Number Systems and Logic

UCT Dept of Computer Science CS115 ~ 2003

Number Representations

- Numeric info fundamental - encodes data and instructions
- We are used to base/radix ten: decimal (0-9)
- Computers use presence/absence of voltage
\square binary system: (0-1) or "off/on"
- General radix r number rep:
$d_{p} d_{p-1} d_{p-2} \ldots d_{2} d_{1} d_{0} \cdot d_{-1} d_{-2} \ldots d_{-q}$
- Numeric value is: $\Sigma_{i=-q \ldots p} d_{i} i^{i}$
- Write: N_{r} for number N using radix r
- Examples

Decimal:
$1041.2_{10}=1^{*} 10^{3}+0^{*} 10^{2}+4^{*} 10^{1}+1^{*} 10^{0}+2^{*} 10^{-1}$
Binary:
$1001.1_{2}=1^{*} 2^{3}+0^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}+1^{*} 2^{-1}=9.5_{10}$

- n-bit binary number: 0_{10} to $\left(2^{n}-1\right)_{10}$
- Largest 8-bit (unsigned) number: $11111111_{2}=$ 255_{10}

Binary to Decimal Conversion

1. quot $=$ number; $i=0$;
2. repeat until quot $=0$:
3. quot $=$ quot/2;
4. digit $\mathrm{i}=$ remainder;
5. i++;

- gives digits from least to most signif.
$33 / 2=16$ rem 1 least sig. digit
$16 / 2=8 \quad$ rem 0
$8 / 2=4$ rem 0
$4 / 2=2$ rem 0
$2 / 2=1$ rem 0
$1 / 2=0$ rem 1; most sig. digit

Converting fractional numbers
 UCT-CS

1. $i=0$;
2. repeat until $\mathrm{N}==1.0$ or $\mathrm{i}=\mathrm{n}$:
$\mathrm{N}=\operatorname{FracPart}(\mathrm{N}) ; \mathrm{N}^{*}=2$;
3. digit $\mathrm{i}=\operatorname{IntPart}(\mathrm{N}) ; \mathrm{i}++$

- Eg: 0.125_{10} to binary $->0.001_{2}$
$0.125^{*} 2=0.25 ; \quad$ IntPart $=0$ most significant digit
$0.250 * 2=0.50 ; \quad \operatorname{IntPart}=0$
$0.500 * 2=1.00 ; \quad$ IntPart $=1$ least significant digit
- Convert int and frac. part separately
- Many numbers cannot be represented accurately:
$0.3_{10}=[0.0[1001] \ldots]_{2}$ (bracket repeats, limited by bit size)

Binary Addition

- Adding binary numbers:

$$
1+0=0+1=1 ; 0+0=0 ; 1+1=0 \text { carry } 1
$$

- Possibility of overflow

Add 109_{10} to 136_{10} :

$$
01101101+10001000=11110101=245_{10}
$$

Add $254{ }_{10}$ to 2_{10} :

$$
11111110+00000010=[1] 00000000=256_{10}
$$

- We only have 8 bits to store answer...so it's zero!
- Program can generate an "exception"' to let us know
- Usually number of bits is quite large: eg MIPS R4000 32bits.

Signed Numbers

UCT-CS

- Can use left-most bit to code sign ($0=\mathrm{pos} / 1=$ neg $)$
\square Gives symmetric numbers from -(27-1)...2 2^{7-1} AND two zeros!!!
\square Addition not straight forward (bad for hardware implementors)
- This is nonsensical and wasteful: can use extra bit pattern
- Try one's complement:
\square negative numbers obtained by flipping signs
\square positive numbers unchanged
\square e.g. $-5=\operatorname{complement}(00000101)=11111010$
- Left-most bit still indicates sign

- Now easy to subtract: complement number and add:
e.g. 5-6
$=00000101+$ complement (00000110)
$=00000101+11111001$
$=11111110$
= complement(00000001) (-1)
- A carry is added into right-most bit
- Can still overflow: can check sign bits
\square Only numbers with same sign can overflowCheck: if input sign != output sign then overflow

UCT-CS

- Evaluate 10-7 using 8-bit one's complement arithmetic:
10-7
$=00001010+$ complement (00000111)
$=00001010+11111000$
= 00000010 carry 1
$=00000010+00000001$
$=00000011=3_{10}$
- Still have two zeros \Rightarrow two's complement
\square Complement then add 1
\square Our number range now asymmetric: $-2^{7} \ldots 2^{7}-1$
\square Used extra zero bit pattern
- Now when we add, discard carry

10-7
$=00001010+2$ complement (00000111)
$=00001010+11111001$
$=00000011$ carry 1 (discard)
$=3$

- Same overflow test can be used

Binary Coded Decimal

- Can use Binary Coded Decimal (BCD) to represent integers:
\square map 4 bits per digit (from 0000)
- Wasteful: only 10 bit patterns reqd; 6 wasted.

Binary more compact code e.g.
$\square 256_{10}=100000000_{2}=001001010110_{\mathrm{BCD}}$
\square so 9 vs 12 bits in this case

- Not practical; complicates hardware implementation
\square How do you add/subtract, deal with carries etc?

Octal and Hexadecimal

- Base 8 (octal) and base 16 (Hexadecimal) are sometimes used (powers of 2)
- Octal (0NNN...N) uses digits 0-7
- Hex (0xNNN...N) uses "digits" 0-9,A-F
- Examples: $17_{10}=10001_{2}=21_{8}=11_{16}$
- Conversion as for decimal to binary:
\square divide/multiply by 8 or 16 instead
- Binary to octal or hexadecimal
\square group bits into 3 (octal) or 4 (hex) from LS bit
\square pad with leading zeros if reqd

UCT-CS

- 0100011011010111_{2}

$$
\begin{aligned}
& =(000)(100)(011)(011)(010)(111) \\
& =43327_{8} \\
& =(0100)(0110)(1101)(0111) \\
& =46 D 7_{16}
\end{aligned}
$$

- Note padding at front of number

- To convert from hex/octal to binary: reverse procedure

$$
\mathrm{FF}_{16}=(1111)(1111)_{2}
$$

$377_{8}=(011)(111)(111)_{2}$

- NOTE: for fractional conversion, move from left to right and pad at right end:
$0.11001101011_{2}=0 .(110)(011)(010)(110)$
$=0.6326_{8}$
$0.11_{2}=0 .(110)_{2}=0.6_{8}$
- Convert fractional/integer part separately
- When converting to hex/oct may be easier to conv. to bin first

Floating point Numbers

- Fixed point numbers have very limited range (determined by bit length)
- 32-bit value can hold integers from -2^{31} to $2^{31}-1$ or smaller range of fixed point fractional values
- Solution: use floating point (scientific notation)

Thus $0.0000000000000976 \Rightarrow 9.76^{\star} 10^{-14}$

- Consists of two parts: mantissa \& exponent

Mantissa: the number multiplying the base
\square Exponent: the power

- The significand is the part of the mantissa after the decimal point

- Range of numbers is very large, but accuracy is limited by significand
- So, for 8 digits of precision,

$$
976375297321=9.7637529^{*} 10^{11},
$$ and we loose accuracy (truncation error)

- can normalise any floating point number:
$34.34^{*} 10^{12}=3.434^{*} 10^{13}$
- Shift point until only one non-zero digit is to left \square add 1 to exponent for each left shift
\square subtract 1 for each right shift
- Can use notation for binary: use base of 2
$0.11001^{*} 2^{-3}=1.11001^{*} 2^{-4}=1.11001$ * $2^{11111100}$ (2 's complement exponent)
- For binary FP numbers, normalise to:
1.xxx...xxx*2yy...yy
- Problems with FP:
\square Many different floating point formats; problems exchanging data
\square FP arithmetic not associative: $x+(y+z)!=(x+y)+z$
■ IEEE 754 format introduced: single (32-bit) and double (64-bit) formats; standard!
- Also extended precision - 80 bits (long double).
- Single precision number represented internally as
\square sign bit
\square followed by exponent (8-bits)
\square then the fractional part of normalised number (23 bits)
- The leading 1 is implied; not stored
- Double precision
\square has 11-bit exponent and
\square 52-bit significand
■ Single precision range: $2^{*} 10^{-38}$ to $2^{*} 10^{38}$
- Double range: $2^{* 1} 0^{-308}$ to $2^{*} 10^{308}$

- The exponent is "biased"": no explicit negative number
- Single precision: 127, Double precision 1023
- So, for single prec:
exponent of 255 is same as $255-127=128$, and 0 is $0-127=-$ 127 (can't be symmetric, because of zero)
- Most positive exponent: 111...11, most negative:
00.... 000
- Makes some hardware/logic easier for exponents (easy sorting/compare)
- numeric value of stored IEEE FP is actually:
$(-1)^{\text {s }}$ * $(1+$ significand $)$ * $2^{\text {exponent - bias }}$

Example: -0.75 to IEEE754 Single

- Sign is negative: so $\mathrm{S}=1$
- Binary fraction:
$0.75 * 2=1.5($ IntPart $=1)$
$0.50 * 2=1.0($ IntPart $=1)$, so $0.75_{10}=0.11_{2}$
- Normalise: $0.11^{*} 2^{0}=1.1^{*} 2^{-1}$
- Exponent: -1 , add bias(127) $=126=01111110$;
- Answer: 101111110 100... 000000000
s 8 bits 23 bits

What is the value of this FP num?

11000000110010000000000000000000

1. Negative number ($\mathrm{s}=1$)
2. Biased exponent: $10000001=128+1=129$
3. Unbiased exponent $=129-127=2$
4. Significand: $0.1001=0.5+0.0625=0.5625$
5. Value $=-1^{*}(1+0.5625)^{*} 2^{2}=-6.25_{10}$

- IEEE 754 has special codes for zero, error conditions ($0 / 0 \mathrm{etc}$)
- Zero: exponent and significand are zero
- Infinity: $\exp =1111 \ldots 1111$, significand $=0$
- $\mathbf{N a N}$ (not a number): 0/0; exponent = 1111...1111, significand != 0
- Underflow/overflow conditions:

Range of single prec. float

UCT-CS

- Addition/Subtraction: normalise, match to larger exponent then add, normalise
- Error conditions:
\square Exponent Overflow Exponent bigger than max permissable size; may be set to "infinity"'
\square Exponent Underflow Neg exponent, smaller than minimum size; may be set to zero
\square Significand Underflow Alignment may causes loss of significant digits
\square Significand Overflow Addition may cause carry overflow; realign significands

Character Representations

- Characters represented using "character set"
- Examples:
\square ASCII (8-bit)
Unicode (16-bit)EBCDIC (9-bit)
- ASCII - American Standard Code for Information Interchange
- Widely used; 7-bits used for std characters etc.; extra for parity or foreign language

UCT-CS

- ASCII codes for roman alphabet, numbers, keyboard symbols and basic network control
- Parity-bit allows error check (crude) cf. Hamming codes
- Unicode quite new: subsumes ASCII, extensible, supported by Java
- Handles many languages, not just roman alphabet and basic symbols

Bit/Byte Ordering

- Endianess: ordering of bits or bytes in computer
\square Big Endian: bytes ordered from MSB to LSB
\square Little Endian: bytes ordered from LSB to MSB
- Example: how is Hex A3 FC 6D E5 (32-bit) represented?
\square Big Endian: A3FC6DE5 (lowest byte address stores MSB)
\square Little Endian: E56DFCA3 (lowest byte address stores LSB)
- Problems with multi-byte data: floats, ints etc
- MIPS Big Endian, Intel x86 Little Endian
- Bit ordering issues as well: endian on MSb/LSb
- Can check using bitwise operators...

Boolean Algebra \& Logic

- Modern computing devices are digital rather than analog

Use two discrete states to represent all entities: 0 and 1
\square Call these two logical states TRUE and FALSE

- All operations will be on such values, and can only yield such values
- George Boole formalised such a logic algebra: "Boolean Algebra"
- Modern digital circuits are designed and optimised using this theory
- We implement "functions" (such as add, compare, etc.) in hardware, using corresponding Boolean expressions

Boolean Operators

- There are 3 basic logic operators

Operator	Usage	Notation
AND	A AND B	A.B
OR	A OR B	$A+B$
NOT	NOT A	\bar{A}

- A and B can only be TRUE or FALSE
- TRUE represented by 1 ; FALSE by 0
- To show the value of each operator (or combinations thereof) we can use a Truth Table
- AND is TRUE only if both args are TRUE
- OR is TRUE if either is TRUE
- NOT is a unary operator: inverts truth value

A	B	$\mathrm{F}=\mathrm{A} . \mathrm{B}$	$\mathrm{F}=\mathrm{A}+\mathrm{B}$	$\mathrm{F}=\overline{\mathrm{A}}$	$\mathrm{F}=\overline{\mathrm{B}}$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	1
1	1	1	1	0	0

NAND, NOR and XOR

a) NAND is FALSE only both args are TRUE [NOT (A AND B)]
b) NOR is TRUE only if both args are FALSE [NOT (A OR B)]
c) XOR is TRUE is either input is TRUE, but not both

A	B	$\mathrm{F}=\overline{\mathrm{A} . \mathrm{B}}$	$\mathrm{F}=\overline{\mathrm{A}+\mathrm{B}}$	$\mathrm{F}=\mathrm{A} \oplus \mathrm{B}$
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

Logic Gates

- These operators have symbolic representations: "logic gates"
- Building blocks for all computer circuits
- Can specify arbitrary F using truth table; and derive Boolean expression

Finding a Boolean Representation

- $F=F(A, B, C)$; F called "output variable"
- Find F values which are TRUE:

So, if $A=0, B=1, C=0$, then $F=1$.
So, $F_{1}=\bar{A} . B . \bar{C}$
That is, we know our output is
TRUE for this expression (from the table).
Also have $F_{2}=\bar{A} . B . C \& F_{3}=A . B . \bar{C}$
F TRUE if F_{1} TRUE or F_{2} TRUE or F_{3} TRUE $\Rightarrow F=F_{1}+F_{2}+F_{3}$

Cases for F FALSE follows from F TRUE

	0	
	,	
		00

Algebraic Identities

- Commutative: $\mathrm{A} \cdot \mathrm{B}=\mathrm{B} . \mathrm{A}$ and $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
- Distributive:

$$
\begin{aligned}
& A \cdot(B+C)=(A \cdot B)+(A \cdot C) \\
& A+(B \cdot C)=(A+B) \cdot(A+C)
\end{aligned}
$$

- Identity Elements: 1. $\mathrm{A}=\mathrm{A}$ and $0+\mathrm{A}=\mathrm{A}$
- Inverse: $\mathrm{A} \cdot \overline{\mathrm{A}}=0$ and $\mathrm{A}+\overline{\mathrm{A}}=1$
- Associative:
A. $(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A} \cdot \mathrm{B}) \cdot \mathrm{C}$ and $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
- DeMorgan's Laws:
$\overline{\mathrm{A} . \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$ and
$\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

