
1

Comparative
Programming Languages

hussein suleman
uct csc304s 2003

Course Structure
15 lectures
2 assignments

1 x 2-week programming assignment
1 x 1-week “written” tutorial

open-book final (1/2 paper)

2

Course Topics
overview of paradigms
evolution of languages
assignment and expressions
types, variables, binding and scope
pointers and memory management
control structures, subprograms
runtime execution
exceptions
concurrency
visual languages
scripting languages

Overview of Paradigms
and PL Issues

3

Why study programming languages?
Understand differences and similarities.
Understand concepts and structures
independently of languages.
Learn reasons for design decisions in
particular languages.

Develop the ability to choose appropriate
languages and paradigms for particular
tasks.

Develop the ability to design languages.

Common paradigms

Procedural
a.k.a. Imperative

imperative = peremptory, urgent, necessary
peremptory = imperious, dictatorial, precluding
opposition

imperious = dominating, dictatorial

Object-oriented

Declarative
a.k.a. Logic

Functional

paradigm n. pattern, model - Dorling Kindersley Dictionary

4

Examples

ParadigmLanguage

HTML

Visual C++

Assembly Language

Prolog

Clean

Java

C++

C

Javascript

C#

(Programming) Languages
Languages are used to standardise
communication.

What makes it a programming language?
Is HTML a programming language?
Javascript? SQL?

3 traditional concepts:
sequence
selection
iteration

5

Issues in comparing languages
Simplicity
Orthogonality

Control structures
Data types and type checking

Syntax
Abstractions

Exceptions
Aliasing

Issue: Simplicity
Languages that are complex to read and
write are less likely to be understood by a
large group of individuals equally well.

Many different ways of expressing the
same construct may be easier for writing
but not for reading/translating.

Examples:
if (a<b) { c=d } else { c=e };
c = a<b?d:e
c = e; c=d if (a<b);

Is simplicity always good?

6

Issue: Orthogonality
Does the same set of rules apply to all
constructs and data structures?

If it seems reasonable that a feature
should work, does it?
Mathematical perspective:

Orthogonal vectors can form the basis for a
vector space. (0,1) and (1,0) are orthogonal
vectors so every 2-element vector (x,y) can be
expressed as “a(0,1)+b(1,0)” .
Similarly orthogonal language features allow
all possible combinations / programs.

Is orthogonality always good?

Issue: Control Structures
Transfer control within a program to effect
variable behaviour.

Supports selection and iteration within
languages.
“goto considered harmful”

How does the inclusion of goto affect the
ability of programmers to read, write and
maintain code?

Dijkstra and structured programming

7

Issue: Data Types and Checking
Supply appropriate types and type
mechanisms that are meaningful and self-
regulating.

Example:
Enumerations restrict values to a small pre-
defined set while implicit enumerations using
an integer do not benefit from strong typing.

More complex data structures make it
easier to understand the logic.

Run- time vs. compile- time type checking
Mathematica has to type-check at runtime,
therefore less efficient!

Issue: Syntax
Complexity of syntax makes languages
more difficult to learn/understand.

“Arbitrary” restrictions, like identifier
formats, have to be learnt.
The same symbols/keywords with multiple
meanings dependent on context decreases
readability of code.

Examples:
“= ” for equality testing and assignment in Pascal.
“=0” for pure virtual functions and assignment in
C++.

8

Issue: Expressivity
Program writability is supported by
concise syntax to express general and
complex functions.

Example:
Perl regular expressions can perform widely varying
functions with single lines of code:

s/(?<!wo)man/woman/go replaces all man with woman

s/([^]+) (.*)/$2 $1/go moves first word to last
/[a-zA-Z_][a-zA-Z0-9_]*/ checks for valid identifiers

Is expressivity good for maintenance?

Issue: Abstractions
Data abstractions hide the details of
complex data structures.

Example:
The C++ Standard Template Library

Process abstraction hides the details of
complex algorithms and processes.

Example:
Python modules

Object-oriented programming supports
both approaches!

9

Issue: Exceptions
Exceptions are special circumstances that
must be handled in a non-standard
manner in programs.

Exceptions must be handled immediately
or promoted to a higher level of
abstraction.

Example:
try { … } catch (Exception e) { … }

Why do we use exceptions?

Issue: Aliasing
Multiple names for a single memory
location.

Aliases break the 1- to-1 correspondence
between variables and storage locations,
therefore affecting readability.
Pointer-based data structures with aliases
affect memory management strategies.
Union data types circumvent strong type-
checking.

10

Machine architecture effects
von Neumann computers are best suited
for imperative languages.

Object-oriented languages are an
abstraction over imperative languages.
Functional languages are frequently
interpreted or compiled along with
dynamic type-checking code to fit the
imperative model.
Declarative languages rely on an inference
engine to execute the “programs” .

Execution models
Compilation

Program converted to native machine code and
executed directly on processor.

e.g., Visual C++

Interpretation
Program understood and logic acted upon by
interpreter.

e.g., Prolog

Hybrid
Program converted to intermediate
representation, which is “executed” in virtual
machine.

e.g., C#

11

Evolution of Languages

Plankalkül Example

| X + 1 => Y
V | 0 0
K | 2 1
S | 1.n 1.n

Equivalent Java: Y0[1] = X0[2] + 1

12

Plankalkül

Primitive support for
matrices/indices, assertions

Interesting
Features

Plan = Plan
kalkül = Calculus
Plankalkül = Programming calculus

Etymology

Way before its time!Notes

To express computations in data
processing

Why?

1945When?

Konrad ZuseWho?

Fortran Example
i = 1

10 if (i .le. 100) then
i = 2*i
write (*,*) i
goto 10

endif

if (j-2) 20, 30, 40

40 goto (50, 60) j-2

13

Fortran

Implicit typing based on name of
variable, independent compilation
(II), arithmetic IF, computed GOTO

Interesting
Features

FORmula TRANslating systemEtymology

First compiled high- level language!Notes

Scientific computation – availability
of IBM 704 machine

Why?

1956 (I), 1958 (II), 1962 (VI),
1978 (77), 1992 (90)

When?

John Backus (et al) @ IBMWho?

LISP Example
;;; Simple towers of Hanoi program. Note that Start-Peg and Goal-Peg are
;;; integers from 1 to 3 indicating the peg number. Ie to move 4 discs,
;;; starting on the first peg and finishing on the last one, execute
;;; (Towers 4 1 3)
;;;
;;; 1992 Marty Hall. hall@aplcenmp.apl.jhu.edu

(defun Towers (Number-of-Discs Start-Peg Goal-Peg)
(cond

((= 1 Number-of-Discs) (format t "~%Move Top Disc from peg ~D to peg ~D."
Start-Peg Goal-Peg))

(t (Towers (1- Number-of-Discs)
Start-Peg
(Remaining-Peg Start-Peg Goal-Peg))

(Towers 1 Start-Peg Goal-Peg)
(Towers (1- Number-of-Discs)

(Remaining-Peg Start-Peg Goal-Peg)
Goal-Peg))))

;;;===
;;; Given two peg numbers, what is the peg number of the third peg?

(defun Remaining-Peg (Peg1 Peg2)
(- 6 Peg1 Peg2))

14

LISP

Simple and orthogonal syntax,
recursion, dynamic type binding

Interesting
Features

LISt ProcessingEtymology

Pioneer functional languageNotes

To support symbolic computation
using mathematical functions and
conditional expressions

Why?

1959, 1984 (Common LISP)When?

John McCarthy (et al) @ MITWho?

ALGOL Example
// the main program (this is a comment)
// Program from http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/average.html

begin
integer N;
Read Int(N);

begin
real array Data[1:N];
real sum, avg;
integer i;
sum:=0;

for i:=1 step 1 until N do
begin real val;

Read Real(val);
Data[i]:=if val<0 then -val else val

end;

for i:=1 step 1 until N do
sum:=sum + Data[i];

avg:=sum/N;
Print Real(avg)

end
end

http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/average.html

15

ALGOL

FORTRAN IAncestry

Block structure / compound
statements, BNF (60), Dynamic
arrays, Call-by-name,
Orthogonality in data types (68)

Interesting
Features

ALGOrithmic LanguageEtymology

Machine- independent, formally
specified

Notes

To create a universal languageWhy?

1958, 1960, 1968When?

GAMM / ACM – transatlantic group
of representatives

Who?

COBOL Example
$ SET SOURCEFORMAT"FREE"

IDENTIFICATION DIVISION.
PROGRAM-ID. Multiplier.
AUTHOR. Michael Coughlan.
* Example program using ACCEPT, DISPLAY and MULTIPLY to
* get two single digit numbers from the user and multiply them together

DATA DIVISION.

WORKING-STORAGE SECTION.
01 Num1 PIC 9 VALUE ZEROS.
01 Num2 PIC 9 VALUE ZEROS.
01 Result PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
DISPLAY "Enter first number (1 digit) : " WITH NO ADVANCING.
ACCEPT Num1.
DISPLAY "Enter second number (1 digit) : " WITH NO ADVANCING.
ACCEPT Num2.
MULTIPLY Num1 BY Num2 GIVING Result.
DISPLAY "Result is = ", Result.
STOP RUN.

16

COBOL

Macros, hierarchical data
structures, program divisions

Interesting
Features

COmmon Business Oriented
Language

Etymology

Widespread use in business
computing, especially electronic
accounting

Evaluation

Easy to use, more English than
scientific, broaden base of
programmers

Why?

1960, 1968/74/85 (ANSI)When?

US Department of DefenceWho?

BASIC Example

10 REM Very simple GW-BASIC program
20 REM
30 PRINT “How many students are in CSC304?“
40 INPUT N
50 FOR I=1 to N
60 GOSUB 90
70 NEXT I
80 GOTO 30
90 PRINT “Student number: “;I
100 PRINT “Enter a name”
110 INPUT NAME$
100 RETURN

17

BASIC

ALGOL 60, FORTRAN IVAncestry

Timeshared computers and
microcomputers

Interesting
Features

Beginners All-purpose Symbolic
Instruction Code (controversial)

Etymology

Poor structure but easy to learn,
evolved into current-day Visual
BASIC

Notes

Pleasant and friendly language for
non-scientists

Why?

1964When?

Dartmouth UniversityWho?

PL/I

ALGOL 60, FORTRAN IV, COBOLAncestry

Concurrency, pointers, matrix
slicing

Interesting
Features

Programming Language OneEtymology

Very complex due to support of
large number of (low- level)
features

Notes

Combine best parts of FORTRAN,
COBOL, ALGOL to create universal
language

Why?

1965When?

IBMWho?

18

SIMULA

ALGOL 60Ancestry

ClassesInteresting
Features

Derived from “simulation”Etymology

Forerunner of modern object-
oriented languages

Notes

System simulation where routines
can restart at previously stopped
positions

Why?

1964 (v1), 1967 (SIMULA 67)When?

Nygaard and DahlWho?

PASCAL Example
program test;

var
i, j : integer;

function square (s : integer) : integer;
var t : integer;
begin

t := s*s;
return t;

end;

begin
Writeln (‘Test program for UCT-CPL’);
Readln (i);
j := square (i);
Writeln (i, ‘ squared is ’, j);

end.

19

Pascal

ALGOL W / ALGOL 60Ancestry

Interesting
Features

Named after Blaise PascalEtymology

Designed and widely used for
teaching Computer Science

Notes

Simpler derivative from ALGOL 60
(than ALGOL 68)

Why?

1971When?

Niklaus WirthWho?

C

ALGOL 68, BAncestry

Complete lack of type checking!Interesting
Features

CPL BCPL B CEtymology

Part of UNIX OSNotes

Systems programmingWhy?

1971When?

Kernighan and RitchieWho?

20

Modula2, Modula3, Oberon

PascalAncestry

Oberon is designed to be simpler
than Modula-2!

Interesting
Features

Probably something to do with
modules

Etymology

Notes

Evolution of Pascal to include
modular programming (Modula-2),
objection orientation (Modula-3,
Oberon)

Why?

1976, 1989, 1993When?

Wirth, DEC/Olivetti, WirthWho?

Prolog

Based on a fact/rule database and
inferencing

Interesting
Features

PROgramming LOGicEtymology

Only applicable to few domains and
code is not very efficient on regular
computers

Notes

To specify programs in formal logic
notation – viz. predicate calculus

Why?

1975When?

Colmerauer, Roussel, KowalskiWho?

21

Ada Example
with Stack_Int;
use Stack_Int;

procedure Demo_GS is
-- Demonstrate the use of the Generic_Stack package by using a
-- Stack of Integers.
-- from ADA95 Lovelace Tutorial, David A. Wheeler

Stack1, Stack2 : Stack;
Dummy : Integer;

begin
Push(Stack1, 1); -- Put 1 onto Stack1.
Push(Stack1, 2); -- Put 2 onto the Stack1.
Stack2 := Stack1; -- Copy stack1's contents into stack2.
Pop(Stack2, Dummy); -- Dummy is now 2.
Pop(Stack2, Dummy); -- Dummy is now 1.
-- Now Stack2 is empty and Stack1 has two items.

end Demo_GS;

Ada

PascalAncestry

Generic program units,
concurrency

Interesting
Features

Named after Augusta Ada ByronEtymology

Notes

To standardise a programming
language for all the DoD’s
operations and embedded systems

Why?

1983, 1995When?

US Department of DefenceWho?

22

Smalltalk

SIMULA 67Ancestry

Objects invoking methods by
exchanging messages

Interesting
Features

Etymology

Promoted WIMP methodologyNotes

To support highly interactive
object-oriented desktop paradigm

Why?

1969, 1972, 1980When?

Alan KayWho?

C++

C and SIMULA 67Ancestry

Plain C + object-orientationInteresting
Features

Probably the one after “C” in C++
syntax

Etymology

Notes

Make C object-orientedWhy?

1986, 1990When?

Ellis and StroustrupWho?

23

PERL Example

Get CGI parameters and convert to hash
for a Web form processing application

$_=$ENV{'QUERY_STRING'};
@parray=split (/[=&]/);
foreach (@parray)
{

s/\+/ /g;
s/\n//g;
s/%[0-9A-F][0-9A-F]/sprintf("%c", hex (substr ($&, 1)))/ge;
while (substr ($_, 0, 1) eq ' ')
{ $_ = substr ($_, 1); }
while (substr ($_, length ($_)-1, 1) eq ' ')
{ chop $_; }
$_ = lc ($_);

}
%qarray=@parray;

PERL

Regular expressionsInteresting
Features

Practical Extraction and Report
Language

Etymology

Simple to write but difficult to
read/modify

Notes

Simple text processing and system-
level scripting

Why?

1987When?

Larry Wall (et al)Who?

24

Mathematica Example

(* Bisection algorithm to find a given *)
(* value in an ordered list *)

Search[x_, values_] :=
Module[{Mid, Start=1, Stop=Length[values]},

While[Start+1 != Stop,
Mid = Floor[(Start+Stop)/2];
If[values[[Mid]] > x,

Stop=Mid,
Start=Mid
]

];
Start
]

Mathematica

Functional and imperative
programming

Interesting
Features

Related to mathematicsEtymology

Tree structured programs and data
(LISP- like)

Notes

To support advanced mathematical
calculations

Why?

1988When?

Wolfram Research InstituteWho?

25

Python Example
example from www.python.org

function to invert a table

def invert(table):
index = {} # empty

dictionary

for key in table.keys():
value = table[key]

if not index.has_key(value):
index[value] = [] # empty list

index[value].append(key)
return index

Python

Indentations for block structureInteresting
Features

From “Monty Python’s Flying
Circus”

Etymology

Notes

Extensible object-oriented scripting
language

Why?

1990When?

CWI, CNRIWho?

http://www.python.org

26

Java

C++Ancestry

Embeddable in Web pages, no
pointers – only references, single
inheritance, garbage collection

Interesting
Features

Etymology

No direct compilation – use of
intermediate bytecode

Notes

For reliability in program consumer
devices

Why?

1995When?

SUN MicrosystemsWho?

PHP Example
<!-- from J. Fulton, PHP Tutorial -->
<h2>Simple Form Example</h2>

<? function show_form($first="",$last="") { ?>
<form action="simpleForm.php3" method="post">
First Name: <input type=text name=first value="<?echo $first?>">

Last Name: <input type=text name=last value="<?echo $last?>">

<input type=submit>
</form>
<? }

if(!isset($first)) {
show_form();

}
else {

if(empty($first) or empty($last)) {
echo "You did not fill in all the

fields, try again<p>";
show_form($first,$last);

}
else {

echo "Thank you, $first $last";
}

} ?>

27

PHP

C, Java, PerlAncestry

Persistent and shared state
between invocations

Interesting
Features

PHP Hypertext ProcessorEtymology

Notes

Embedded scripting language for
Web pages

Why?

1994When?

Rasmus Lerdorf (et al)Who?

XSLT Example
<stylesheet>

<output method="xml"/>
<variable name="institution"><text>UCT</text></variable>

<template match="uct:uct">
<oaidc:dc>

<dc:title><value-of select="uct:title"/></dc:title>
<apply-templates select="uct:author"/>
<element name="dc:publisher">

<value-of select="$institution"/>
</element>
<apply-templates select="uct:version"/>

</oaidc:dc>
</template>

<template match="uct:author">
<dc:creator>

<value-of select="."/>
</dc:creator>

</template>

</stylesheet>

28

XSLT

Declarative language, primitive
operations to manipulate XML

Interesting
Features

XML Stylesheet Language
Transformations

Etymology

Notes

Transform XML data before
presentation to users

Why?

1999When?

Clark (et al) @ W3CWho?

C#

C, C++Ancestry

Interesting
Features

Etymology

Microsoft’s alternative to Java Notes

Modern object oriented language
within Microsoft’s .Net framework

Why?

2000When?

MicrosoftWho?

29

Describing Syntax and
Semantics

Context-free Grammars
Recognise context- free languages, such as
most programming languages.
Describe structure using rules, terminals
and non- terminals.
Used to automatically generate a parser
as part of a compiler for a given language.
Example:
<start> ‘<html>’ <head> <body> ‘</html>’
<head> ‘<head>’ <title> ‘</head>’
<title> ‘<title>’ <text> ‘</title>’
<body> ‘<body>’ <bdata> ‘</body>’
<bdata> <text> <bdata>

| <tag> <bdata>
|

30

Regular Languages
Context- free grammars which do not allow
recursion are regular grammars.

Can be recognised by a finite state
machine.
Used in programming languages to parse
individual tokens/symbols of the language.

Regular expressions are used for text
processing.

Example:
[a-zA-Z_][0-9a-zA-Z_]*
matches identifiers in Java

Recursive Descent Parsers
Subprograms correspond to each non- terminal
and match RHSs using the input stream, calling
subprograms for other non- terminals
encountered
Example:
procedure start ()

begin

get_next_token;

head;

body;

get_next_token;

end;

Recursive-descent fails on left- recursion!

31

Attribute Grammars
Extension to context- free grammars
encodes static semantics such as type
conformance.
Each grammar symbol has:

Synthesised attributes, determined only from
the children of a node (e.g., actual types)
Inherited attributes, passed up the tree (e.g.,
expected types)

Each production has a set of functions to
compute attributes for its grammar
symbols.
Predicate functions on non- terminals
enforce rules on attributes.

Attribute Grammar Example
<expr> <var> + <constant>

Syntax: <expr> <var> + <constant>

Semantic rule: <expr>.expected_type = <var>.actual_type

Semantic rule: <expr>.actual_type =

if (<constant>.actual_type = float)

then float

else <var>.actual_type

Predicate: <expr>.actual_type == <expr>.expected_type

< expr>

X + 2.23

actual=int

expected=int

actual=float

actual=float

32

Axiomatic Semantics
Using assertions to specify constraints on
program variables before (precondition)
and after (postcondition) statement
execution.

Example:
{x>1} x=x-1 {x>0}

{x>1} is the precondition
{x>0}is the postcondition

Calculate the precondition for y=x+3{y=2}:
Substitute the postcondition into the
assignment, 2 = x+3 => x=-1
Therefore, {x=-1} is the precondition

Correctness Proofs
The weakest precondition is the least
restrictive constraint that satisfies the
postcondition requirement.
Example:

In previous example {x>5}, {x>3}, {x>1}
has a weakest precondition of {x>1}

Given a final desired postcondition for a
program, if by working backwards
calculating the weakest precondition at
each statement, and the final computed
precondition is implied by the initial
precondition, then the program is correct.

33

Inference Rules
Inference rules are of the form:

S1, S2, ... Sn

S

If S1, S2, … Sn are true, then S is true.
Rule of consequence:

{P}S{Q},P’=>P,Q=>Q’

{P’}S{Q’}

2-statement sequence:
{P1}S1{P2},{P2}S2{P3}

{P1}S1;S2{P3}

Axiomatic Semantics Example
Prove {x>5}x=x-2{x>1}

Substituting, we can prove {x>3}x=x-2{x>1}.

By the rule of consequence,
{x>3}x=x-2{x>1}, {x>5}=>{x>3},{x>1}=>{x>1}

--

{x>5}x=x-2{x>1}

Therefore, {x>5}x=x-2{x>1}.

Prove {x<0}x=-x;y=x+1{y>0}
Substituting, we can compute {x>-1} as precondition for
y=x+1.
Assume precondition {x>-1} for y=x+1 is the
postcondition for x=-x.

By the rule of consequence, we prove
{x<0}x=-x{x>-1} is true.

By the 2-statement sequence rule, we prove
{x<0}x=-x;y=x+1{y>0} is true.

34

Denotational Semantics
The meaning of a program can be
specified by defining a set of mathematical
objects corresponding to language
elements and a set of functions to map
the language elements to mathematical
objects.
Once mathematical equivalents are
derived, rigorous mathematics can be
applied to reason about programs.

Denotational Semantics Example
Assume the grammar:

<prod> <prod> ‘*’ <digit>

| <digit>

<digit> ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’

| ‘6’ | ‘7’ | ‘8’ | ‘9’

A denotational mapping to assign meaningful
object to each language element could be the
following set of functions:

M(‘0’)=0, M(‘1’)=1, M(‘2’)=2, …, M(‘9’)=9
M(<prod> ‘* ’ <digit>)=M(<prod>) * M(<digit>)

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

