel();
pane2.setLayout (new FlowLayout ());

JButton zin = new JButton ("Zoom In");
JButton zout = new JButton ("Zoom Ou
JButton reset = new JButton ("Reset");
dp = new DrawPanel (zin, zout);

pane2.add (zin);
pane2.add (zout);
pane2.add (reset);

pane.add ("North", pane2);
pane.add ("Center", dp);

13

Mouse Interaction: Frame 2/2

zin.addActionListener (dp);
zout .addActionListener (dp);
reset.addActionListener (dp);
dp.addMouseMotionListener (dp);
dp.addMouseListener (dp);

MenuBar mb = new MenuBar ();
Menu file = new Menu ("File");
Menultem exit = new Menultem ("Exit");

exit.addActionListener (this);
file.add (exit);

mb.add (file);

setMenuBar (mb);

setContentPane (pane);
setVisible (true);

public void actionPerformed (ActionEvent e)
{

System.exit (0);

}

Mouse Interaction: Output

Graphics Editor
File

D

14

MouseMotionListener Interface

O mouseMoved is invoked when the mouse is
moved and no buttons are being pressed.

O mouseDragged is invoked when the mouse
is moved while one or more buttons are
held down.

= mousePressed
->mouseDragged
->mouseReleased

o Parameter same as for MouselListener.

Scrolling the Canvas

o Store position of canvas as a set of offsets
that must be added to all coordinates
before drawing.

o When a mouse button is pressed, store
the position of the mouse.

o When mouse is dragged, calculate
difference between current position and
stored position and add this to the offsets.

O Use translate to offset canvas prior to
drawing.

15

Z.ooming In and Out

o Store zoom state as a set of scale
multipliers in each direction.

o Before drawing any graphics, multiply the
coordinates by the multipliers.

o When zooming in/out, multiply the

multipliers by factors greater than or less
than 1.

O Use scale to scale canvas coordinates
prior to drawing.

The repaint method

O repaint can be called explicitly after any
changes to the user interface.

O repaint causes Java to invalidate the
region i.e., make it seem in need of
repainting.

m once a region has been invalidated, Java will
call the paint function of the component,

when it is safe to do so.

16

Example 3: Animation

o Create multiple images on a single canvas, with
parameters to indicate relative position.

o Each time a button is clicked (or some trigger is
activated), move the images to resemble
animation by changing the parameters used by
paintComponent to position graphics.

o Non-interactive animation typically uses a
separate “thread” (like a program) to control the
animation.

Animation: Painting

protected void paintComponent (Graphics gr)
{

super.paintComponent (gr);
Graphics2D canvas = (Graphics2D)gr;
canvas.translate (shiftx, shifty);
canvas.scale (scale, scale);
drawBoy (canvas, boy, 100, walk);
drawGirl (canvas, girl, 100, walk);
if ((girl - boy) == 100)
{

drawHeart (canvas, girl, 50);

17

Animation: Button Processing

public void actionPerformed (ActionEvent e)
{
if (e.getSource() == zoomin)
scale *= 1.20f;
else if (e.getSource() == zoomout)
scale /= 1.20f;
else if (e.getSource() == animate)
{
if (boy != 200)
{
boy += 5;
girl -= 5;
walk = l-walk;

}
}
else

reset ();
repaint () ;

Animation: Mouse Actions

public void mouseDragged (MouseEvent m)

{
shiftx += (m.getX() - startx);

shifty += (m.getY() - starty);

startx = m.getX();

starty = m.get¥ ();

repaint () ;
}
public void mousePressed (MouseEvent m)
{

startx = m.getX();
starty = m.get¥ ();

18

Animation: Output

19

