
1

Selection

Hussein Suleman
UCT Dept of Computer Science
CS115 ~ 2004

UCT-CS

What is Selection?

� Making choices in the flow of execution of
a program
�e.g., if it is a leap year then there are 29 days

in February – otherwise there are 28

leap year?

February has 29 days

February has 28 days

yes

no

UCT-CS

Conditional expressions

� Selections are made on the basis of expressions
that must evaluate to true or false (boolean)

� Relational operators always return boolean
values, e.g.:
� answer > 1.0
� numberOfPeople <= 14
� month == 12 // note: this is not the same as “=”
� date != 13 // not equal
� money >= 5000

UCT-CS

The “if” statement

if (boolean_expression)
{

statements …

}
else
{

statements …

}

UCT-CS

Example usage

if (month == 12)
{

System.out.println (“Hoorah! No classes”);
}
else
{

System.out.println (“:-(”);
}

UCT-CS

Another example
if (year < 2000)
{

fearFactor = 1;
}
else
{

fearFactor = 0;
}
if (fearFactor == 1)
{

System.out.println (“be afraid – be very afraid”);
}
else
{

System.out.println (“it’s OK! no Y2K bug!”);
}

2

UCT-CS

Shortcuts I

� No else part

if (numberOfStudents > 150)

{

System.out.println (“Full!”);

}

year-end?

Bonus cheque !!yes

no

UCT-CS

Shortcuts II

� Only one statement in block – can leave out the
braces

if (numberOfStudents > 150)

System.out.println (“Full!”);

else

System.out.println (“Not full”);

UCT-CS

More Data Types

� char – stores a single character
� char literals are enclosed in single quotes
� e.g., char aLetter = ‘a’;

� boolean – stores only true or false values
� e.g., boolean iLikeCSC115 = true;

if (iLikeCSC115)
{

iEatWeetbix = true;
}

UCT-CS

Issues with Strings

� You cannot compare two strings like other
types of data
� i.e., “Hello” == “Hello” may not work !

� Instead, use methods in String class
� “Hello”.compareTo(“Hello”) == 0

� “Hello”.equals (“Hello”)

� aString.compareTo (“somevalue”) == 0

� aString.equals (“somevalue”)

UCT-CS

Nested “if” statement

String password = Keyboard.readString();
if (password.equals (realPassword))
{

if (name.equals (“admin”))
{

loggedIn = superPrivileges = true;
}

}
else
{

System.out.println (“Error”);
}

UCT-CS

Dangling Else

� Compiler cannot determine which “if” an “else” belongs
to if there are no braces

String password = Keyboard.readString();
if (password.equals (realPassword))

if (name.equals (“admin”))
loggedIn = superPrivileges = true;

else
System.out.println (“Error”);

� Java matches else with last unfinished if
� Moral: Use shortcuts at your own risk – or don’t !

3

UCT-CS

Multiway selection

� Multiple conditions, each of which causes a different
block of statements to execute

� Can be used where there are more than 2 options

if (condition1)
{

statements …
}
else
{

if (condition2)
{

statements …
}
else
…

}

UCT-CS

“if” ladder

� Just a nicer way to write multiway selection

if (operation == ‘a’)
{

answer = first + second;
}
else if (operation == ‘s’)
{

answer = first – second;
}
else if (operation == ‘m’)
{

answer = first * second;
}

UCT-CS

The “switch” statement

� Selects among different statements based
on a single integer or character expression

� Each set of statements starts in “case” and
ends in “break” because switch does not
use {}s
�break passes control to statement

immediately after switch
� “default” applies if none of the cases

match

UCT-CS

Sample switch statement
switch (SouperSandwichOrder)
{

case 1 : cheese = 1;
break;

case 2 : cheese = 1;
chicken = 1;
break;

case 3 : cheese = 1;
chicken = 1;
chilli = 1;
break;

default : cheese = 1;
break;

}

UCT-CS

“break” optimisation

� If break is omitted, control continues to next
statement in the switch

switch (SouperSandwichOrder)

{
case 3 : chukka = 1;
case 2 : tomato = 1;
case 1 :
default : cheese = 1;

}

UCT-CS

Characters in “switch”
char Operation = Keyboard.readChar (“What to do?”);
switch (Operation)
{

case ‘a’ : answer = a + b;
break;

case ‘s’ : answer = a – b;
break;

case ‘m’ : answer = a * b;
break;

case ‘d’ : if (b != 0)
{

answer = a / b;
break;

}
default : answer = 0;

System.out.println (“Error”);
break;

}

4

UCT-CS

Boolean operators

!

||

&&

Java

true if parameter is false;
false if parameter is true;

NOT

true if at least one parameter
is true

OR

true if both parameters are
true

AND

MeaningBoolean
Algebra

UCT-CS

Operator precedence
� Now that we have seen how operators can be

mixed, we need precedence rules for all
operators
� () (highest precedence – performed first)
� !
� * / %
� + -
� < <= > >=
� == !=
� &&
� ||
� = (lowest precedence – performed last)

UCT-CS

Reversing expressions

� Use ! operator to reverse meaning of boolean
expression, e.g.,
if (mark >= 0)

{

// do nothing

}

else

System.out.println (“Error”);

� Instead, invert the condition
if (! (mark >= 0))

System.out.println (“Error”);

� Can we do better ?

UCT-CS

Boolean operator example
boolean inClassroom, isRaining;
…
if (inClassroom && isRaining)

System.out.println (“Lucky!”);
…
if (! inClassroom && isRaining)

System.out.println (“Wet and miserable!”);
…
if (! isRaining && ! inClassroom)

System.out.println (“Happy!”);

UCT-CS

Boolean expression example
int marks;
char symbol;
…
if (marks >= 75)

symbol = ‘A’;
…
if (marks >= 65 && marks <75)

symbol = ‘B’;
…
if (marks < 0 || marks > 100)
{

symbol = ‘X’;
System.out.println (“Invalid mark!”);

}

UCT-CS

DeMorgan’s Laws

� !(A && B) = !A || !B
� !(A || B) = !A && !B
� Invert the whole expression, the operators and

the operands
� !(A … B) � (A … B)
� A � !A
� && � ||

� Use this tranformation to simplify expressions by
removing “!”s wherever possible

5

UCT-CS

Simplification

� Apply DeMorgan’s Laws to simplify
(! (mark >= 0 && mark <= 100))

(! (mark >= 0)) || (! (mark <= 100))

(mark < 0 || mark > 100)

� Apply DeMorgan’s Laws to simplify
! (salary < 10000 || ! me.bigChief ())

(! (salary < 10000)) && (!! me.bigChief ())

salary >= 10000 && me.bigChief ()

UCT-CS

Errors and testing

� Quick Poll

� In a typical hour spent programming, how
many minutes do you spend fixing errors?

UCT-CS

Errors

� What is an error?
�When your program does not behave as

intended or expected

� What is a bug?
� “…a bug crept into my program …”

� Debugging
� the art of removing bugs

UCT-CS

Types of Errors

� Compile-time Error
�Discovered by Java when you hit “compile”
� Improper use of Java language
�e.g., int x + 1;

� Run-time Error
�Program compiles but does not execute as

expected
�e.g., int x=0, y = 15/x;

UCT-CS

Types of Errors II

� Logic Error
�Program compiles and runs but produces

incorrect results - because of a flaw in the
algorithm or implementation of algorithm

int a = Keyboard.readInt();
int b = Keyboard.readInt();
int maximum;
if (a < b) { maximum = a; }

else { maximum = b; }

UCT-CS

Testing Methods

� Programs must be thoroughly tested for all
possible input/output values to make sure
the programs behaves correctly

� But how do we test for all values of
integers?

int a = Keyboard.readInt();
if (a < 1 || a > 100)
{ System.out.println (“Error”); }

6

UCT-CS

Equivalence Classes

� Group input values into sets with similar
expected behaviour and choose candidate
values
�e.g., -50, 50, 150

� Choose values at and on either side of
boundaries (boundary value analysis)
�e.g., 0, 1, 2, 99, 100, 101

UCT-CS

Path Testing

� Create test cases to test every path of
execution of the program at least once

int a = Keyboard.readInt();

if (a < 1 || a > 100)

{ System.out.println (“Error”); }

Path 1: a=35 Path 2: a=-5

UCT-CS

Statement Coverage

� What if we had:

� Rather than test all paths, test all
statements at least once
�e.g., (a,b) = (10, 10), (50, 50)

if (a < 25)
{ System.out.println (“Error in a”); }
if (b < 25)
{ System.out.println (“Error in b”); }

UCT-CS

Quick Poll

� So, which of these is the best testing
approach to use?
1. Exhaustive testing of all values
2. Equivalence classes and boundary values
3. Path testing
4. Statement coverage

UCT-CS

Glass and Black Boxes

� If you can create your test cases based on
only the problem specification, this is black
box testing.

� If you have to look at the code, this is
glass box testing.

� Which categories do these fall in:
� Equivalence classes/boundary values
� Path coverage
� Statement coverage

UCT-CS

Intro to Artificial Intelligence

� What is AI?
�making machines appear to be intelligent

� Did you see the movie?
� Various approaches taken

�complex algorithms
� representating knowledge in a natural way
�simulating the brain
�simulating mother nature (e.g., evolution)

7

UCT-CS

Neural Networks

� Can we simulate the brain by creating
neuron “objects” and linking them
together?

� How does the brain learn? and how does it
recall information?

� Example:
�EasyNN

UCT-CS

The Turing Test

� If you put a machine and a computer
behind a screen and communicate with
them, can you figure out which is which?

� Famous example:
�ELIZA

