
1

Comparative
Programming Languages

hussein suleman
uct csc304s 2003

Visual Languages and
IDEs: Visual C++

2

Program Layout
Wizard selection of type of application to create
templates.

Basic Feature Selection
Common features of visual applications
are simple options.

3

Code generation
Use visual controls to present options and
generate code based on those.

Visual Metaphors

Canvas Widgets/Tools/Components

4

Property Lists
Wherever possible, initial values of
variables are set visually – some
languages treat such variables differently.

Code Correspondence
“Make the simple things simple and the
difficult things possible” . It is still possible
to edit
code.

5

Minimalist Programming

Only three lines of
actual code to get
from “go” to
application!

Runtime and Design-time
Core widgets/controls are provided by OS.
Common controls (e.g., JPEG viewers) are
distributed as libraries.
User-defined components can be defined
and added to toolbar.

Components have runtime operation and
design- time operation.

For example, at runtime a clicked button
generates an event. At design- time when a
button is scaled the text label recenters itself
in the button.

6

Issues?
How do you define non-visual parts of the
program?

Is it possible to link together non-visual
components in the same way as visual
components?
Can components be language
independent? (Builder v1.0 came with
both a Pascal and C++ compiler to
accomplish this)

Back in the good ol’ days
You wrote 300 lines of code in C for a
“Hello World” program.

Your application had to use code to
manually create type definitions and
instances of each widget.
Your application had to do explicit
cooperative synchronisation with other
applications.

Thankfully, those days are gone

7

Scripting Languages:
Introduction to Perl

Perl as Scripting Language
Scripts are usually thought of as “glue”
that connects real applications together.
Scripting languages are sometimes highly
specialised (e.g., BASH) or sometimes
very general (e.g., Perl).
Most scripting languages are interpreted,
therefore very flexible but not fast.

Perl is one of the most popular scripting
languages because it can be quick-and-
dirty.

8

Simple Example
print "Checking chat directory\n";

get listing of all files
opendir (DIR, "$d/chat");
@files=readdir (DIR);
closedir (DIR);

iterate throughlist
foreach (@files)
{

build filename and get information
$filename="$d/chat/$_";
@info=stat ($filename);

check age and move file if it has expired
$daysold=(-M $filename);
if ($daysold > $maxdaysgame)
{

system "mv $filename $d/delgame";
print "moving ... $_ [$daysold]\n";

}
}

Data Types
Scalar – prefixed with a $
$t = “Text string”;

$n = 1234;

List – prefixed with a @
@alist = (1, 2, 3);

$t = $alist[0]; # assigns value of 1

Associative Array – prefixed with a %
%parms = (“foam”, 1, “bubbles”, 2);

$foamvalue = $parms{“foam”};

9

Variable Substitution
Perl can process strings to interpolate
values for variables.

“” strings are preprocessed – ‘’ strings are
not.

Example:
$dollar = 123;

$currency = ‘$dollar’;

print “rand - $currency rate”;

rand – $dollar rate

print ‘rand – ’.$currency.‘ rate’;

Loose Typing
Types of scalars are not declared.
Conversion between strings and numerics
is implicit as and when needed.

Example: print substr (12+1, 1);

Lists can store any scalars.
Example: @t = (1, “123”, 2);

Specific semantics are associated with the
use of types in “wrong” contexts.

Example: $size = @t;

Returns the number of elements in the list.

10

Control Structures
Loosely based on C - statements are
semicolon-separated.

Conditional:
if (expression) { … }

elsif (expression) { … }

else { … }

Iteration:
while (expression) { … }

for (initial; test; increment) { … }

foreach variable (list) { … }

Regular Expressions
Regular expressions are used to match
strings from a regular language – i.e.
context- free with no recursion.

Perl regular expressions are used for:
matching
search-and-replacement

Example:
$t =~ s/[\xa0-\xff]/'&#'.ord ($&).';'/geo;

Converts all extended ASCII characters in the
string $t into Unicode.

11

Regular Expression Syntax

Matches beginning/end of string^ / $

Grouping operator()

Logical OR|

Character class – any one of characters[]

Occurrence range{}

Optional preceding element?

One or more of preceding element+

Zero or more of preceding element*

Any character.

Escape for next character\

Regular Expression Examples
hello.*

Matches “hello world” , “hello gazlum”, …
(a|b)?(c|d)*e

Matches “accce” , “bcdcde” , “ae” , “be” , …
[a-z]+

Matches “a” , “bed” , “ fdsff” , …
[hH][eE][lL]{2}[oO]

Matches “HeLlO” , “HELLO”, “hello” , …
http:\/\/[a-zA-Z0-9]+(\.[a-zA-Z0-9]+)*(:[0-9]+)?(.*)

Matches simple URLs!
http://www.cs.uct.ac.za:80/

http://[a-zA-Z0-9]+
http://www.cs.uct.ac.za:80/

12

Using Regular Expressions
Boolean expressions

if ($text =~ /[a-z]+/) { … }

Search-and- replace
s/<source>/<destination>/options
$url =~ s/(http:\/\/[a-zA-Z0-9]+(\.[a-
zA-Z0-9]+)*)(:[0-9]+)?(.*)/$1:8080$4/go;

Changes the port number in a URL to 8080 by
decomposing the URL into constitutents and
re- forming it with the new port number.
$1, $2, etc. are used to refer to groups defined
by parentheses.

Subroutines
Subroutines are defined as follow:

sub <name> { … }

Parameters are passed in the @_ list and
are usually assigned in the first line.
Return value is the last expression.

Example:
sub concatenate

{

my ($a, $b) = @_;

$a.$b;

}

Note: “my” creates local variables.

http://[a-zA-Z0-9]+

13

Perl as Text Processor
Besides regular expressions, Perl has
many built- in functions for efficient text
processing:

split – splits a string into a list of parts based
on a separator string or separator regular
expression.
join – joins a list into a single string.
index/rindex – search for the index of one
string within another.

Example:
@CGIarray=split (/[=&]/);

Perl as Functional Language
Being interpreted, Perl easily mixes
aspects of procedural, OO and functional
paradigms.
map – applies a “ function” to a list.

Example:
$prefix = join ('', map { chr
(ord('a')+rand(26)) } (1..5));

Creates a random string of 5 characters

eval – interprets the string or block as Perl
statements

Example:
while ($name = <STDIN>) { eval $name; }

One- line Perl interactive shell!

14

References
References are special scalars that contain
the address of a piece of data.

Obtain reference by prefixing
data/variable with “ \ ” .
Dereference variable by prefixing with
either “$” , “@” or “% ” , depending on data
type.
Example:

my @a = (1,2,3);

my $aref = \@a;

my @b = @$aref;

my $c = $$aref[0];

Anonymous Data Structures
References to anonymous data structures
can be created with [] for lists and {} for
associative arrays.
Example:

my $a = [“apples”, “oranges”];
my $b = { apples=>1, oranges=>2 };
foreach my $fruit (@$a)
{

print $b->{$fruit};
}

Note: -> is the dereference and index
operator for lists and associative arrays.

15

Complex Data Structures
Example:
my $xmldata =

{ root =>
[[

{ xmlns=>data },
{ title=>testdoc,
author=>

[
{ first=>qwer, last=>ty},
{ first=>asdf, last=>gh }

]
}

]]
};

foreach $auth (@{$xmldata->{root}->[0]->[1]->{author}})
{

print "$auth->{first} $auth->{last}\n";
}

root

xmlns

title

author

author

first

last

first

last

gh

asdf

ty

qwer

testdoc

data

Packages
Perl subroutines can be stored in separate
files with specified names/namespaces
(like in C++).
To define a package:

package Test::CPL;
and a bit of code to export symbols …

To use a package:
use Test::CPL;

CPAN (Comprehensive Perl Archive
Network – www.cpan.org) is a
clearinghouse for modules for just about
everything!

http://www.cpan.org

16

O-O Perl
Packages can be further abstracted to
correspond to classes, similar to Java.

Perl includes support for
class/instance methods,
information hiding,
constructors and destructors,
multiple inheritance,
method overloading,
polymorphism.

Most reusable code in Perl is now OO.

Evaluation
Good for rapid prototyping and glue.
Easy to write complex code – difficult to
understand and maintain unless
programmers are disciplined.
Lots of features but not very efficient
because of it is interpreted.

Can be used for procedural, object-
oriented, functional, visual (Glade) and
maybe even declarative (Perlv6)
programming – the kitchen sink solution!

17

Which language ?
What are your basic needs?

speed of code? space efficiency? speed of
coding?

What are the problem domain issues?
ai-centric? data-centric? parallel? gui?

What are the environment restrictions?
platform? memory? available compilers?
company policy?

What are the cost issues?
compiler cost? training of programmers?

go forth and code !

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

