
UCT CSC305 2004 :: Compilers :: Test 2 [35 marks] :: 5 May

Error Recovery
1. Describe Burke-Fisher error repair. [4]

Any of the four marks below:
This form of error repair tries every possible single-token insertion, deletion or replacement
√ at every point that occurs no earlier than K tokens √ before the point where the parser
reported the error .√
Example: With K=15, if the parser gets stuck at the 100th token of the input, then it will try
every possible repair between the 85th and 100th tokens.
The correction that allows the parser to parse furthest past the original reported error is
taken as the best error repair √
Example: If a single token substitution of var for type at the 98th token allows the parsing
engine to proceed past the 104th token without getting stuck, the repair is a successful one.
Generally, if a repair carries the parser R=4 tokens beyond where it originally got stuck, this
is “good enough”. √

Abstract Syntax Trees
2. Describe the Visitor pattern and its use. [4]

Any of the four marks below:

A visitor is an object which contains a visit method for each syntax-tree class√ Each
syntax-tree class should contain an accept method. √

An accept method serves as a hook for all interpretations. √

The accept method is called by a visitor and it has just one task – to pass control back to
an appropriate method in the visitor. √ (Thus control goes back and forth between a visitor
and the syntax-tree classes)

Intuitively, the visitor calls the accept method of a node and asks “what is your class?” √

The accept method answers by calling the corresponding visit method of the visitor√

Summary: With the Visitor pattern a new interpretation can be added without editing and
recompiling existing classes√, provided that each of the appropriate classes has an accept
method. √

Symbol Tables
3. What is a symbol table? Give one example of the type of problem it helps to solve when

writing a compiler. [4]

A symbol table is a mapping of names/symbols to attributes [2]

Problems it checks for (any one worth 2 marks):

Is X declared before it is used?
Are any names declared but not used?
Which declaration of X does this reference?
Is an expression type-consistent?
Do the dimensions of a reference match the declaration?
Where can x be stored? (heap, stack, ,,,)

Does *p reference the result of a malloc()?
Is x defined before it is used?
Is an array reference in bounds?
Does function foo produce a constant value?

4. In terms of non-local name resolution, what is the difference between static and dynamic
scope? [2]

Non-local names resolved by static scope depend on the lexical nesting of subprograms while
with dynamic scope, resolution depends on the call sequence.

5. Explain how entries in a recently closed scope (assuming static scope) can be removed from
an imperatively designed symbol table, implemented as a hash table. Draw a diagram to
support your explanation. [5]

++

| | ^

| | |

| HT | ++ ++

| | > | | > | | > |

| | ++ ++

| | ^

| | |

| | ++

| | > | | > |

| | ++

| | ^

| | |

++ Nodes in Current Scope [2]

Connect together all nodes inserted into the hash table in a single scope using a linked list.
Then, when the scope ends, traverse the linked list and remove each node from the hash table.
[3]

Activation Records
6. What is an activation record? [2]

A list of all the data (local variables, return values, parameters, static links, etc.) needed to
support the invocation of a subprogram/function/procedure/method.

7. With non-reentrant subprograms, why is a stack not necessary for activation records? [2]

Because there is only ever one activation record instance for each
subprogram/function/procedure/method so these can occupy a fixed area of memory or the
same area of memory.

8. Draw the stack of activation records corresponding to the following Pascal-like
program when it is at “breakpointX”. [5] (Assume static chains and include all
parameters).

program main ()

 subprogram funca ()
 {
 funcb ();
 }
 subprogram funcb ()
 {
 subprogram funcc (int x)
 {
 x = x + 1;
 }
 funcc (6);
 // breakpointX
 }
 funca ();
}

funcb static link -----+ [1]

dynamic link --+ | [1]

return (funca) | | [1/2]

<-+ |

funca static link -----+ [1]

dynamic link --+ | [1]

return (main) | | [1/2]

<-+ |

main |

<----+

Intermediate Representations
9. Assuming the IR tree language in the attached page, convert the following

statements/expressions to equivalent IR trees. (Assume a and b are stack frame variables at
offsets k0 and k1 respectively from the frame pointer special temporary fp) Provide the final
trees and do not use the Nx/Cx/Ex expression types/objects. [8]

a. a+b

b. while (a<1) { b = b + 1; }

a. [3] one mark for main tree, one for left subtree, one for right subtree
BINOP (+, MEM(BINOP(+, TEMP(fp), CONST(k0))), MEM(BINOP(+, TEMP(fp), CONST(k1))))

or

+ (MEM(+ (TEMP(fp), CONST(k0))), MEM(+ (TEMP(fp),CONST(k1))))

or a tree representation of the same

b. [5] one mark for labels, one for correct “b=b+1” statement, one for conditional jump, one
for JUMP, one for nested SEQs

SEQ (SEQ (SEQ (SEQ (SEQ (

LABEL (top),

CJUMP (<, MEM (+(TEMP(fp),CONST(k0)), CONST(1), NAME(t), NAME(f))),

LABEL (t),

MOVE (MEM(+(TEMP(fp),CONST(k1)), +(MEM(+(TEMP(fp),CONST(k1))), CONST(1)))),

JUMP (top),

LABEL (f))

or a tree representation of the same

	UCT CSC305 2004 :: Compilers :: Test 2 [35 marks] :: 5 May
	Error Recovery
	Abstract Syntax Trees
	Symbol Tables
	Activation Records
	Intermediate Representations

