Compaaive
Programming Languages

hussein suleman
uct csc304s 2003

Variables, Binding and
Scope

Name Terminology

o A “name” or “identifier” is a used to
identify an entity in a program.
» Example: soneVari abl e, sonmeType

o A “keyword” has special meaning in the
context of a specific language, but can be
redefined.

» Example: | NTEGER REAL in FORTRAN declares
“REAL” to be of type integer

= Example: in English, Buffalo buffalo buffalo.

o A “reserved word” is like a keyword but
cannot be redefined.
= Example: begi nin Pascal, f or in Java

Variable

O Section of memory used to store data.

O 6 Attributes for each variable:
= name = identifier used to refer to memory

» address = actual physical/logical location in
memory

= type = type of data that may be stored

= value = data that is stored

m scope = whether/where a variable may be
used

» lifetime = whether/where a variable occupies
actual storage (i.e., has an assigned address)

Aliasing

o Two or more variables may use the same
address to store their values.
= Example: variant records in Pascal, unions in C
m Better efficiency in storing data.
m Decrease readability as values of variables can
be changed indirectly.

o Example:
uni on answer {
int ans_integer;
float ans_float;

Binding

O Association between language element
and attribute.
o Binding times:
®» Language design time - when the language is
designed, e.g., meaning of operators.
= Compiler design time — when the compiler is
designed, e.g., internal representations.
= Compile time — when a module is compiled,
e.g., type of variable.
» Link time — when the modules are linked
together, e.g., address of called subroutine.

®» Runtime — when the program is being run,
e.g., value of variable.

Binding times

o Example (in Java):

mint x = x + 1;

Binding Time
Type of x Compile time
Value of x Runtime

Meaning of “+”

Language design time

Amount of storage
required for x

Compiler design time

Meaning of “1”

Language design time

Storage for x

Runtime

Declarations and Definitions

o Some languages (e.g., C++) support the
notion of splitting declarations from

definitions.

type.

storage.
o Example:

o Declarations specify attributes such as

o Definitions specify attributes and bind

= f orwar d declaration in Pascal allows you to
declare a variable/function before definition.

Static and Dynamic Types

O Static types cannot be changed.
= Example (explicit declaration):
int a;
= Example (implicit declaration in Perl):
$newariable = 12;
o Dynamic types are bound at assignment.
= Example (in APL):
ABC ¢« 1 2 3
ABC < 42
O Static type can be checked at compile-
time — dynamic types must be checked at
runtime!

Strong typing

O Strong typing implies type errors are
always detected — opposite of weak
typing.

o Example:

m C/C++ is not strongly typed.
® Java is strongly typed but allows explicit casts.

o Coercion is when the type of an element is
automatically converted when needed.
= Example (in Java):
int a =2; double x = 1.0/ a;
= Coerced values lead to less reliable error
detection!

Type compatibility

o Types must match when parameters are passed,
assignments are made, etc.

o Name compatibility: type names must match.
= Example (C++):
typedef struct { int a} typea;
typedef struct { int b} typeb;
/1 typea is not conpatible with typeb !

o Structure compatibility: structure of types must
match.
= Example (Pascal):
type typea = real; typeb=real;
{ typea is conpatible with typeb }
o Most languages use mixtures of name and
structure compatibility.

Lifetime

O A variable/parameter has lifetime when
storage is allocated for it.

O Static variables have lifetime for the whole
execution of the program.

o Dynamic variables have lifetime when
they are elaborated (allocated/bound).

= Examples:
Local variables stored on stack.
= e.g., recursive function parameters
Memory blocks explicitly allocated on heap.
= e.g., C's malloc memory allocation
Memory blocks implictiy allocated on heap.
= e.g., ALGOL's flex arrays

Scope

o An identifier has scope when it is visible
and can be referenced.

o An out- of-scope identifier cannot be
referenced.

O ldentifiers in open scopes may override
older/outer scopes temporarily.

O 2 Types of scope:

m Static scope is when visibility is due to the
lexical nesting of subprograms/blocks.

= Dynamic scope is when visibility is due to the
call sequence of subprograms.

Changing Scope

o ldentifiers come into scope at the beginning of a
subprogram/block and go out of scope at the
end.

o Example (in C++):
voi d testfunc ()
{
int a; // a enters scope;
for (int b=1; b<10; b++) // b in scope for for
{

int ¢c; // c enters scope

} /'l b,c | eave scope

} I/ a leaves scope

Static Scope

o Consider the Pascal program (which uses static scoping):

programtest;
var a : integer;

procedure procl;
var b : integer;

begi n)
end: * in scope: b (from procl), a (from test)

procedure proc2;

var a, ¢ : integer;
begi n .)
proci: in scope: a, ¢ (from proc2)
end;
begi n in scope: a (from test)
proc2,
end.

Dynamic Scope

o Consider the Pascal-like code (assume dynamic scoping):

program test;
var a : integer;

procedure procl;
var b : integer;

begin
eng; <« in scope: b (from procl) a, c (from proc2)

procedure proc2;

var a, c : integer;
begi n) .
proci; in scope: a, ¢ (from proc2)
end;
begin
gpr oc2; in scope: a (from test)

end.

Static vs. Dynamic Scope

o Dynamic scope makes it easier to access
variables with lifetime, but it is difficult to
understand the semantics of code outside
the context of execution.

O Static scope is more restrictive — therefore
easier to read — but may force the use of
more subprogram parameters or global
identifiers to enable visibility when
required.

Lifetime revisited

o Consider the Pascal program (which uses static scoping):

program test;
var a : integer;

procedure procl;

var b : integer;

begin

end: +«——— lifetime: b (from proc1l), a, ¢ (from proc2),
’ a (from test)

procedure proc2;

var a, ¢ : integer;
begin TSR
procl; T lifetime: a, c (from proc2), a (from test)
end;
begin lifetime: a (from test)
proc2;

end.

Lifetime vs. Scope

o Lifetime is influenced by call sequence.

O Scope is influenced by lexical structure
(static) or call sequence (dynamic).

o ldentifiers can have
= lifetime and no scope
= lifetime and scope
= no lifetime and no scope
o Identifiers cannot have scope without
lifetime!

Types and Pointers

10

Common Data Types

o Integers, Floating point numbers,
Characters, Booleans

o Strings

O Arrays

o Enumerations and Subranges
o Hashes

O Lists

O Records and Unions

o Pointers

Strings

O Null-terminated array of characters in C
[rlulelsTalaly[o]
O Length- prefixed array of characters in
Pascal

7 luTel=Tala]y]

o Object in Java

o Can have fixed or dynamic maximum
length
= Notorious buffer overflow remote exploit!

O String operations: substring, length,
concat, etc.

11

Arrays

O Static arrays have fixed size, global scope
and lifetime.

o Fixed stack-dynamic arrays are allocated
on the stack, e.qg., local arrays in
subprograms.

o Stack-dynamic arrays have bounds that
are not known until use, e.g., passing an
array as a parameter.

O Heap-dynamic arrays have flexible
bounds.

Array Subscripts

o Assume the 1-dimensional array:
mint list[1..10];
®» address(list[x]) =
address (list[1]) + (x-1)* sizeof (int);
o Assume the 3-dimensional array:
m soneType box[fO0..f][g0..g][hO..h];
m address(boX[i][jl[k]) =
address(box[fO][gO][h0O]) +
(((i-fO)*(g-g0+1)*(h-hO+1))+((j-g0)*(h-hO+1))+(k-
h0))*n
where n = size of someType

o Row-major order = rows stored first in memory.
o Column-major order = columns stored first.

12

Array Manipulations

0 FORTRAN 90 supports obtaining slices of
arrays as arrays of lesser dimensionality.

= Example:
CUBE(1: 3, 2) of CUBE(1:3, 1:3) resultsin a one-
dimensional array with 3 elements.

o APL supports vector/matrix operations
such as transpose, invert and inner
product.

Enumerations and Subranges

o Enumerations are a set of named values
used to aid readability.

= Example (Pascal):
type days = (non, tue, wed, thu, fri, sat, sun);

O Subranges restrict the range of possible
values of a scalar/ordinal type for better
type checking.

= Example (Ada):
subt ype WEEKEND i s DAYS range sat..sun;

Hashes and Lists

o Perl supports variable-sized associative
arrays (hashes) for name/value pairs.

= Example:
Ygays = (“nmon”=>3, “tue”’=>5, “wed” =>7);
$val ue = $days{“tues”};

o Most functional languages support lists of
items as a fundamental data type.

= Example (Mathematica):
[“mON”, “tue”, “wed”, “thu”, “fri”]

Records

o Collection of related heterogenous data
elements.

o Stored and manipulated as an atomic
“object” in some languages.

o Variant records have overlapping fields to
conserve memory at the expense of

reliability.
= Example (ALGOLG68):
union (real, int) answer;
case answer in
(real r): soneReal =r

(int 1): soneint =1;
esac

14

Sets

o Pascal has an analogue to mathematical
sets, with operations to determine unions,
intersections, equality and set
membership.

o Example:
type dayset = set of (non, tue, wed, thu, fri);
var day : dayset;

o Sets are usually implemented as fixed-
length bit patterns therefore very efficient
but restricted in set size.

Pointers

O Pointers hold memory addresses -
effectively pointing to the contents of
other variables (named or not).

O Languages that use pointers provide
operators to:-
m Get the address of a memory location.
m Get the contents pointed to by a pointer.
= Shift pointers.

» Allocate memory and deallocate memory on
the heap.

15

Referencing and Derefencing

Variable Variable
addr=a addr=b
name=Day Name=Dayptr
type=String type=Pointer
Reference:
DayPtr = &Day

-

Dereference:
* DayPtr

Pointer Predicaments

o Dangling pointers occur when a pointer
points to a memory location that no longer

has lifetime.

= Example:
int *j = newint;
int *p =j;
delete j;
int kK = *p;

o Memory leaks occur when explicitly
allocated memory is not deallocated after
use.

16

Tombstones

o Pointers point to an intermediary memory
block, which is never deallocated.

Before deallocating Dayptr

Variable
addr=c

Name=Dayptr

:

type=Pointer

tombstone

After deallocating Dayptr l
Variable

addr=c

Name=Dayptr
type=Pointer

=

N\

Locks and Keys

o Each block of memory has a lock with
corresponding keys for active pointers.

Variable

addr=b, Name=aptr

Variable

addr=c, Name=bptr

After deallocating aptr

Variable

addr=b, Name=aptr

Variable

i

addr=c, Name=bptr

17

Reference Counting

o Without explicit deallocation of memory,
reference counts can be attached to each
memory chunk to count the number of
pointers pointing to the memory.
= When the reference count reaches zero, the

memory can be disposed of and reused.

o How do we reference-count circular linked
lists?

Mark-and-sweep Garbage Collection

O Traverse every pointer and mark the
memory it points to as being used - then
dispose of all allocated memory which isnt
marked.
= All pointers must be followed, even those

within allocated blocks of memory.

o How efficient is this?

18

Assgnments and
EXpressons

Precedence and Associativity

O Precendence refers to the relative order in
which operators are evaluated within a
larger expression.

® E.g., * usually has precedence over +

o Associativity refers to the order in which
operators of the same type are evaluated.

= E.g., Assuming left associativity, 1- 2- 3=-4
= E.g., Assuming right associativity, 1- 2- 3=2

o Parentheses can force a different order.
= E.g.,, (1-(2-3)) is always 2

19

Ternary operators

O Ternary operators provide a result based
on 3 parameters.

o Popular example is ?:
» Example: value = (xy ==5) ? 1 : 2;
= Equivalent to:
if (xy ==5) { value = 1; }
else { value = 2; }
o In functional languages, every expression
is a function with flexible numbers of
parameters.

= Example (Mathematica):
val ue = If[xy==5,1, 2]

Side-effects

O An expression has a side-effect when the
act of evaluating the expression has a
persistent effect on other parts of the
program.

= E.g., a global variable is incremented by:
(x + 1) + y++

O Side-effects decrease the

readability/reliability.

o Most functional languages completely
disallow side-effects.

20

Overloading

o C++ allows classes to redefine the
semantics of built-in operators when
applied to instance variables.

o Can be useful when applied to obvious
scenarios such as the definition of Vector
and Matrix classes.

= Otherwise detrimental to readability.

Short-circuit Evaluation

o Short circuit evaluation is when all parts of
a boolean expression are not evaluated
because such evaluations are not
necessary to determine the result.
= E.g., “(true) and (false) and (xyz)” will

never evaluate xyz since the expression is
already false.

O Some languages provide both operators
for options, while others provide one or
leave it as a compiler-level option.

21

Chaining Assignments

o In Java, assignment is regarded as an
expression whose value is the same as the
LHS.

= Example:
oa=b=c¢c=d=10;

o Assignment is right-associative.
O This is another type of side-effect!

Control Sructures

22

Branching Selection

o “if’ statements exist in most languages to
select among alternative control flow
paths.

= Example (Pascal):
if (num> 1)

t hen

val :=7;
el se

val :=5;

O In general, a boolean expression is used
to determine which branch to take.

Dangling Else

o A dangling else is when the compiler
cannot determine which if to match an
else to when if statements are nested.

= Example (in Java):
if (a==b)
if (b==c)

d=e;
el se Which “if” does this
“else” refer to?
f=0;
o Solutions:

= Discipline of programmers
® Language restrictions

23

Dangling Else Prevention

O Ada requires “if’ statements to be
terminated by an “end if".

= Example:
if (a =Db) then
if (b =c) then d=e;
el se f=g;
end if;
end if;

o Perl requires all if/then statements to be
blocks.

= Example:
if (a==b) {
if (b=c){ d=e; } else{ f=g; }
}

Multiway Selection

o Select among multiple control paths based
on a single expression.

= Example (Pascal):
case nunero of
1, 3, 5 : begin

odd : = true;
even : = fal se;
end;
2, 4, 6 : begin
even : = true;
odd : = fal se;
end;
el se odd := true; even := true;

end

24

Multiway: C vs. Pascal

o C does not use independent blocks and
relies on the programmer using “break”
statements when necessary.

o The independence of blocks within the
control structure is not guaranteed.

o C has greater flexibility but readability is
decreased.

Counter controlled loops

o “for” loops are based on a variable that
controls the number of iterations and
provides a parameter in each iteration.

= Example (ALGOL 60):
for index := 1, 4, 13, 41
step 2 until 47,
3 * index while index < 1000,
34, 2, -24
sum : = sum + i ndex

O In general, there are 3 steps:
® Initialisation of variables
» Test before (or after) each iteration
m Update control variable for next iteration

25

Logical Loops

O Pretest loops test for exit before the first
iteration.

= Example (C):
whil e (<expression>) {

}

O Posttest loops test for exit after the
statement (therefore at least one
iteration):

= Example (C):
do {

} while (<expression>)

Other Loops

o Ada allows infinite loops by not specifying
a test as part of the construct. Exitting
from the loop must then be explicit.

o Other languages can simulate infinite
loops by using a constant test.

= Example:
while (true) { ... }

O Iterative loops iterate over items of a list.

= Example (Perl):
foreach nmy $node (@odelist)
{ print $node->val ue; }

26

Goto

o Branches unconditionally to a different
location in the program.

o Locations can be labelled by names
(Pascal) or line numbers (FORTRAN).

o Branching can be restricted to a specific
scope (Pascal) or can be global (BASIC).

O Goto is a controversial structure because
it reduces readability - hence many
modern languages do not include it.

Guarded Commands

o Dijkstra proposed guarded commands,
which select statements non-
deterministically from list of those with
guards that evaluate to true.

= Example:
if (a<b) ->a = -1;
[1 (a==b) ->a = 0;
[1 (a>b) ->a =1

0 Guarded commands can be proven correct
more easily than constructs such as
“gotoﬂ .

27

Qubprograms

Types of Subprograms

o Procedures

= Collection of statements that define a new “statement”
for use by the programmer.

o Function
m Collection of statements to compute a result.

o Is there really a difference?

o Rule

m Specification of an assertion and the conditions under
which it can be made.

o Template

= Replacement text and the conditions under which
replacement can be effected.

Structure of Subprograms

O Subprogram Call
®m e.g.,doCalc ();

o Declaration: header
me.g., int doCalc ();
o Definition: header+body
me.g.int doCalc () { return 1; }
o Header vs. Body

= Header is name of subprogram, parameters
and return values.

» Body is block of statements.

Parameters

o Formal Parameters
= names used in subprogram definition.
o Actual Parameters
= names/values used in subprogram invocation (call).
o Keyword Parameters
m specified as name/value pairs.
o Positional Parameters

= names are (usually) specified in header, corresponding
values are bound from call by position.

0o Example procedure call (Perl):
m callProg (1, 2, { start=>1, end=>2 });
= formal/actual? keyword/positional?

29

Parameter Passing 1/2

o Pass by value
® Value is passed/copied to subprogram from
caller.
o Pass by result

m Value is passed/copied from subprogram back
to caller.

® Function return values are pass-by-resulit.

O Pass by value-result

® Value is first passed/copied to subprogram
from caller upon invocation, then
passed/copied back to caller after invocation.

Parameter Passing 2/2

o Pass by reference

» Variable is aliased so that both formal and
actual parameter can access/change the same
memory location — like using a pointer but
safer!

o Pass by name (ALGOL, SIMULA)

= Equivalent to actual parameter being “textually
inserted” wherever it occurs in the
subprogram.

= Implemented using a “thunk” — parameterless
subprogram that is evaluated in caller's
environment each time the pass-by-name
formal parameter is encountered.

30

Parameter Example 1/2

int b =0;
subprogram FunkyFunction (int a)
{
b =a+ 1,
a=">b+ 1;
}

FunkyFunction (b);
o Pass-by-value: b=1
O Pass-by-result: Error - use before assignment
o Pass-by-value-result: b=2
o Pass-by-reference: b=2
o Pass-by-name: b=2

Parameter Example 2/2

int a=0;
int b =1;
subprogram NaneProc (int ¢)

{
b

4;
c + 1;

}
NanmeProc (atb);

o Pass-by-value: a=2, b=4

o Pass-by-result: Error — not Ivalue

O Pass-by-value-result: Error — not Ivalue
O Pass-by-reference: Error — not lvalue

o Pass-by-name: a=5, b=4

31

Subprogram Parameters

O Pass a subprogram as a parameter to another.

® e.g., a string sorting routine needs to know how to
compare strings and this may differ across data types
and applications.

o Example:
procedure sort3 (a, b, ¢ : string;
function conpare (a, b : string) : int)
{

if conpare (a,b) swap (a,b);
if compare (b,c) swap (b,c);
if conpare (a,b) swap (a,b);

o Which referencing environment to use ?

Subprogram Side-Effects

o When a subprogram has a persistent
effect or an effect on the non-local
environment.

= Examples:
static variables in C++
assignment to a global variable within a procedure
o Pure functional languages have no
assignment, therefore cannot have side-
effects!

32

Generic Subprograms

O Abstract data used in subprogram results
in abstract subprogram that must be
instantiated with actual data type before
use.

= For example, C++ has templates, which are
automatically instantiated upon use.

o How do statically-bound templates
compare to polymorphism with dynamic
binding?

Qubprogram I nvocation Mechanics

O Save status of caller.
o0 Process parameters.
O Save return address.
o Jump to called subprogram.

o Process value-result/result parameters
and function return value(s).

O Restore status of caller.
o Jump back to caller's saved position.

33

Activation Records

o An activation record is
the layout of data needed

to support a call to a Function return value

subprogram. 5
prog Local variables

o For languages that do not Parameters

allow recursion, each Dynamic link

subprogram has a single —
fixed activation record Static link

instance stored in Return address

memory (and no links).

Stack-based Recursion 1/2

o When recursion is implemented using a
stack, activation records are pushed onto
the stack at invocation and popped upon
return.

o Example:
int sum(int x)

{

if (x==0) return O;

el se return (x + sum (x-1));
}
void main ()
{ sum (2); }

Recursion Activation Records

sum(2)

main

retvalue (?)

| parm (x=1)

~—~ . .

£ | dynamiclink -

8 staticlink

return (sum)

retvalue (?) retvalue (?)

)
parm (x=2) \N, parm (x=2)
dynamiclink @ g dynamiclink &

- 7] -

staticlink staticlink
return (main) return (main)
mainARI .% mainARI

IS

sum(1) sum(0)

sum(2)

main

retvalue (?)
parm (x=0)
dynamiclink &
staticlink

return (sum)

retvalue (?)
parm (x=1)
dynamiclink &
staticlink

return (sum)

retvalue (?)

parm (x=2)

dynamiclink ®—
staticlink
return (main)

mainARI

Non-local References

O To access non-local names in statically-
scoped languages, a program must keep

track of the current referencing
environment.
o Static chains

® Link a subprogram’s activation record to its
static parent.

o Displays

»= Keep a list of active activation records.

35

Non-local Reference Example

o Example:

mai n {

int x;
sub SUBA {

sub SUBB {

X =

}
SUBB;

}

sub SUBC {
int x;
int y;
SUBA;

}
SUBC;

11

breakpoint3

breakpoint2

breakpointl

breakpointO

Static Chains

SUBC

main

local (x)
local (y)

dynamiclink ®—

return (main)

staticlink .—‘

local (x)

breakpointl

SUBA

SUBC

main

[dynamiclink o
staticlink o:| ;

return (C)

local (x)
local (y)

dynamiclink &
staticlink ~ ®7 [:
return (main)

breakpoint2

PP

SUBA SUBB

SUBC

main

dynamiclink ®1—

staticlink o-|--

return (A)

dynamiclink ®1—

staticlink o-f--

return (C)

local (x)
local (y)

dynamiclink &
staticlink '—‘

return (main)

local (x)

breakpoint3

PP

36

Displays

o] o]
stack display stack display stack display
breakpointl breakpoint2 breakpoint3

Static Chainsvs. Displays

O Static chains require more indirect
addressing — displays require a fixed
amount of work.

O Displays require pointer maintenance on
return — static chains do not.

o Displays require “backing up” of display
pointer — static chains require static links
in each activation record.

37

Dynamic Scoping

o Dynamically scoped languages can be
implemented using:
o Deep Access

» Follow the dynamic chains to find most recent
non-local name definition.

o Shallow Access
® Maintain a separate stack for each name.

Deep Access

o At breakpoint3, by

following dynamic g | cynamiclink *17]
links from SUBB, the B | o
closest definition of x < [dynamiciink =
is in SUBC. D | staticlink e-f--f--eeo- ,
« return (C) <
local (x)
o (Remember that for tocal ()
StatiC SCOping, by 8 dynamiclink e
following static links, 7 | staticlink ~ *{-1
the closest definition return (main)
is in main.) é local 0 | [!

breakpoint3

38

Shallow Access

o Constant-time access
to all non-local names.

o Requires more

maintenance in terms

of pushing and
popping the individual « v « v
stacks.

breakpointO

breakpointl

39

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

