Compaaive
Programming Languages

hussein suleman
uct csc304s 2003

Visud Languages and
IDEs. Visud C++

Program Layout

o Wizard selection of type of application to create
templates.

Bl Topan; b pdcles
= vsell =+ hirprts) waard I[.."l- 1
3 T
£ a1 %T-l TF&’
S o rir
i dzkzl b IR Aol
123 rresd Srees Z=rbrel

2 Sl a0 Do ik Pruizus

- .
Fe ol T e Prujs tﬁ %f
T3 wswl bien dlibone ik

b wRmril MRS T et mere-k
&7 cpplcckion thak wecs o Mic-as0t Faordadonedos: Lbear,

H=ma besld
Lazatiar s and Fertingsihessinges Tanimenks s - Famiaa ..
LY I T T] | TR L] TR

Frejct el Bacrested ab Jin, Sssa=\ My 2ooamencivizue ud o Poladsiects,

st ||

Basic Feature Selection

o Common features of visual applications
are simple options.

WAFC Aaplicalion Wisanl losi®

H=ry Inkerfare bahees
JpacF opt oo Fazecrae dee oo s fealcf wen aps ook,

Farisnssyer
LT PR
v rimks koo

M An e

b B " 1 |

il

T amad
¥ awmie= =z
ok Eae

LR bl i
I=szFa H

A Cavd Hrin

Code generation

o Use visual controls to present options and
generate code based on those.

MFC Applicalion Wisanl |osl# Tl

hrneraked |Hosses [t
Zaves pare ebad danses e o 5y base cnnges for ol aps bt e |
1

i ar e cated dassss;

A e TR,
Timg LT
) IR ITEN

Lensrated Llapses

Visua Metaphors

Canvas Widgets/Tools/Components

Property Lists

o Wherever possible, initial values of
variables are set visually — some
languages treat such variables differently.

(oo | [epp———
o o e T

= T [

= Fi
| M=k - | —
i I

Vi ===ks] zoee Pl 1
S Fb- |
Fode | oanew [Y I
F.H- Fikz 1
e 1akn - |
|
|
|
1
I
I
I

PR o ;nTod Foks
B i1l be- Pk
i e HH k=
1-argn Fh: =l -
Capthan

SEmcRsHhe a5 aand b ke
waked

- [l =
Pozwe min Lol 1w - Farpho Bl n tdheg
L L _._I

L
T Chiza

Code Correspondence

o “Make the simple things simple and the
difficult things possible”. It is still possible
to edit
code.

e oca tw heme e b o e b
- M@ sl
[L N

- ke AT L

Minimalist Programming

Only three lines of

Ewozd CtzstzDle::imBallickzchibonl) actual code to get
i from “go” to
JoTaboe Adé your sonkral aotifizstion hewdler codz here application!
case 2[202<27;
e.C2tlindcwTexez, 1024):
l.A3cizeing c): 4 Tost for CFL

Runtime and Design-time

o Core widgets/controls are provided by OS.

o Common controls (e.qg., JPEG viewers) are
distributed as libraries.

o User-defined components can be defined
and added to toolbar.

o Components have runtime operation and
design-time operation.

m For example, at runtime a clicked button
generates an event. At design-time when a
button is scaled the text label recenters itself
in the button.

| ssues?

0 How do you define non-visual parts of the
program?

o Is it possible to link together non-visual
components in the same way as visual
components?

o Can components be language
independent? (Builder v1.0 came with
both a Pascal and C++ compiler to
accomplish this)

Back in the good ol’ days

o You wrote 300 lines of code in C for a
“Hello World” program.

O Your application had to use code to
manually create type definitions and
instances of each widget.

O Your application had to do explicit
cooperative synchronisation with other
applications.

o Thankfully, those days are gone ©

Scripting Languages:
| ntroduction to Perl

Perl as Scripting Language

O Scripts are usually thought of as “glue”
that connects real applications together.
O Scripting languages are sometimes highly
specialised (e.g., BASH) or sometimes

very general (e.g., Perl).
O Most scripting languages are interpreted,
therefore very flexible but not fast.

o Perl is one of the most popular scripting
languages because it can be quick-and-
dirty.

Simple Example

print "Checking chat directory\n";

get listing of all files
opendir (DR, "$d/chat");
@iles=readdir (DR);
closedir (DR);

iterate throughlist
foreach (@il es)

build filename and get information
$fil ename="%$d/ chat/$_";
@nfo=stat ($fil enane);

check age and nove file if it has expired
$daysol d=(-M $fil enane);
if ($daysold > $maxdaysgane)
{
system "nv $fil ename $d/ del game";
print "moving ... $_ [$daysold]\n";
}
}

Data Types

O Scalar — prefixed with a $
= $t =“Text string”;
= $n = 1234,
o List — prefixed with a @
m@list = (1, 2, 3);
m$t = $alist[0]; # assigns value of 1

O Associative Array — prefixed with a %
= Y%parnms = (“foanf, 1, “bubbles”, 2);
= $f oanval ue = $parns{“foani};

V ariable Substitution

O Perl can process strings to interpolate
values for variables.

O “” strings are preprocessed — “ strings are
not.

o Example:
m $dol l ar = 123;
= $currency = ‘$dollar’;
mprint “rand - $currency rate”;
rand — $dollar rate
mprint‘rand — ' .$currency.’ rate’;

Loose Typing

O Types of scalars are not declared.
Conversion between strings and numerics
Is implicit as and when needed.
= Example: print substr (12+1, 1);

O Lists can store any scalars.

= Example:@ = (1, “123", 2);

O Specific semantics are associated with the

use of types in “wrong” contexts.
= Example: $size = @;
= Returns the number of elements in the list.

Control Structures

O Loosely based on C - statements are
semicolon-separated.

0 Conditional:
if (expression) { ...}
elsif (expression) { ...}
else { ...}

O Iteration:
= while (expression) { ...}
mfor (initial; test; increment) { ...}
m foreach variable (list) { ...}

Regular Expressions

O Regular expressions are used to match
strings from a regular language - i.e.
context-free with no recursion.

o Perl regular expressions are used for:
= matching
m search-and-replacement

o Example:
m $t =~ s/[\xa0-\xff]/'&# .ord ($&).';'/geo;

m Converts all extended ASCII characters in the
string $t into Unicode.

10

Regular Expression Syntax

\ Escape for next character

. Any character

* Zero or more of preceding element

+ One or more of preceding element

? Optional preceding element

{} Occurrence range

[1 Character class — any one of characters
| Logical OR

O Grouping operator

~ /'$ |Matches beginning/end of string

Regular Expression Examples

ohello.*
= Matches “hello world”, “hello gazlum”, ...

o(alb)?(c|d)*e

= Matches “accce”, “bcdcde”, “ae”, “be”, ...
of[a-z]+

= Matches “a”, “bed”, “fdsff”, ...
o[hH [eE] [IL]{2}[00

= Matches “HeLlO”, “HELLO”, “hello”, ...

11

http://[a-zA-Z0-9]+
http://www.cs.uct.ac.za:80/

Using Regular Expressions

O Boolean expressions
mif ($text =~ /[a-z]+/) { ...}

O Search-and-replace
m s/<source>/<destination>/options

w $url =~ s/(http:\7\/[a-zA-20-9] #(\. [a-

ZA-70-9]+)*) (: [0-9] +) 2(. *) 1 $1: 8080%$4/ go;
®» Changes the port number in a URL to 8080 by
decomposing the URL into constitutents and

re-forming it with the new port number.

m $1, $2, etc. are used to refer to groups defined
by parentheses.

Subroutines

o Subroutines are defined as follow:
® sub <nane> { ...}

o Parameters are passed in the @__ list and
are usually assigned in the first line.

O Return value is the last expression.

= Example:
sub concatenate
{
nmy ($a, $h) = @;
$a. $b;
}

o Note: “my” creates local variables.

12

http://[a-zA-Z0-9]+

Perl as Text Processor

O Besides regular expressions, Perl has
many built-in functions for efficient text
processing:
= split — splits a string into a list of parts based

on a separator string or separator regular
expression.

® join — joins a list into a single string.
® index/rindex — search for the index of one
string within another.
o Example:
m @darray=split (/[=&/);

Perl as Functional Language

O Being interpreted, Perl easily mixes
aspects of procedural, OO and functional
paradigms.

O map — applies a “function” to a list.

= Example:
$prefix = join ("', map { chr
(ord('a')+rand(26)) } (1..5));

Creates a random string of 5 characters
O eval — interprets the string or block as Perl
statements

= Example:
while ($name = <STDIN>) { eval $nane; }
One-line Perl interactive shell!

13

References

O References are special scalars that contain
the address of a piece of data.

o Obtain reference by prefixing
data/variable with “\”.

o Dereference variable by prefixing with
either “$”, “@” or “% ", depending on data
type.

O Example:

ny @ = (1,2, 3);
ny $aref = \@;

my @ = @aref;
ny $c $$aref [0] ;

Anonymous Data Structures

O References to anonymous data structures
can be created with [] for lists and {} for
associative arrays.

o Example:

ny $a = [“apples”, “oranges”];
nmy $b = { appl es=>1, oranges=>2 };
foreach ny $fruit (@a)

{
print $b->{$fruit};

}

O Note: -> is the dereference and index
operator for lists and associative arrays.

14

Complex Data Structures

o Example:
ny $xmldata =
{ root =>

[l

testdoc

{ xm ns=>data },
{ title=>testdoc,
aut hor =>

[

{ first=>qgwer, |ast=>ty},
{ first=>asdf, |ast=>gh }
]

}
1]

}
foreach $auth (@ $xm data->{root}->[0]->[1]->{author}})
{

print "$auth->{first} $auth->{last}\n";
}

Packages

o Perl subroutines can be stored in separate
files with specified names/namespaces
(like in C++).

o To define a package:

m package Test: : CPL;
and a bit of code to export symbols ...
O To use a package:
m use Test:: CPL;

clearinghouse for modules for just about
everything!

15

http://www.cpan.org

0O-0 Pel

o Packages can be further abstracted to
correspond to classes, similar to Java.

o Perl includes support for

class/instance methods,

» information hiding,

m constructors and destructors,

= multiple inheritance,

= method overloading,

= polymorphism.

O Most reusable code in Perl is now OO.

Evauation

o0 Good for rapid prototyping and glue.

O Easy to write complex code — difficult to
understand and maintain unless
programmers are disciplined.

O Lots of features but not very efficient
because of it is interpreted.

o Can be used for procedural, object-
oriented, functional, visual (Glade) and
maybe even declarative (Perlv6)
programming — the kitchen sink solution!

16

Which language ?

o What are your basic needs?

m speed of code? space efficiency? speed of
coding?

o What are the problem domain issues?
® ai-centric? data-centric? parallel? gui?
o What are the environment restrictions?

m platform? memory? available compilers?
company policy?

o What are the cost issues?
m compiler cost? training of programmers?

go forth and code!

17

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

