
1

UCT-CS

First things first …

� For these slides, go to:

�http://moodle.cs.uct.ac.za

Java Basics

Hussein Suleman
UCT Dept of Computer Science
CS115F ~ 2004

UCT-CS

Problem

� Write a program to calculate the number of
precious seconds you spend at lectures in
a semester, assuming you have 5 lectures
a day, lectures on 4 days a week, and
there are 14 weeks in a semester.

2

UCT-CS

Skeleton Program

// add in import statements here for external

// modules e.g., turtlegraphics.*

public class className

{

public static void main (String[] args)

{

// put instructions/statements here

}

}

UCT-CS

Example Program

test1.java:

public class test1
{

public static void main (String[] args)
{

System.out.println (“Hello World”);
}

}

output:
Hello World

UCT-CS

Identifiers

� “test1” is an identifier
� Identifiers are used to name parts of the

program
� start with $, _ or letter, and followed by $, _, letter

or digit

�preferred style: className

� Reserved words
�class, public, void, …

� The main method

3

UCT-CS

Identifiers: Quick Quiz

� Which are valid identifiers:
12345

JanetandJustin

$$$$$

_lots_of_money_

“Hello world”

J456

cc:123

� Which are good identifiers?

UCT-CS

Syntax

� Semicolons after every statement
� Case-sensitivity

�STUFF vs stuff vs STuff vs stUFF

� Everything after // is a comment
// a sample method

public void test

{

Turtle t = new Turtle (); // create turtle

}

UCT-CS

Output

� Text can be displayed on the screen
(console)

� Use the predefined System.out stream’s
print, println and flush methods, e.g.,
� System.out.print (“Hello world”);

� System.out.println (“ abc”+”def”);

� System.out.print (“hey \”dude\” \\ wheres my car\n”);

� System.out.flush (); // outputs incomplete lines

4

UCT-CS

Output: Quick Quiz

� What is output by:
System.out.println (“The ”);

System.out.print (“ quick ”);

System.out.println (“ brown ”);

System.out.print (“ fox ”

+“ jumped “);

System.out.print (“ over the lazy”);

System.out.println (“ dog.”);

UCT-CS

Primitive Data Types

� byte, short, int, long (Integers)
� float, double (Real)
� String

UCT-CS

Integers: Literals

� Integer literals are converted to strings if at
least one literal is a string
�System.out.print (“No:” + 12);

� No:12
�System.out.print (12 + 13);

� 25
�System.out.print (“No:” + (12 +
13));

� No:25

5

UCT-CS

Integers: Expressions

� Common operations
+ (plus), - (minus), / (divide), * (times), % (mod)

� 11 + 11 / 2 = 16 … how ?
� precedence of operators

� high: ()
� middle: * / %
� low: + -

� left associative if equal precedence
� integer operations when both “operands” are integers

UCT-CS

Integers: Quick Quiz

� What is the value of each expression:
� (12 + 34)
� (1 + 2) / (3 - 4)
�5 % 2 + 2 % 5
�1/1/2/3
�4/(3/(2/1))

UCT-CS

Integers: Types

name size smallest largest
byte 1 byte -128 127
short 2 bytes -32768 32767
int 4 bytes -2147483648 2147483647
long 8 bytes approx. -9*1018 approx. 9*1018

6

UCT-CS

Floating-point numbers

� 10.0, 0.386, 1.2345, 3.141,
2.6e12, 5.34e-79

� Two types:
� float 4 bytes 1.4e-45 … 3.4e+38
� double 8 bytes 4.9e-324 … 1.7e+308

� Same precedence and meaning of operations,
except for mixed type expressions
� (10 / 4.0f) * 4

UCT-CS

Strings

� Sequences of characters (letters, digits,
symbols)
�e.g., “howzit gaz’lum”

� Strings can be concatenated (joined) with
+
�e.g., “Cape” + “Town”

� The length method returns the number of
characters in the string
�e.g., “CapeTown”.length()

UCT-CS

Problem Revisited

� Write a program to calculate the number of
precious seconds you spend at lectures in
a semester, assuming you have 5 lectures
a day, lectures on 4 days a week, and
there are 14 weeks in a semester.

7

UCT-CS

Variables

� Memory placeholders to store data
� Variables have identifiers so they can be

referred to by name
�e.g., aValue, theTotal

� Defined by prefixing a name with a type
int aValue;

float a, b, c;

UCT-CS

Assignment and Output (I/O)

� Putting a value into a variable
int a, b;

a = 1;

b = a + 5;

int c = 1; // initialization

a = c = 2; // assignment with right precedence

�LHS is usually a variable, RHS is an
expression

� Output values of variables just like literals
�e.g., System.out.print (“The value is ” + a);

UCT-CS

Increment / Decrement

� c++
� increment c by 1
� same as: c = c + 1

� c--
� decrement c by 1
� same as: c = c - 1

� ++x prefix operator, increment before evaluation
� x++ postfix operator, increment after evaluation
� What does x+=2 do ? And y*=3 ?

8

UCT-CS

Implicit Conversions

� If there is a type mismatch, the narrower
range value is promoted up
int i=1; float f=2.0f;

System.out.print (i+f);

� Cannot automatically convert down
�e.g., int a = 2.345;

UCT-CS

Explicit Conversions

� Use pseudo methods to “cast” a value to
another type
int a = (int) 1.234;

2.0f + (float)7/3

� Use Math.ceil, Math.floor, Math.round
methods for greater control on floating-
point numbers

� String.valueof (123)

�converts 123 to a String

UCT-CS

Variables: Quick Quiz

� What is the output of this code:

int countA = 1, countB=2, countC=3;

countA++;

countB = ++countA + 2 + countC;

countA = countC-- + countB / 4;

countC = --countC - 1;

System.out.print
(countA+“:”+countB+“:”+countC);

9

UCT-CS

Input

� To get values from users entered at the
keyboard during program execution

import Keyboard; // not required on JDK1.4

public class Test {

public static void main (String[] args)

throws java.io.IOException {

int marbles;

marbles = Keyboard.readInt ();

}

}

UCT-CS

Input: Options

� Optional parameter for readInt will output a
“prompt” string
�e.g., readInt (“How many marbles have you:”)

� Keyboard also has methods for other
primitive data types:
� readDouble, readFloat, readShort, readLong,

readByte, readString

UCT-CS

Constants

� Like variables, but values cannot be
changed after initialisation

� Prefix the data type with static final
�e.g., static final double Pi = 3.14159;

� Useful for fixed values used in many
places in the program - one future change
will affect all uses

10

UCT-CS

Problem

� Write a program to convert your age into dog
years. Your program must ask for a human
years number and then output the dog years
equivalent.
� The formula is: 10.5 dog years per human year for the

first 2 years, then 4 dog years per human year for
each year after.

� [source: http://www.onlineconversion.com/dogyears.htm]

� Now do it the other way around … dog->human

UCT-CS

Object Oriented Programming

� Objects
� Classes
� Instance Variables
� Methods
� Methods: Data In
� Methods: Data Out

UCT-CS

OOP: Objects

� Objects are computer representations of
real-world objects
�e.g., aPerson, timTheTurtle, planetEarth

� Also called an instance
� Create an instance from a class using new

�e.g., Planet planetEarth = new Planet ();
�e.g., Person aPerson = new Person ();

11

UCT-CS

OOP: Classes

� Classes define the data and its associated
operations (methods) for objects of that
type
public class ClassName

{

// data and methods here

}

� One class in every file must be public -
exposed to the outside

� Separate files = modular programming

UCT-CS

OOP: Instance variables

� Variables defined within a class, with
separate copies for each object

� Makes every object unique, even though
they have the same class
public class Person

{

private String firstName, lastName;

private int age;

}

UCT-CS

OOP: Methods

� Set of statements within a class
� Single unit, and named with an identifier
� Used for common functions and to

set/retrieve values of instance variables
from outside the object

public void doSomething ()

{

// statements heres

}

12

UCT-CS

Why methods ?
…

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

…

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

…

System.out.println (“YAY it works”);

System.out.println (“a=“+a);

UCT-CS

… because

public void yay ()

{

System.out.println (“YAY it works);

System.out.println (“a=“+a);

}

…

d.yay ();

d.yay ();

d.yay ();

UCT-CS

OOP: Methods: Data In

� Parameters are used to send data to a method -
within the method they behave like variables
public void setName (String first, String last)

{

firstName = first; lastName=last;

}

� Calling methods must provide values for each
parameter
� e.g., aPerson.setName (“Alfred”, “Tshabalala”);

� Formal parameters (first) vs. Actual parameters
(“Alfred”)

13

UCT-CS

Why parameters ?

…
System.out.println (“YAY it works”);

System.out.println (“a=“+12);
…
System.out.println (“YAY it works”);
System.out.println (“a=“+13);
…

System.out.println (“YAY it works”);
System.out.println (“a=“+14);

UCT-CS

… because

public void yay (int someNumber)

{

System.out.println (“YAY it works);

System.out.println (“a=“+someNumber);

}

…

x.yay (12);

x.yay (13);

x.yay (14);

UCT-CS

OOP: Methods: Data Out

� Values can be returned from a typed
method
public int getAge ()

{

return age;

}

� return must be followed by an expression
with the same type as the header (int in
above example)

14

UCT-CS

Why return values ?

…

c=a*a+2*a*b+b*b;

…

d=e*e+2*e*f+f*f;

…

g=h*h+2*h*i+i*i;

UCT-CS

… because

public int doCalc (int n1, int n2)

{

return (n1*n1+2*n1*n2+n2*n2);

}

…

c = x.doCalc (a, b);

d = x.doCalc (e, f);

g = x.doCalc (h, i);

UCT-CS

OOP: Methods: Quick Quiz
public class Planet {

private String name;

public void setName (String aName) {

name = aName;
}

}

...

Planet earth = new Planet ();

� Which of these work?
earth.setName ();

earth.setName (2.345);

earth.setName (“Mars”);

earth.setName (“Mercury”, “Venus”, “Earth”);

earth.setName (“The”+“ Dude’s ”+“Planet”);

15

UCT-CS

Classes and Methods

� Class defines the template for creating objects
� Methods are sets of statements defined within a

class
� e.g., main

� To use a class, create an object of that type
� e.g., Turtle t = new Turtle ();

� To use a method, call it from its object with “dot”
notation
� e.g., t.move (400);

UCT-CS

Local and Object Variables

� Local variables are defined within a method
� Instance variables are defined within a class, but

outside any methods, and each object has its
own copy

� Class variables are defined like instance
variables, but prefixed with static - all objects
then share the same data

� A variable has “scope” when it can be used and
“lifetime” when it exists

UCT-CS

Problem

� Write a numerology calculator using
object-oriented programming. For any two
given birthdates, calculate the
compatibility between people as a simple
0-100 integer.
�Use any formula that makes sense.

