University of Cape Town
 Department of Computer Science

Computer Science CSC115F

Supplementary Exam

- Answer all questions.
- All questions that refer to elements of programming make reference to the Java programming language as studied in class.
- Good luck !

Marks: 25

Time: some minutes
Surname
NAME: \quad Initials
STUDENT NO: \square COURSE CODE: CSC

This paper consists of 2 questions and 6 pages (including this cover page).

			Mark	ocation		
Quest	Marks	Internal	External	Quest Marks	Internal	External
1	[10]			2 [15]		
Total				Total		
Grand Total						
				Final Mark		
Internal Examiner:				External Examiner:		

Section 1. Basic Java Concepts

Question 1. [10 marks]

Study the following program and answer the questions that follow.

```
public class someprogram
{
    public static void main (String [] args)
        throws java.io.IOException
    {
        int a = Keyboard.readInt ("Enter a number: ");
        int b = 0;
        while ( a != 0)
        {
            int digit = a % 10;
            a = a / 10;
            b = (b * 10) + digit;
        }
        System.out.println (b);
    }
}
```

a) What is a method?
named sequence of statements that operate on an object
b) Is digit an instance variable or a local variable? Briefly explain why you believe this is so.
local variable [1]
it is defined within a method. [1]
c) What is the output of the program if the input is " 123 "? In general, what does this program do?

321
it reverses an integer.
d) The program will not work for numbers of 12 digits. How can it be modified to allow for this?
change all data types to long [1] and use readLong [1]
e) Assuming you want to use statement coverage as a testing approach, provide a minimal set of test values to be used as input.

Section 2. Problem Solving

Question 2. [15 marks]

a) Complete the following program to draw an inverted right-handed right-angle triangle of height height on the screen in text mode, similar to the one depicted:

```
    ****
    ***
        **
            *
public class tri
{
        public static void main ( String [] args )
            throws java.io.IOException
        {
            int height = Keyboard.readInt("Enter height: ");
            // write your code here
```

 \}
 \}

```
public class tri
{
    public static void main ( String [] args )
        throws java.io.IOException
    {
        int height = Keyboard.readInt("Enter height: ");
        for ( int i=1; i<=height; i++ ) [2]
        {
            for ( int space=1; space<=(i-1); space++ ) [2]
                System.out.print (" ");
            for ( int star=1; star<=(height-i+1); star++ )
            [2]
                    System.out.print ("*");
            System.out.println (); [1]
        }
        }
}
```

b) Write a method calcChange to calculate the minimum number of each coin needed to sum up to a given amount. For example, the change for 41 c is $2 \times 20 \mathrm{c}$ and 1 x 1 c , instead of $7 \times 5 \mathrm{c}$ and $3 \times 2 \mathrm{c}$. Use the variables already defined to store the numbers of each coin. Assume the largest denomination is 50c.

```
public class change
{
    public static void main ( String [] args )
    {
            changeCalc s = new changeCalc ();
            s.calcChange (10);
            s.calcChange (26);
            s.calcChange (74);
        }
}
class changeCalc
{
    public void calcChange ( int amount )
    {
            int c50, c20, c10, c5, c2, c1;
            // write your code here
            System.out.println ("50c:" + c50 + " 20c:" + c20 +
                                    " 10c:" + c10 + " 5c:" + c5 +
                            " 2c:" + c2 + " 1c:" + c1);
    }
}
```

```
public void calcChange ( int amount )
{
    int c50, c20, c10, c5, c2, c1;
    c50 = amount / 50;
    amount = amount % 50;
    c20 = amount / 20;
    amount = amount % 20;
    c10 = amount / 10;
    amount = amount % 10;
    c5 = amount / 5;
    amount = amount % 5;
    c2 = amount / 2;
    amount = amount % 2;
    c1 = amount;
    System.out.println ("50c:" + c50 +
                            " 20c:" + c20 +
                            " 10c:" + c10 +
            " 5c:" + c5 +
            " 2c:" + c2 +
            " 1c:" + c1);
```

\}

