
UCT CSC305 2004 :: Compilers :: Exam [25 marks]

Question 1 : Semantic Analysis [5]
1. Displays are an alternative to static chains for non-local name resolution. Explain how
displays are modified when scopes are opened and closed. [2]

When a scope is opened the display pointer corresponding to the nesting level of that scope is
saved and then updated to point to the new context. [1] When a scope is closed, the display
pointer corresponding to the nesting level of that scope is restored to its previously saved
value. [1]

2. Briefly discuss 3 cases where main memory (stack frame) is needed during parameter
passing, as opposed to using just registers. [3]

• variables used/passed by reference

• nested subprograms

• variable is not simple or just too big

• arrays

• registers are needed for other purposes

• too many variables

Question 2 : Code Generation [10]
1. What is a basic block? How can the selection of traces improve on efficiency of generated
code? [3]

A basic block is a linear sequence of code starting with a LABEL and ending with a JUMP or
CJUMP. [1]

Selecting a set of traces which maximises the number of JUMPs followed immediately by the
LABELs that are the targets of the preceding JUMPs means that those pairs of JUMP/LABEL
statements can be eliminated, thereby creating faster code. [2]

2. In the context of instruction selection by tiling, what is the difference between an optimal
and optimum algorithm? [2]

Optimum tiling: sum to lowest possible value [1]

Optimal tiling: no two adjacent tiles can be combined to a tile of lower cost [1]

3. Explain how the maximal munch algorithm works. [4]

• Start at the root.

• Find the largest tile that fits. [1]

• Cover the root and possibly several other nodes with this tile. [1]

• Repeat for each subtree. [1]

• Generates instructions in reverse order. [1]

• If two tiles of equal size match the current node, choose either.

4. Is the maximal munch algorithm optimal or optimum? [1]

Optimal [1]

Question 3 : Register Allocation [10]
1. Use the iterative liveness analysis algorithm to calculate the live-in and live-out sets for
each of the following statements in a program, with the initial and final live sets indicated -
assume live-in (succ (a=5)) = {c}.

[live-in: a]

b = 23

c = a + b

b = 12

a = 5

[live-out: c]

Hint: The relevant formula are:

])[][(][][

][][
][

ndefnoutnusenin

sinnout
nsuccs

−∪=

=
∈
�

Iteration
1

Iteration
2

Us
e

De
f

In Out In Out

In:A

B=23 B A AB A AB

C=A+
B

AB C AB C AB C

B=12 B C C C C

A=5 A C C C C

Out:C

One mark each for Use set, Def set, In, Out, last two iterations being equal.

2. Consider the following graph with nodes indicating temporaries and arcs indicating
interference. Apply a register colouring algorithm to 3-colour the graph. Assume that R1 is a
precoloured node and use George’s criterion for conservative coalescing. Clearly show all
steps in the algorithm and the final register allocation (R1, R2, R3) to temporaries. [5]

R1

d c

b a

No nodes can be simplified, but b and c can be coalesced since each significant degree
neighbour of b interferes with c.

R1

d bc

a

[1]

Then, d can be simplified and pushed onto the stack.

R1

bc

a

[1]

This makes a and bc of <K degree, so they can be simplified as well.

Popping the nodes off the stack, we can then assign

A: R2[1]

B/C: R3[1]

D: R1[1]

	UCT CSC305 2004 :: Compilers :: Exam [25 marks]
	Question 1 : Semantic Analysis [5]
	Question 2 : Code Generation [10]
	Question 3 : Register Allocation [10]

