
1

Comparative
Programming Languages

hussein suleman
uct csc304s 2003

Runtime Execution

2

von Neumann Machines
Early languages were modelled on
machine architecture

Low- level programs (e.g., assembly
language) translated directly to machine
architecture.
Early high level languages (e.g. C)
abstract the assembly language one step
further.

Runtime Environments
Java compilers produce bytecode that is
machine- independent.

This requires a machine-specific bytecode
translator – Java Runtime Environment (JRE).

Jython is a Python compiler that
assembles JRE-compatible bytecode.
.Net compilers (e.g., C#.Net, Visual
Basic.Net) use the Common Language
Runtime (CLR) which enables language-
independence.

3

Java Runtime
Java requires runtime support specific to
the language:

Virtual method tables, which list the bindings
of virtual methods, must be maintained for
each class to support polymorphism.
Garbage collection has to be done periodically
because there is no memory deallocation.

Maintenance is performed either
interspersed with the code or through the
runtime environment.

Functional Language Execution
Can a full Mathematica compiler ever
exist?

If a language does not differentiate
between data and programs, a user can
enter a string and submit it for execution.
How will a compiler support this?

Solutions:
Engine and partially-compiled code
Interpreter instead of compiler

4

Declarative Language Execution
von Neumann computers do not support
rulebases and matching so an engine is
necessary!

Runtime is much slower when compared
to partial compilation (Mathematica),
intermediate compilation (Java) and full
compilation (C).

Exceptions

5

Exception Concepts
An exception is an
unusual/unexpected/erroneous event in
the program’s execution.

An exception is “ raised” when the event
occurs.
An exception is “ thrown” when it is raised
explicitly.
An exception handler is a code segment
that is executed when the corresponding
exception is raised.

Exception Handler
Example (in Ada):

loop

ABLOCK:

begin

PUT_LINE (“Enter a number”);

GET (NUMB);

exit;

exception

when DATA_ERROR =>

PUT_LINE (“Not number – try again”);

end ABLOCK;

end loop;

6

Continuation
Where to continue execution after the
exception handler?

The statement that raised the exception?
After the statement that raised the exception?
After the current iteration of a block? (Ada
loop)
An explicit location?
At the end of the subprogram in which the
exception was raised? (Ada)
After the exception handler? (Java/C++)
Nowhere – terminate the application?
(unhandled exceptions)

Handler Selection
Exceptions can be specified by:

Special exception type (Ada)
Ordinary data type (C++)
Object type with specified superclass (Java)

Handler can be selected according to:
First match (Java/C++)
Best (most specific) match

7

Exception Propagation
If an exception is not handled by the
subprogram in which it is generated,
control is returned to the caller and the
exception is reraised.

If the main program has no handler, the
program terminates.

Default Handlers
Some languages have default handlers for
some exceptions – Ada usually terminates
the program.

Generic handlers can be specified as a
fallback mechanism:

catch (Exception e) in Java
catch (…) in C++
othersin Ada

8

finally
Java has a special exception handler
clause to be executed whether or not an
exception occurred, and before control
passes beyond the handler.

Example:
try {

…

} catch (Exception e) {

…

} finally {

…

}

Concurrency and
Distribution

9

Why concurrency?
Multiple processors (SIMD or MIMD).
Multi-programmed OS with non-
deterministic evaluation order.
Web applications that service multiple
requests (pseudo-)simultaneously.

Simulations that require cooperation.

How can we build support for concurrency
into the language itself?

Critical Regions
A critical region is a part of the code that
must be executed without interference
from other processes.

Mutual exclusion is when only one running
process can be in the critical region at any
point in time.

Mutual exclusion MUST be supported by
hardware - usually an atomic TEST-AND-
SET operation. Languages only provide
abstractions.

10

Synchronisation
When two tasks or processes attempt to
enter a critical region at the same time,
one must wait for the other to complete.

Order is non-deterministic.
Synchronisation enforces mutual
exclusion.

Statement-Level Concurrency
In ALGOL68, statements separated by
commas may be parallelised.

Example:
begin

a := a + 5,

b := d * 6,

c := d - 94

end

11

Semaphores
A semaphore is made up of a counter and
a queue of waiting processes, with two
operations:

(P) wait
(V) release

Wait causes the current process to block
(using the queue) until the counter is >0.
Then the counter is decremented and the
next statement is executed.

Release increments the counter or
switches to a waiting task.

Monitors
Module-based approach to synchronisation
used in Modula-2 and Concurrent Pascal.

Only one process can be executing a
procedure from the module at any time.
Monitors are like mutually-exclusive
objects in that they contain data that is
being protected through methods.
Monitors still rely on shared memory.

12

Message Passing
Ada uses synchronous and asynchonous
messages to communicate between tasks.

If one task is ready to accept messages
and another is attempting to send a
message then a “ rendezvous” takes place.
Synchronisation relies not on shared
memory but on message queues –
processes can be distributed.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

