Compaaive
Programming Languages

hussein suleman
uct csc304s 2003

Runtime Execution

von Neumann Machines

o Early languages were modelled on
machine architecture

o Low-level programs (e.g., assembly
language) translated directly to machine
architecture.

o Early high level languages (e.g. C)
abstract the assembly language one step
further.

Runtime Environments

O Java compilers produce bytecode that is
machine-independent.
® This requires a machine- specific bytecode
translator — Java Runtime Environment (JRE).
o Jython is a Python compiler that
assembles JRE-compatible bytecode.

O .Net compilers (e.g., C#.Net, Visual
Basic.Net) use the Common Language
Runtime (CLR) which enables language-
independence.

Java Runtime

O Java requires runtime support specific to
the language:

= Virtual method tables, which list the bindings
of virtual methods, must be maintained for
each class to support polymorphism.

m Garbage collection has to be done periodically
because there is no memory deallocation.
O Maintenance is performed either
interspersed with the code or through the
runtime environment.

Functional Language Execution

o Can a full Mathematica compiler ever
exist?

o If a language does not differentiate
between data and programs, a user can
enter a string and submit it for execution.
How will a compiler support this?

O Solutions:
= Engine and partially-compiled code
m Interpreter instead of compiler

Declarative Language Execution

o von Neumann computers do not support
rulebases and matching so an engine is
necessary!

o Runtime is much slower when compared
to partial compilation (Mathematica),
intermediate compilation (Java) and full
compilation (C).

Exceptions

Exception Concepts

O An exception is an
unusual/unexpected/erroneous event in
the program’s execution.

O An exception is “raised” when the event
occCurs.

o An exception is “thrown” when it is raised
explicitly.
O An exception handler is a code segment

that is executed when the corresponding
exception is raised.

Exception Handler

o Example (in Ada):

| oop

ABLQOCK:
begin

PUT_LINE (“Enter a nunber”);

GET (NUMB) ;

exit;

exception

when DATA ERROR =>
PUT_LINE (“Not nunber — try again”);

end ABLOCK;

end | oop;

Continuation

o Where to continue execution after the
exception handler?
®» The statement that raised the exception?
= After the statement that raised the exception?

m After the current iteration of a block? (Ada
loop)

= An explicit location?

= At the end of the subprogram in which the
exception was raised? (Ada)

= After the exception handler? (Java/C++)

= Nowhere — terminate the application?
(unhandled exceptions)

Handler Salection

O Exceptions can be specified by:
m Special exception type (Ada)
» Ordinary data type (C++)
= Object type with specified superclass (Java)

o Handler can be selected according to:
m First match (Java/C++)
m Best (most specific) match

Exception Propagation

o If an exception is not handled by the
subprogram in which it is generated,
control is returned to the caller and the
exception is reraised.

o If the main program has no handler, the
program terminates.

Default Handlers

O Some languages have default handlers for
some exceptions — Ada usually terminates
the program.

o Generic handlers can be specified as a
fallback mechanism:
m catch (Exception e) inJava
mcatch (.) in C++
= ot her sn Ada

finally

0 Java has a special exception handler
clause to be executed whether or not an
exception occurred, and before control
passes beyond the handler.

o Example:
try {

} cgéch (Exception e) {
} f{ﬁally {

}

Concurrency and
Didribution

Why concurrency?

O Multiple processors (SIMD or MIMD).

O Multi-programmed OS with non-
deterministic evaluation order.

o Web applications that service multiple
requests (pseudo-)simultaneously.

O Simulations that require cooperation.

o How can we build support for concurrency
into the language itself?

Critical Regions

O A critical region is a part of the code that
must be executed without interference
from other processes.

O Mutual exclusion is when only one running
process can be in the critical region at any
point in time.

o Mutual exclusion MUST be supported by
hardware - usually an atomic TEST-AND-
SET operation. Languages only provide
abstractions.

Synchronisation

o When two tasks or processes attempt to
enter a critical region at the same time,
one must wait for the other to complete.

o Order is non-deterministic.

o Synchronisation enforces mutual
exclusion.

Statement-Level Concurrency

o In ALGOLGS8, statements separated by
commas may be parallelised.

o Example:
begin
a .
b :
Cc :
end

* 4
ou

o o 9o

10

Semaphores

o A semaphore is made up of a counter and
a queue of waiting processes, with two
operations:

= (P) wait
m (V) release

o Wait causes the current process to block
(using the queue) until the counter is >0.
Then the counter is decremented and the
next statement is executed.

O Release increments the counter or
switches to a waiting task.

Monitors

O Module-based approach to synchronisation
used in Modula-2 and Concurrent Pascal.

o Only one process can be executing a
procedure from the module at any time.

o Monitors are like mutually-exclusive
objects in that they contain data that is
being protected through methods.

O Monitors still rely on shared memory.

11

Message Passing

O Ada uses synchronous and asynchonous

messages to communicate between tasks.

o If one task is ready to accept messages
and another is attempting to send a

message then a “rendezvous” takes place.

o Synchronisation relies not on shared
memory but on message queues —
processes can be distributed.

12

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

