Hussein Suleman
UCT Dept of Computer Science
= (CS115~ 2004

What is Selection? é

UcT-Cs

m Making choices in the flow of execution of
a program
e.g., if itis a leap year then there are 29 days
in February — otherwise there are 28

February has 29 days }7

February has 28 days }—

Conditional expressions é

UCT-CS

m Selections are made on the basis of expressions
that must evaluate to true or false (boolean)
m Relational operators always return boolean
values, e.g.:
answer > 1.0
numberOfPeople <= 14
month == 12 // note: this is not the same as “="
date |=13 /I not equal
money >= 5000

The “if” statement é

UCT-CS

if (boolean_expression)

{

statements ..
}
else
{

statements ..
}

Example usage é

UcT-cs

if (month == 12)
{
System.out.println (“Hoorah! No classes”);
}
else
{
System.out.println (“:=(");
}

Another example é

UcT-Cs

if (year < 2000)
{

fearFactor = 1;
}
else
{
fearFactor = 0;
}
if (fearFactor == 1)

{
System.out.println (“be afraid - be very afraid”);
}
else
{
System.out.println (“it’s OK! no Y2K bug!”);
}

Shortcuts |

UcT-Cs

m No else part

if (numberOfStudents > 150)
{

System.out.println (“Full!”);

%44,

Bonus cheque !!

Shortcuts Il

=

UcT-Cs

m Only one statement in block — can leave out the
braces

if (numberOfStudents > 150)
System.out.println (“Full!”);
else
System.out.println (“Not full”);

More Data Types é

UCT-CS

m char — stores a single character
char literals are enclosed in single quotes
e.g.,, char aLetter = ‘a’;

m boolean — stores only frue or false values
€.g0., boolean iLikeCSC1l1l5 = true;

if (iLikeCSC115)
{

iEatWeetbix = true;

Issues with Strings é

UCT-CS

m You cannot compare two strings like other
types of data
i.e.,, “Hello” == “Hello” may not work !
m Instead, use methods in String class

“Hello”.compareTo (“Hello”) ==
“Hello”.equals (“Hello”)

Nested “if” statement é

UcT-cs

String password = Keyboard.readString();
if (password.equals (realPassword))
{
if (name.equals (“admin”))
{
loggedIn = superPrivileges = true;
}
}
else
{
System.out.println (“Error”);

}

aString.compareTo (“somevalue”) == 0
aString.equals (“somevalue”)
" JEE

Dangling Else é

UcT-Cs

m Compiler cannot determine which “if” an “else” belongs
to if there are no braces

String password = Keyboard.readString();
if (password.equals (realPassword))
if (name.equals (“admin”)
loggedIn = superPrivileges = true;
else
System.out.println (“Error”);

m Java matches else with /ast unfinished if
m Moral: Use shortcuts at your own risk — or don't !

Multiway selection é

UcT-Cs

m Multiple conditions, each of which causes a different
block of statements to execute

m Can be used where there are more than 2 options

if (conditionl)
{
statements ..
}
else
{
if (condition2)
{
statements ..
}

else

“if” ladder é

UcT-Cs

m Just a nicer way to write multiway selection

if (operation == ‘a’)
{
answer = first + second;
}
else if (operation == ‘s’)

{

answer = first - second;

}

JEE00
The “switch” statement é

UCT-CS

m Selects among different statements based
on a single integer or character expression
m Each set of statements starts in “case” and
ends in “break” because switch does not
use {}s
break passes control to statement
immediately after switch
m “default” applies if none of the cases
match

else if (operation == ‘m’)
{
answer = first * second;
}
" JE

Sample switch statement é

UCT-CS

switch (SouperSandwichOrder)

{

“break” optimisation é

UcT-cs

m |f break is omitted, control continues to next
statement in the switch

switch (SouperSandwichOrder)

{
case 3 : chukka = 1;
case 2 : tomato = 1;
case 1 :
default : cheese = 1;
}

case 1 : cheese = 1;
break;
case 2 : cheese = 1;
chicken = 1;
break;
case 3 : cheese = 1;
chicken = 1;
chilli = 1;
break;
default : cheese = 1;
break;
}
"
H 13 H ”
Characters in “switch é

UcT-Cs

char Operation = Keyboard.readChar (“What to do?”);
switch (Operation)

{

case ‘a’ : answer = a + b;
break;

case ‘s’ : answer = a - b;
break;

case ‘m’ : answer = a * b;
break;

case ‘d’ : if (b != 0)

{
answer = a / b;
break;
}
default : answer = 0;
System.out.println (“Error”);
break;

Boolean operators é

UcT-Cs

Boolean | Java Meaning

Algebra

AND && |true if both parameters are
true

OR I true if at least one parameter
is true

NOT ! true if parameter is false;
false if parameter is true;

Operator precedence é
UCT-CS
m Now that we have seen how operators can be
mixed, we need precedence rules for all
operators
() (highest precedence — performed first)
|

1%

+-
<<=>>=
&&

1

= (lowest precedence — performed last)

Reversing expressions é

UCT-CS

m Use ! operator to reverse meaning of boolean
expression, e.g.,
if (mark >= 0)
{
// do nothing
}
else
System.out.println (“Error”);
m Instead, invert the condition
if (! (mark >= 0))
System.out.println (“Error”);
m Can we do better ?

"
Boolean operator example é
boolean inClassroom, isRaining;

if (inClassroom && isRaining)
System.out.println (“Lucky!”);

if (! inClassroom && isRaining)
System.out.println (“Wet and miserable!”);

if (! isRaining && ! inClassroom)
System.out.println (“Happy!”);

" JEE
Boolean expression example é

int marks;
char symbol;

if (marks >= 75)
symbol = ‘A’;

if (marks >= 65 && marks <75)
symbol = ‘B’;

if (marks < 0 || marks > 100)

symbol = ‘X’;
System.out.println (“Invalid mark!”);

DeMorgan’s Laws é

UcT-Cs

= [(A&&B)=!A|| !B
m |(A||B)=!A&& B
m Invert the whole expression, the operators and
the operands
A...B)>(A...B)
A>IA
&& > ||
m Use this tranformation to simplify expressions by
removing “!”s wherever possible

Simplification é

UcT-Cs

m Apply DeMorgan’s Laws to simplify
(! (mark >= 0 && mark <= 100))
(! (mark >= 0)) || (! (mark <= 100))
(mark < 0 || mark > 100

m Apply DeMorgan’s Laws to simplify
! (salary < 10000 || ! me.bigChief ())
(! (salary < 10000)) && (!! me.bigChief ())
salary >= 10000 && me.bigChief ()

Errors and testing é

UcT-Cs

m Quick Poll

m In a typical hour spent programming, how
many minutes do you spend fixing errors?

Errors é

UCT-CS

m What is an error?

When your program does not behave as
intended or expected

m What is a bug?

“...a bug crept into my program ...”
m Debugging

the art of removing bugs

Types of Errors é

UCT-CS

m Compile-time Error
Discovered by Java when you hit “compile”
Improper use of Java language
e.g., int x + 1;

m Run-time Error

Program compiles but does not execute as
expected

e.g., int x=0, y = 15/x;

N
Types of Errors Il é

UcT-cs

m Logic Error

Program compiles and runs but produces
incorrect results - because of a flaw in the
algorithm or implementation of algorithm

int a = Keyboard.readInt ();

int b = Keyboard.readInt ();

int maximum;

if (a < b) { maximum
else { maximum

a; }
b; }

Testing Methods é

UcT-Cs

m Programs must be thoroughly tested for all
possible input/output values to make sure
the programs behaves correctly

m But how do we test for all values of
integers?
int a = Keyboard.readInt();

if (a <1 || a > 100)
{ System.out.println (“Error”); }

Equivalence Classes é

UCT-CS
m Group input values into sets with similar
expected behaviour and choose candidate
values
e.g., -50, 50, 150
m Choose values at and on either side of
boundaries (boundary value analysis)
eg. 0,1,2,99, 100, 101

.
Path Testing é

UcT-Cs

m Create test cases to test every path of
execution of the program at least once

int a = Keyboard.readInt();
if (a <1 ||l a> 100)

{ System.out.println (“Error”); }

AVAVAV)

Path 1: a=35 Path 2: a=-

(&)

Statement Coverage é

UCT-CS

m What if we had:

if (a < 25)
{ System.out.println (“Error in a”); }
if (b < 25)
{ System.out.println (“Error in b”); }
m Rather than test all paths, test all
statements at least once

e.g., (a,b) = (10, 10), (50, 50)

Quick Poll é

UCT-CS

m So, which of these is the best testing
approach to use?
1. Exhaustive testing of all values
2. Equivalence classes and boundary values
3. Path testing
4. Statement coverage

Glass and Black Boxes é

UcT-cs

m |f you can create your test cases based on
only the problem specification, this is black
box testing.

m |f you have to look at the code, this is
glass box testing.

m Which categories do these fall in:
= Equivalence classes/boundary values
= Path coverage
= Statement coverage

Intro to Artificial Intelligence é
UCT-CS
m What is Al?
making machines appear to be intelligent
m Did you see the movie?
m Various approaches taken
complex algorithms
representating knowledge in a natural way
simulating the brain
simulating mother nature (e.g., evolution)

Neural Networks é

UcT-Cs

m Can we simulate the brain by creating
neuron “objects” and linking them
together?

m How does the brain learn? and how does it
recall information?

m Example:

EasyNN

The Turing Test é

UcT-Cs

m If you put a machine and a computer
behind a screen and communicate with
them, can you figure out which is which?

m Famous example:

ELIZA

