Introduction to Digital Libraries

hussein suleman
uct cs honours 2003

Open Digital Libraries: a Component Model
Introduction

Monolithic and/or Custom-built web-based application

digital library

users
digital objects
Problems

- Digital Libraries are difficult to build – lots of standards and evolving architectures
 - e.g., Dienst, EPrints

- Interoperability is hard
 - e.g., NCSTRL, Z39.50

- Software development is time-consuming
 - e.g., CSTC, WCR, EPrints

More Problems

- Poor software engineering
 - Tight coupling
 - Too much complexity
 - Inadequate testing methods

- Lessons from Internet development ignored
 - Simplicity
 - Independence
 - Layering
 - etc.
Solution?

componentised digital library

Some Component Architectures

RAP (KW)

Dienst

OAI-PMH

ODL (Open Digital Library)

OpenDLib

Convergence? Web Services?
Open Digital Library (ODL)

- Digital Libraries can be modeled as networks of extended Open Archives, where each extended Open Archive is a source of data and/or a provider of services.

- Each component is independent and has well-defined external interfaces that are Web-based, e.g., OAI-PMH.

Open DL Design

- Each component is encapsulated in an extended Open Archive.
- Communication with other components and user interfaces use specialised versions of the extended OAI-PMH (XOAI-PMH).
- Digital Libraries are constructed as networks of extended Open Archives.
Problem Revisited

open digital library

Protocol Layers

Protocol for Metadata Harvesting
Extended OAI-PMH
Open Digital Library Protocol
Component Layers

Extended OPEN ARCHIVE

Open Digital Library Component

Example Open Digital Library

Students and researchers

ETD Digital Library

ETD collections
Protocols and Components

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODL-Union</td>
<td>DBUnion</td>
<td>Merge archives together</td>
</tr>
<tr>
<td>ODL-Search</td>
<td>IRDB</td>
<td>Search engine</td>
</tr>
<tr>
<td>ODL-Browse</td>
<td>DBBrowse</td>
<td>Category-based browser</td>
</tr>
<tr>
<td>ODL-Recent</td>
<td>WhatsNew</td>
<td>Tracker for recent entries</td>
</tr>
<tr>
<td>ODL-Submit</td>
<td>Box</td>
<td>Archive supporting submit and retrieve operations</td>
</tr>
<tr>
<td>ODL-Annotate</td>
<td>Thread</td>
<td>Threaded annotation engine</td>
</tr>
<tr>
<td>ODL-Recommend</td>
<td>Suggest</td>
<td>Recommendation system</td>
</tr>
<tr>
<td>ODL-Rate</td>
<td>DBRate</td>
<td>Ratings manager</td>
</tr>
<tr>
<td>ODL-Review</td>
<td>DBReview</td>
<td>Peer review workflow manager</td>
</tr>
</tbody>
</table>

Example: IRDB Search Engine

- Encapsulate search capability in an OA
- OAI-PMH to gather data for indexing
- ODL-Search to submit queries and get results
Example: ODL-Search Protocol

- Parameters
 - query - list of searchable keywords
 - query language – “odlsearch1”
 - start/stop - subset of ranked list

- Encoding
 - verb=ListIdentifiers&set=odlsearch1/query/start/stop...
 - verb=ListRecords&set=odlsearch1/query/start/stop...

- Results
 - Standard OAI response - list of identifiers or records

- Example
 - verb=ListRecords&set=odlsearch1/computer science/1/10...

Case Study: ETD Union Catalog
The Ultimate Goal

- Package different configurations of components into instant DL systems
- DL building = component configuration
- All DLs speak the same language(s)
- Basic services are trivial to provide so more effort is spent on advanced capabilities of DLs
- Information is more accessible to users
Repository+ Component Models

Repository Access Protocol (RAP)

- A repository can be defined as a network-accessible server.
- RAP specifies a simple interface to access and manage digital objects in a repository.
- RAP is an abstract model, with concrete implementations in the Dienst, OpenDLib, OAI and ODL projects.
- This is usually referred to as the “Kahn/Wilensky architecture”.
 - does Kahn ring any bells?
RAP Operations

- ACCESS_DO
 - Return a manifestation (dissemination) of a digital object based on its identifier and a specification of what service is being requested.

- DEPOSIT_DO
 - Submit a digital object to the repository, assigning or specifying an identifier for it.

- ACCESS_REF
 - List services and their access mechanisms for the repository.

RAP: Naming of Digital Objects

- Each digital object must have a location-independent name (handle), made up of a repository identifier and a local name.
 - Example:
 - berkeley.cs/csd-93-712
 - where berkeley.cs is the repository and csd-93-712 refers to a technical report.

- Handles are resolved by a handle server to redirect a service provider to a repository containing an object identified only by its location-independent handle.
Handle Servers

- A handle server stores the association between handles and physical locations of objects.
- Handle servers follow a DNS model:
 - they are distributed and replicated
 - there are global and local servers
 - handles may be cached locally after being resolved to minimize resolution traffic
 - management of servers/handles requires an authority system for management, accountability, delegation, etc.

Handle Example
Digital Object Identifiers (DOIs)

- DOIs are a standardised implementation of the handle concept.
- Handles/DOIs are URIs that refer to digital objects while URLs are URIs that refer to network services.
- Handle/DOI resolution can be performed transparently using a browser plug-in.

Dienst

- Dienst (German for “service”) is a suite of protocols and components to build distributed digital libraries.
- Dienst is the software suite that supported document management at each of the older NCSTRL (Networked Computer Science Technical Reference Library) sites, and transparently linked them into an international federation of sites.
- Dienst uses federation for interoperability, with a “backup server” for robustness.
Dienst Service Architecture Example

from Dienst website at http://www.cs.cornell.edu/cdlrg/dienst/architecture/architecture.htm

Dienst Example

- **Example Request:**
 - List the handles in the high energy (hep) partition within the physics partition.

 `/Dienst/Repository/4.0/List-Contents?partitionspec=physics;hep`

- **Example Response:**

  ```xml
  <?xml version="1.0" encoding="UTF-8"?>
  <List-Contents version="4.0">
    <record>
      handlecorp/970101
    </record>
    <record>
      handlecorp/970102
    </record>
  </List-Contents>
  ```

Dienst → OAI-PMH

- Dienst formed the foundation for the current OAI-PMH – hence the terminology is sometimes similar.
- NCSTRL has moved to a model based on harvesting and OAI-PMH is being used to connect sites together. In 2001, data from the existing NCSTRL sites was harvested and archived (for preservation) using an early version of an ODL component!
 - see http://www.ncstrl.org

Dienst → OpenDLib

- OpenDLib is a component model similar to ODL, but based on Dienst rather than OAI-PMH.
- OpenDLib attempts to define services (mediators) and repositories based on Dienst and updated best practices in DLs.
Other repository/component models

- FEDORA (Flexible Extensible Digital Object and Repository Architecture) defines a generic interface to manage digital objects at a lower layer in an information system.
 - see http://www.fedora.info/

- SODA (Smart Objects Dumb Archive) packages digital objects into buckets containing the data along with the code to mediate access, display the objects, enforce rights, etc.

References

