
1

Comparative
Programming Languages

hussein suleman
uct csc304s 2003

Variables, Binding and
Scope

2

Name Terminology
A “name” or “ identifier” is a used to
identify an entity in a program.

Example: someVariable, someType

A “keyword” has special meaning in the
context of a specific language, but can be
redefined.

Example: INTEGER REAL in FORTRAN declares
“REAL” to be of type integer
Example: in English, Buffalo buffalo buffalo.

A “ reserved word” is like a keyword but
cannot be redefined.

Example: beginin Pascal, for in Java

Variable
Section of memory used to store data.
6 Attributes for each variable:

name = identifier used to refer to memory
address = actual physical/logical location in
memory
type = type of data that may be stored
value = data that is stored
scope = whether/where a variable may be
used
lifetime = whether/where a variable occupies
actual storage (i.e., has an assigned address)

3

Aliasing
Two or more variables may use the same
address to store their values.

Example: variant records in Pascal, unions in C
Better efficiency in storing data.
Decrease readability as values of variables can
be changed indirectly.

Example:
union answer {

int ans_integer;

float ans_float;

};

Binding
Association between language element
and attribute.

Binding times:
Language design time - when the language is
designed, e.g., meaning of operators.
Compiler design time – when the compiler is
designed, e.g., internal representations.
Compile time – when a module is compiled,
e.g., type of variable.
Link time – when the modules are linked
together, e.g., address of called subroutine.
Runtime – when the program is being run,
e.g., value of variable.

4

Binding times
Example (in Java):

int x = x + 1;

RuntimeStorage for x

Language design timeMeaning of “1”

Compiler design timeAmount of storage
required for x

Language design timeMeaning of “+ ”

RuntimeValue of x

Compile timeType of x

TimeBinding

Declarations and Definitions
Some languages (e.g., C++) support the
notion of splitting declarations from
definitions.

Declarations specify attributes such as
type.
Definitions specify attributes and bind
storage.
Example:

forward declaration in Pascal allows you to
declare a variable/function before definition.

5

Static and Dynamic Types
Static types cannot be changed.

Example (explicit declaration):
int a;

Example (implicit declaration in Perl):
$newvariable = 12;

Dynamic types are bound at assignment.
Example (in APL):

ABC 1 2 3
ABC 42

Static type can be checked at compile-
time – dynamic types must be checked at
runtime!

Strong typing
Strong typing implies type errors are
always detected – opposite of weak
typing.
Example:

C/C++ is not strongly typed.
Java is strongly typed but allows explicit casts.

Coercion is when the type of an element is
automatically converted when needed.

Example (in Java):
int a =2; double x = 1.0 / a;

Coerced values lead to less reliable error
detection!

6

Type compatibility
Types must match when parameters are passed,
assignments are made, etc.
Name compatibility: type names must match.

Example (C++):
typedef struct { int a } typea;

typedef struct { int b } typeb;

// typea is not compatible with typeb !

Structure compatibility: structure of types must
match.

Example (Pascal):
type typea = real; typeb=real;

{ typea is compatible with typeb }

Most languages use mixtures of name and
structure compatibility.

Lifetime
A variable/parameter has lifetime when
storage is allocated for it.

Static variables have lifetime for the whole
execution of the program.
Dynamic variables have lifetime when
they are elaborated (allocated/bound).

Examples:
Local variables stored on stack.

e.g., recursive function parameters

Memory blocks explicitly allocated on heap.
e.g., C’s malloc memory allocation

Memory blocks implictiy allocated on heap.
e.g., ALGOL’s flex arrays

7

Scope
An identifier has scope when it is visible
and can be referenced.
An out-of-scope identifier cannot be
referenced.
Identifiers in open scopes may override
older/outer scopes temporarily.
2 Types of scope:

Static scope is when visibility is due to the
lexical nesting of subprograms/blocks.
Dynamic scope is when visibility is due to the
call sequence of subprograms.

Changing Scope
Identifiers come into scope at the beginning of a
subprogram/block and go out of scope at the
end.

Example (in C++):
void testfunc ()

{

int a; // a enters scope;

for (int b=1; b<10; b++) // b in scope for for

{

int c; // c enters scope

…

} // b,c leave scope

…

} // a leaves scope

8

Static Scope
Consider the Pascal program (which uses static scoping):

program test;
var a : integer;

procedure proc1;
var b : integer;
begin
end;

procedure proc2;
var a, c : integer;
begin

proc1;
end;

begin
proc2;

end.

in scope: a (from test)

in scope: a, c (from proc2)

in scope: b (from proc1), a (from test)

Dynamic Scope
Consider the Pascal- like code (assume dynamic scoping):

program test;
var a : integer;

procedure proc1;
var b : integer;
begin
end;

procedure proc2;
var a, c : integer;
begin

proc1;
end;

begin
proc2;

end.

in scope: a (from test)

in scope: a, c (from proc2)

in scope: b (from proc1) a, c (from proc2)

9

Static vs. Dynamic Scope
Dynamic scope makes it easier to access
variables with lifetime, but it is difficult to
understand the semantics of code outside
the context of execution.

Static scope is more restrictive – therefore
easier to read – but may force the use of
more subprogram parameters or global
identifiers to enable visibility when
required.

Lifetime revisited
Consider the Pascal program (which uses static scoping):

program test;
var a : integer;

procedure proc1;
var b : integer;
begin
end;

procedure proc2;
var a, c : integer;
begin

proc1;
end;

begin
proc2;

end.

lifetime: a (from test)

lifetime: a, c (from proc2), a (from test)

lifetime: b (from proc1), a, c (from proc2),
a (from test)

10

Lifetime vs. Scope
Lifetime is influenced by call sequence.
Scope is influenced by lexical structure
(static) or call sequence (dynamic).
Identifiers can have

lifetime and no scope
lifetime and scope
no lifetime and no scope

Identifiers cannot have scope without
lifetime!

Types and Pointers

11

Common Data Types
Integers, Floating point numbers,
Characters, Booleans

Strings
Arrays
Enumerations and Subranges

Hashes
Lists

Records and Unions
Pointers

Strings
Null- terminated array of characters in C

Length-prefixed array of characters in
Pascal

Object in Java
Can have fixed or dynamic maximum
length

Notorious buffer overflow remote exploit!

String operations: substring, length,
concat, etc.

7 ‘y’‘a’‘d’‘s’‘e’‘u’‘T’

‘T’ 0‘y’‘a’‘d’‘s’‘e’‘u’

12

Arrays
Static arrays have fixed size, global scope
and lifetime.

Fixed stack-dynamic arrays are allocated
on the stack, e.g., local arrays in
subprograms.
Stack-dynamic arrays have bounds that
are not known until use, e.g., passing an
array as a parameter.
Heap-dynamic arrays have flexible
bounds.

Array Subscripts
Assume the 1-dimensional array:

int list[1..10];

address(list[x]) =
address (list[1]) + (x-1)* sizeof (int);

Assume the 3-dimensional array:
someType box[f0..f][g0..g][h0..h];

address(box[i][j][k]) =
address(box[f0][g0][h0]) +
(((i- f0)*(g-g0+1)*(h-h0+1))+((j-g0)*(h-h0+1))+(k-

h0))*n
where n = size of someType

Row-major order = rows stored first in memory.
Column-major order = columns stored first.

13

Array Manipulations
FORTRAN 90 supports obtaining slices of
arrays as arrays of lesser dimensionality.

Example:
CUBE(1:3, 2) of CUBE(1:3, 1:3) results in a one-
dimensional array with 3 elements.

APL supports vector/matrix operations
such as transpose, invert and inner
product.

Enumerations and Subranges
Enumerations are a set of named values
used to aid readability.

Example (Pascal):
type days = (mon, tue, wed, thu, fri, sat, sun);

Subranges restrict the range of possible
values of a scalar/ordinal type for better
type checking.

Example (Ada):
subtype WEEKEND is DAYS range sat..sun;

14

Hashes and Lists
Perl supports variable-sized associative
arrays (hashes) for name/value pairs.

Example:
%days = (“mon”=>3, “tue”=>5, “wed”=>7);

$value = $days{“tues”};

Most functional languages support lists of
items as a fundamental data type.

Example (Mathematica):
[“mon”, “tue”, “wed”, “thu”, “fri”]

Records
Collection of related heterogenous data
elements.

Stored and manipulated as an atomic
“object” in some languages.
Variant records have overlapping fields to
conserve memory at the expense of
reliability.

Example (ALGOL68):
union (real, int) answer;

case answer in

(real r): someReal = r;

(int I): someint = I;

esac

15

Sets
Pascal has an analogue to mathematical
sets, with operations to determine unions,
intersections, equality and set
membership.

Example:
type dayset = set of (mon, tue, wed, thu, fri);

var day : dayset;

Sets are usually implemented as fixed-
length bit patterns therefore very efficient
but restricted in set size.

Pointers
Pointers hold memory addresses -
effectively pointing to the contents of
other variables (named or not).

Languages that use pointers provide
operators to:-

Get the address of a memory location.
Get the contents pointed to by a pointer.
Shift pointers.
Allocate memory and deallocate memory on
the heap.

16

Referencing and Derefencing

(addr=a)

“Some random
day of the

week”

Variable

addr=b

Name=Dayptr

type=Pointer

Variable

addr=a

name=Day

type=String

(addr=b)

addr:a

Reference:
DayPtr = &Day

Dereference:
* DayPtr

Pointer Predicaments
Dangling pointers occur when a pointer
points to a memory location that no longer
has lifetime.

Example:
int *j = new int;

int *p = j;

delete j;

int k = *p;

Memory leaks occur when explicitly
allocated memory is not deallocated after
use.

17

Tombstones
Pointers point to an intermediary memory
block, which is never deallocated.

(addr=a)

“Some random
day of the

week”

Variable

addr=c

Name=Dayptr

type=Pointer

(addr=c)

addr:b

(addr=b)

addr:a

(addr=a)

“Some random
day of the

week”

Variable

addr=c

Name=Dayptr

type=Pointer

(addr=c)

addr:b

(addr=b)

addr:0

After deallocating Dayptr

Before deallocating Dayptr

tombstone

Locks and Keys

(addr=a)

lock:123

“Some random
day of the

week”

Variable

addr=b, Name=aptr

(addr=b)

addr:a, key:123

After deallocating aptr

Each block of memory has a lock with
corresponding keys for active pointers.

Variable

addr=c, Name=bptr

(addr=c)

addr:a, key:123

(addr=a)

lock:-1

“Some random
day of the

week”

Variable

addr=b, Name=aptr

(addr=b)

addr:?, key:123

Variable

addr=c, Name=bptr

(addr=c)

addr:a, key:123

18

Reference Counting
Without explicit deallocation of memory,
reference counts can be attached to each
memory chunk to count the number of
pointers pointing to the memory.

When the reference count reaches zero, the
memory can be disposed of and reused.

How do we reference-count circular linked
lists?

Mark-and-sweep Garbage Collection
Traverse every pointer and mark the
memory it points to as being used - then
dispose of all allocated memory which isnt
marked.

All pointers must be followed, even those
within allocated blocks of memory.

How efficient is this?

19

Assignments and
Expressions

Precedence and Associativity
Precendence refers to the relative order in
which operators are evaluated within a
larger expression.

E.g., * usually has precedence over +

Associativity refers to the order in which
operators of the same type are evaluated.

E.g., Assuming left associativity, 1-2-3=-4

E.g., Assuming right associativity, 1-2-3=2

Parentheses can force a different order.

E.g., (1-(2-3)) is always 2

20

Ternary operators
Ternary operators provide a result based
on 3 parameters.

Popular example is ?:
Example: value = (xy == 5) ? 1 : 2;

Equivalent to:
if (xy == 5) { value = 1; }

else { value = 2; }

In functional languages, every expression
is a function with flexible numbers of
parameters.

Example (Mathematica):
value = If[xy==5,1,2]

Side-effects
An expression has a side-effect when the
act of evaluating the expression has a
persistent effect on other parts of the
program.

E.g., a global variable is incremented by:
(x + 1) + y++

Side-effects decrease the
readability/reliability.

Most functional languages completely
disallow side-effects.

21

Overloading
C++ allows classes to redefine the
semantics of built- in operators when
applied to instance variables.

Can be useful when applied to obvious
scenarios such as the definition of Vector
and Matrix classes.

Otherwise detrimental to readability.

Short-circuit Evaluation
Short circuit evaluation is when all parts of
a boolean expression are not evaluated
because such evaluations are not
necessary to determine the result.

E.g., “(true) and (false) and (xyz)” will
never evaluate xyz since the expression is
already false.

Some languages provide both operators
for options, while others provide one or
leave it as a compiler- level option.

22

Chaining Assignments
In Java, assignment is regarded as an
expression whose value is the same as the
LHS.

Example:
a = b = c = d = 10;

Assignment is right-associative.
This is another type of side-effect!

Control Structures

23

Branching Selection
“ if” statements exist in most languages to
select among alternative control flow
paths.

Example (Pascal):
if (num > 1)

then

val := 7;

else

val := 5;

In general, a boolean expression is used
to determine which branch to take.

Dangling Else
A dangling else is when the compiler
cannot determine which if to match an
else to when if statements are nested.

Example (in Java):
if (a == b)

if (b == c)

d=e;

else

f=g;

Solutions:
Discipline of programmers
Language restrictions

Which “ if” does this
“else” refer to?

24

Dangling Else Prevention
Ada requires “ if” statements to be
terminated by an “end if” .

Example:
if (a = b) then

if (b = c) then d=e;

else f=g;

end if;

end if;

Perl requires all if/then statements to be
blocks.

Example:
if (a == b) {

if (b = c) { d=e; } else { f=g; }

}

Multiway Selection
Select among multiple control paths based
on a single expression.

Example (Pascal):
case numero of

1, 3, 5 : begin

odd := true;

even := false;

end;

2, 4, 6 : begin

even := true;

odd := false;

end;

else odd := true; even := true;

end

25

Multiway: C vs. Pascal
C does not use independent blocks and
relies on the programmer using “break”
statements when necessary.

The independence of blocks within the
control structure is not guaranteed.
C has greater flexibility but readability is
decreased.

Counter controlled loops
“ for” loops are based on a variable that
controls the number of iterations and
provides a parameter in each iteration.

Example (ALGOL 60):
for index := 1, 4, 13, 41

step 2 until 47,

3 * index while index < 1000,

34, 2, -24

sum := sum + index

In general, there are 3 steps:
Initialisation of variables
Test before (or after) each iteration
Update control variable for next iteration

26

Logical Loops
Pretest loops test for exit before the first
iteration.

Example (C):
while (<expression>) {

...

}

Posttest loops test for exit after the
statement (therefore at least one
iteration):

Example (C):
do {

...

} while (<expression>)

Other Loops
Ada allows infinite loops by not specifying
a test as part of the construct. Exitting
from the loop must then be explicit.

Other languages can simulate infinite
loops by using a constant test.

Example:
while (true) { ... }

Iterative loops iterate over items of a list.
Example (Perl):
foreach my $node (@nodelist)

{ print $node->value; }

27

Goto
Branches unconditionally to a different
location in the program.

Locations can be labelled by names
(Pascal) or line numbers (FORTRAN).
Branching can be restricted to a specific
scope (Pascal) or can be global (BASIC).

Goto is a controversial structure because
it reduces readability - hence many
modern languages do not include it.

Guarded Commands
Dijkstra proposed guarded commands,
which select statements non-
deterministically from list of those with
guards that evaluate to true.

Example:
if (a<b) -> a = -1;

[] (a==b) -> a = 0;

[] (a>b) -> a = 1;

Guarded commands can be proven correct
more easily than constructs such as
“goto” .

28

Subprograms

Types of Subprograms
Procedures

Collection of statements that define a new “statement”
for use by the programmer.

Function
Collection of statements to compute a result.

Is there really a difference?

Rule
Specification of an assertion and the conditions under
which it can be made.

Template
Replacement text and the conditions under which
replacement can be effected.

29

Structure of Subprograms
Subprogram Call

e.g., doCalc ();

Declaration: header
e.g., int doCalc ();

Definition: header+body
e.g., int doCalc () { return 1; }

Header vs. Body
Header is name of subprogram, parameters
and return values.
Body is block of statements.

Parameters
Formal Parameters

names used in subprogram definition.

Actual Parameters
names/values used in subprogram invocation (call).

Keyword Parameters
specified as name/value pairs.

Positional Parameters
names are (usually) specified in header, corresponding
values are bound from call by position.

Example procedure call (Perl):
callProg (1, 2, { start=>1, end=>2 });

formal/actual? keyword/positional?

30

Parameter Passing 1/2
Pass by value

Value is passed/copied to subprogram from
caller.

Pass by result
Value is passed/copied from subprogram back
to caller.
Function return values are pass-by-result.

Pass by value-result
Value is first passed/copied to subprogram
from caller upon invocation, then
passed/copied back to caller after invocation.

Parameter Passing 2/2
Pass by reference

Variable is aliased so that both formal and
actual parameter can access/change the same
memory location – like using a pointer but
safer!

Pass by name (ALGOL, SIMULA)
Equivalent to actual parameter being “ textually
inserted” wherever it occurs in the
subprogram.
Implemented using a “ thunk” – parameterless
subprogram that is evaluated in caller’s
environment each time the pass-by-name
formal parameter is encountered.

31

Parameter Example 1/2
int b = 0;

subprogram FunkyFunction (int a)

{

b = a + 1;

a = b + 1;

}

FunkyFunction (b);

Pass-by-value: b=1
Pass-by-result: Error - use before assignment
Pass-by-value-result: b=2
Pass-by-reference: b=2
Pass-by-name: b=2

Parameter Example 2/2
int a = 0;

int b = 1;

subprogram NameProc (int c)

{

b = 4;

a = c + 1;

}

NameProc (a+b);

Pass-by-value: a=2, b=4
Pass-by-result: Error – not lvalue
Pass-by-value-result: Error – not lvalue
Pass-by-reference: Error – not lvalue
Pass-by-name: a=5, b=4

32

Subprogram Parameters
Pass a subprogram as a parameter to another.

e.g., a string sorting routine needs to know how to
compare strings and this may differ across data types
and applications.

Example:
procedure sort3 (a, b, c : string;

function compare (a, b : string) : int)

{

if compare (a,b) swap (a,b);

if compare (b,c) swap (b,c);

if compare (a,b) swap (a,b);

}

Which referencing environment to use ?

Subprogram Side-Effects
When a subprogram has a persistent
effect or an effect on the non- local
environment.

Examples:
static variables in C++
assignment to a global variable within a procedure

Pure functional languages have no
assignment, therefore cannot have side-
effects!

33

Generic Subprograms
Abstract data used in subprogram results
in abstract subprogram that must be
instantiated with actual data type before
use.

For example, C++ has templates, which are
automatically instantiated upon use.

How do statically-bound templates
compare to polymorphism with dynamic
binding?

Subprogram Invocation Mechanics
Save status of caller.
Process parameters.

Save return address.
Jump to called subprogram.

Process value-result/result parameters
and function return value(s).
Restore status of caller.

Jump back to caller’s saved position.

34

Activation Records
An activation record is
the layout of data needed
to support a call to a
subprogram.

For languages that do not
allow recursion, each
subprogram has a single
fixed activation record
instance stored in
memory (and no links).

Return address

Static link

Dynamic link

Parameters

Local variables

Function return value

Stack-based Recursion 1/2
When recursion is implemented using a
stack, activation records are pushed onto
the stack at invocation and popped upon
return.
Example:
int sum (int x)
{

if (x==0) return 0;
else return (x + sum (x-1));

}

void main ()
{ sum (2); }

35

Recursion Activation Records

mainARI

retvalue (?)

parm (x=0)

dynamiclink

staticlink

return (sum)

retvalue (?)

parm (x=1)

dynamiclink

staticlink

return (sum)

retvalue (?)

parm (x=2)

dynamiclink

staticlink

return (main)

mainARI

retvalue (?)

parm (x=1)

dynamiclink

staticlink

return (sum)

retvalue (?)

parm (x=2)

dynamiclink

staticlink

return (main)

mainARI

retvalue (?)

parm (x=2)

dynamiclink

staticlink

return (main)

su
m

(2
)

m
a

in

su
m

(2
)

m
a

in
su

m
(1

)

su
m

(2
)

m
a

in
su

m
(1

)
su

m
(0

)

Non-local References
To access non- local names in statically-
scoped languages, a program must keep
track of the current referencing
environment.

Static chains
Link a subprogram’s activation record to its
static parent.

Displays
Keep a list of active activation records.

36

Non-local Reference Example
Example:
main {

int x;
sub SUBA {

sub SUBB {
x = 1;

}
SUBB;

}
sub SUBC {

int x;
int y;
SUBA;

}
SUBC;

}

breakpoint1

breakpoint3

breakpoint2

breakpoint0

Static Chains

local (x)

dynamiclink

staticlink

return (A)

dynamiclink

staticlink

return (C)

local (x)

local (y)

dynamiclink

staticlink

return (main)

local (x)

dynamiclink

staticlink

return (C)

local (x)

local (y)

dynamiclink

staticlink

return (main)

local (x)

local (x)

local (y)

dynamiclink

staticlink

return (main)

S
U

B
C

m
a

in

S
U

B
C

m
a

in
S

U
B

A

S
U

B
C

m
a

in
S

U
B

A
S

U
B

B

breakpoint1 breakpoint3breakpoint2

37

Displays

breakpoint1 breakpoint3breakpoint2

MAIN ARI

SUBC ARI

0

1

stack display

MAIN ARI

SUBC ARI

0

1

stack display

MAIN ARI

SUBC ARI

1

1

stack display

SUBA ARI SUBA ARI

SUBB ARI

2

Static Chains vs. Displays
Static chains require more indirect
addressing – displays require a fixed
amount of work.

Displays require pointer maintenance on
return – static chains do not.
Displays require “backing up” of display
pointer – static chains require static links
in each activation record.

38

Dynamic Scoping
Dynamically scoped languages can be
implemented using:

Deep Access
Follow the dynamic chains to find most recent
non- local name definition.

Shallow Access
Maintain a separate stack for each name.

Deep Access
At breakpoint3, by
following dynamic
links from SUBB, the
closest definition of x
is in SUBC.

(Remember that for
static scoping, by
following static links,
the closest definition
is in main.) local (x)

dynamiclink

staticlink

return (A)

dynamiclink

staticlink

return (C)

local (x)

local (y)

dynamiclink

staticlink

return (main)

S
U

B
C

m
a

in
S

U
B

A
S

U
B

B

breakpoint3

39

Shallow Access
Constant- time access
to all non- local names.

Requires more
maintenance in terms
of pushing and
popping the individual
stacks.

breakpoint0 breakpoint1

MAIN

SUBC

x

SUBC

y

MAIN

x y

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

