
1

Iteration

Hussein Suleman
UCT Dept of Computer Science
CS115 ~ 2004

UCT-CS

Problem

� Output the 7x table.

UCT-CS

What is Iteration?

� Executing the same task or set of
statements multiple times
�e.g., print the 7x table (from 1 to 12)

n <= 12?Assign n=1

Output (7*n)

no

yes
LOOP

n++

UCT-CS

Counter-controlled Loops

� Loops that usually execute for a fixed
number of times

� A special counter variable is used to
control the loop and may be referred to
within the loop

� Java provides the “for” statement

UCT-CS

The “for” statement

for (initialisation;

condition;

increment)
{

statements …

}

UCT-CS

Example Usage

int n;

for (n=1; n<=12; n++)
{

System.out.println (n + “ x 7 = “ + (n*7));
}

Output:
1 x 7 = 7
2 x 7 = 14
3 x 7 = 21
...

2

UCT-CS

Flowchart vs Java

int n;

for (n=1; n<=12; n++)
{

System.out.println (n + “ x 7 = “ + (n*7));
}

n <= 12?Assign n=1

Output (7*n)

no

yes

n++

UCT-CS

Additional “for” syntax

� We can define a variable in the
initialisation section, which is local to the
body of the loop
�for (int i=1; i<=10; i=i+1)

� Multiple comma-separated expressions
can appear in the “increment” section,
even decrements
�for (int i=10; i>0; i--)

�for (int i=1,j=7; i<=12; i++,j+=7)

UCT-CS

Problem revisited

� Output the n x table for any integer
value of n. Encapsulate this functionality
into a class, with a method called
printNTimesTable, taking n as a
parameter.

UCT-CS

Solution?

class Kiddies

{

public void printNTimesTable (int n)

{

for (int i=1; i<=12; i++)

System.out.println

(i+" x "+n+" = "+(n*i));

}

}

UCT-CS

General Semantics of “for”

Condition?Initialisation

Statements

false

true
LOOP

Incr.

UCT-CS

Problem

� Find the product of the integers from 1..n,
corresponding to n!.

3

UCT-CS

Problem

� Calculate ab using a for loop, assuming
that a is a float and b is an integer.

UCT-CS

Nesting of statements

� for and if are both statements, therefore
they can each appear within the statement
body
� for (int I=1; I<=10; I++)

{ if (a<b) max=b; }
� if (a<b)

{ for (int I=1; I<=10; I++) }
� for (int I=1; I<=10; I++)

for (int j=1; j<=10; j++)

UCT-CS

Nested loops

� Where a task is carried out multiple times
and a subtask within that is carried out
multiple times

� Example:
�Draw a triangle of arbitrary height on the

screen, such as:
*
**

UCT-CS

Problem

� Write programs to generate (on the
screen) the following triangles of user-
specified height:

**
*

*
**

*

UCT-CS

Condition-controlled Loops

� If we do not know the number of iterations
a priori (in advance), we can use a
condition-controlled (or event-controlled)
loop - where the loop executes while a
condition is true

� Two statements:
�while (<condition>) { <statements> }
�do { <statements> } while (<condition>)

UCT-CS

“while” Example

int sum = 0;

int num = Keyboard.readInt (“Enter a no: “);

while (num != 0)

{

sum = sum + num;

num = Keyboard.readInt (“Enter a no: “);

}

Condition?

Statements

false

true
LOOP

4

UCT-CS

Problem

� Approximate the logarithm (with a base of
10) of an integer using repeated division.

UCT-CS

Problem

� Approximate the logarithm (with a base of
10) of an integer using repeated division.

� Design a user interface where the user
can continue to ask for logarithms until a
value of 0 is supplied.

UCT-CS

Menus

� A menu is a list of choices presented to
the user, with the means to select one

� Example:
Souper Sandwich Menu

1. Chicken, cheese and chilli sauce

2. Chicken and cheese

3. Cheese

4. Exit Program

Enter the sandwich number:

UCT-CS

Menu Example
Menu souper = new Menu ();

souper.print (); // output options

int choice = Keyboard.readInt (); // get selection

while (choice != 4) // continue until exitted

{

System.out.println (); // leave a line

switch (choice) // output ingredients

{

case 1 : System.out.println ("Add chilli");

case 2 : System.out.println ("Add chicken");

case 3 : System.out.println ("Add cheese");

}

souper.print (); // output options

choice = Keyboard.readInt (); // get selection

}

UCT-CS

“do..while” statement

� When the “loop body” is going to be
executed at least once, we can check the
condition after the loop (instead of before)

Condition?Statements
false

trueLOOP

UCT-CS

“do..while” Example

Menu souper = new Menu ();

int choice;

do {

souper.print (); // output options

choice = Keyboard.readInt (); // get selection

System.out.println (); // leave a line

switch (choice) // output ingredients

{

case 1 : System.out.println ("Add chilli");

case 2 : System.out.println ("Add chicken");

case 3 : System.out.println ("Add cheese");

}

} while (choice != 4) // continue until exitted

5

UCT-CS

Problem

� Find the reverse of an integer.
� For example, the reverse of the integer

12345 is 54321 and the reverse of 98 is
89. Use only integer manipulations - do
not convert the number to a String.

UCT-CS

Infinite Loops

� Loops where the condition is always true
� Example:

while (true)

{

System.out.println (“Wheeee!”);

}

do { … } while (true);

for (int i=1; i<10;) { … }

UCT-CS

break

� exits immediately from a loop
� Example:

int i = 0;

while (true)

{

i++;

System.out.println (i);

if (i == 10) break;

}

UCT-CS

continue

� immediately starts next iteration
� Example:

for (int i=0; i<=10; i++)

{

if (i % 3 == 0)

continue;

System.out.println (i);

}

UCT-CS

Selecting Loops

� General Rules:
�When you know the number of iterations, use

a “for”
�When the iterations depend on a condition,

� use a “do..while” if the loop must execute at least
once

� otherwise, use a “while”

UCT-CS

Converting Loops

� How do we write the equivalent of
� “while” using “for”
� “do..while” using “for”
� “for” using “while”
� “do..while” using “while”
� “for” using “do..while”
� “while” using “do..while”

6

UCT-CS

Intro to Numerical Methods

� Floating-point numbers cannot have an
infinite number of decimal places, hence
are not always accurate

� For real calculations, check for
approximate equality instead of equality

� Example:
if (num == 1.0) // not always a good idea

float Epsilon = 0.005;

if (Math.abs (num-1.0) < Epsilon) // better?

UCT-CS

Bisection Algorithm

� If a<b and f(a)*f(b)<0, then f(x) has a root
in the range a<=x<=b (for continuous f)

� Bisection method:
�Find the midpoint of a and b
�Halve the interval by choosing the one where

the root appears
�Continue until the interval is small or

f(midpoint) is suitably close to 0

UCT-CS

Problem

� Find a root of the non-quadratic equation:
�x7 + 6x6 - 3x5 + 4x2 - x - 6

� Hint: Use the bisection algorithm.

