
1

Number Systems
and Logic

UCT Dept of Computer Science
CS115 ~ 2003

UCT-CS

Number Representations

Numeric info fundamental - encodes data and
instructions
We are used to base/radix ten: decimal (0-9)
Computers use presence/absence of voltage

binary system: (0-1) or “off/on”

General radix r number rep:
dpdp-1dp-2… d2d1d0.d–1d–2…d–q

Numeric value is: i=-q…p diri

2

UCT-CS

Write: Nr for number N using radix r

Examples
Decimal:
1041.210 = 1*103 + 0*102 + 4*101 + 1*100 + 2*10-1

Binary:
1001.12 = 1*23 + 0*22 + 0*21 + 1*20 + 1*2-1 = 9.510

n-bit binary number: 010 to (2n-1)10

Largest 8-bit (unsigned) number: 111111112 =
25510

UCT-CS

Binary to Decimal Conversion

1. quot = number; i = 0;
2. repeat until quot = 0:

1. quot = quot/2;
2. digit i = remainder;
3. i++;

gives digits from least to most signif.
33/2 = 16 rem 1 least sig. digit
16/2 = 8 rem 0
8/2 = 4 rem 0
4/2 = 2 rem 0
2/2 = 1 rem 0
1/2 = 0 rem 1; most sig. digit

3

UCT-CS

Converting fractional numbers

1. i = 0;
2. repeat until N == 1.0 or i == n:

1. N = FracPart(N); N *= 2;
2. digit i = IntPart(N); i++
Eg: 0.12510 to binary -> 0.0012

0.125*2 = 0.25; IntPart = 0 most significant digit
0.250*2 = 0.50; IntPart = 0
0.500*2 = 1.00; IntPart = 1 least significant digit

Convert int and frac. part separately
Many numbers cannot be represented accurately:

0.310 = [0.0[1001]...]2 (bracket repeats, limited by bit size)

UCT-CS

Binary Addition

Adding binary numbers:
1+0 = 0+1 = 1; 0 + 0 = 0; 1 + 1 = 0 carry 1

Possibility of overflow
Add 10910to 13610:
01101101 + 10001000 = 11110101 = 24510

Add 25410 to 210:
11111110 + 00000010 = [1]00000000 = 25610

We only have 8 bits to store answer...so it's zero!
Program can generate an “exception”' to let us know
Usually number of bits is quite large: eg MIPS R4000 32-
bits.

4

UCT-CS

Signed Numbers

Can use left-most bit to code sign (0 = pos/1 = neg)
Gives symmetric numbers from -(27-1)…27-1 AND two zeros!!!
Addition not straight forward (bad for hardware implementors)

This is nonsensical and wasteful: can use extra bit
pattern
Try one's complement:

negative numbers obtained by flipping signs
positive numbers unchanged
e.g. -5 = complement(00000101) = 11111010

Left-most bit still indicates sign

UCT-CS

Now easy to subtract: complement number and
add:

e.g. 5 - 6
= 00000101 + complement(00000110)
= 00000101 + 11111001
= 11111110
= complement(00000001) (-1)

A carry is added into right-most bit
Can still overflow: can check sign bits

Only numbers with same sign can overflow
Check: if input sign != output sign then overflow

5

UCT-CS

Evaluate 10–7 using 8-bit one’s
complement arithmetic:

10 - 7

= 00001010 + complement(00000111)
= 00001010 + 11111000

= 00000010 carry 1
= 00000010 + 00000001

= 00000011 = 310

UCT-CS

Still have two zeros two’s complement
Complement then add 1
Our number range now asymmetric: -27…27-1
Used extra zero bit pattern

Now when we add, discard carry
10 - 7
= 00001010 + 2complement(00000111)
= 00001010 + 11111001
= 00000011 carry 1 (discard)
= 3

Same overflow test can be used

6

UCT-CS

Binary Coded Decimal

Can use Binary Coded Decimal (BCD) to
represent integers:

map 4 bits per digit (from 0000)

Wasteful: only 10 bit patterns reqd; 6 wasted.
Binary more compact code e.g.

25610 = 1000000002 = 0010 0101 0110BCD

so 9 vs 12 bits in this case

Not practical; complicates hardware
implementation

How do you add/subtract, deal with carries etc?

UCT-CS

Octal and Hexadecimal

Base 8 (octal) and base 16 (Hexadecimal) are
sometimes used (powers of 2)
Octal (0NNN...N) uses digits 0-7
Hex (0xNNN...N) uses “digits” 0-9,A-F
Examples: 1710 = 100012 = 218 = 1116

Conversion as for decimal to binary:
divide/multiply by 8 or 16 instead

Binary to octal or hexadecimal
group bits into 3 (octal) or 4 (hex) from LS bit
pad with leading zeros if reqd

7

UCT-CS

01000110110101112

= (000) (100) (011) (011) (010) (111)

= 433278

= (0100) (0110) (1101) (0111)

= 46D716

Note padding at front of number

UCT-CS

To convert from hex/octal to binary: reverse procedure
FF16 = (1111)(1111)2

3778 = (011)(111)(111)2

NOTE: for fractional conversion, move from left to right
and pad at right end:

0.110011010112 = 0. (110) (011) (010) (110)
= 0.63268

0.112 = 0.(110)2 = 0.68

Convert fractional/integer part separately
When converting to hex/oct may be easier to conv. to
bin first

8

UCT-CS

Floating point Numbers

Fixed point numbers have very limited range
(determined by bit length)
32-bit value can hold integers from -231 to 231-1
or smaller range of fixed point fractional values
Solution: use floating point (scientific notation)

Thus 0.0000000000000976 9.76*10-14

Consists of two parts: mantissa & exponent
Mantissa: the number multiplying the base
Exponent: the power

The significand is the part of the mantissa after
the decimal point

UCT-CS

Range of numbers is very large, but accuracy is
limited by significand
So, for 8 digits of precision,

976375297321 = 9.7637529*1011,

and we loose accuracy (truncation error)
can normalise any floating point number:

34.34*1012 = 3.434*1013

Shift point until only one non-zero digit is to left
add 1 to exponent for each left shift
subtract 1 for each right shift

9

UCT-CS

Can use notation for binary: use base of 2
0.11001*2-3 = 1.11001*2-4 = 1.11001 * 211111100 (2's

complement exponent)

For binary FP numbers, normalise to:
1.xxx…xxx*2yy…yy

Problems with FP:
Many different floating point formats; problems
exchanging data
FP arithmetic not associative: x + (y + z) != (x + y) + z

IEEE 754 format introduced: single (32-bit) and
double (64-bit) formats; standard!

UCT-CS

Also extended precision - 80 bits (long double).
Single precision number represented internally as

sign bit
followed by exponent (8-bits)
then the fractional part of normalised number (23 bits)

The leading 1 is implied; not stored
Double precision

has 11-bit exponent and
52-bit significand

Single precision range: 2*10-38 to 2*1038

Double range: 2*10-308 to 2*10308

10

UCT-CS

UCT-CS

The exponent is “biased‘”: no explicit negative number
Single precision: 127, Double precision 1023
So, for single prec:

exponent of 255 is same as 255-127 = 128, and 0 is 0 - 127 = -
127 (can't be symmetric, because of zero)

Most positive exponent: 111...11, most negative:
00....000
Makes some hardware/logic easier for exponents (easy
sorting/compare)
numeric value of stored IEEE FP is actually:

(-1)S * (1 + significand) * 2exponent - bias

11

UCT-CS

Example: -0.75 to IEEE754
Single

Sign is negative: so S = 1

Binary fraction:
0.75*2 = 1.5 (IntPart = 1)
0.50*2 = 1.0 (IntPart = 1), so 0.7510 = 0.112

Normalise: 0.11*20 = 1.1*2-1

Exponent: -1, add bias(127) = 126 = 01111110;
Answer: 1 01111110 100…000000000

s 8 bits 23 bits

UCT-CS

What is the value of this FP
num?

1 10000001 10010000000000000000000

1. Negative number (s=1)
2. Biased exponent: 10000001 = 128+1 = 129

1. Unbiased exponent = 129-127 = 2

3. Significand: 0.1001 = 0.5+0.0625 = 0.5625

4. Value = -1 * (1 + 0.5625)*22 = -6.2510

12

UCT-CS

IEEE 754 has special codes for zero, error
conditions (0/0 etc)
Zero: exponent and significand are zero
Infinity: exp = 1111...1111, significand = 0
NaN (not a number): 0/0; exponent =
1111...1111, significand != 0
Underflow/overflow conditions:

UCT-CS

Range of single prec. float

13

UCT-CS

Addition/Subtraction: normalise, match to larger
exponent then add, normalise
Error conditions:

Exponent Overflow Exponent bigger than max
permissable size; may be set to “infinity”'
Exponent Underflow Neg exponent, smaller than
minimum size; may be set to zero
Significand Underflow Alignment may causes loss
of significant digits
Significand Overflow Addition may cause carry
overflow; realign significands

UCT-CS

Character Representations

Characters represented using “character set”

Examples:
ASCII (8-bit)
Unicode (16-bit)
EBCDIC (9-bit)

ASCII - American Standard Code for Information
Interchange

Widely used; 7-bits used for std characters etc.;
extra for parity or foreign language

14

UCT-CS

ASCII codes for roman alphabet, numbers,
keyboard symbols and basic network
control
Parity-bit allows error check (crude) cf.
Hamming codes
Unicode quite new: subsumes ASCII,
extensible, supported by Java
Handles many languages, not just roman
alphabet and basic symbols

UCT-CS

Bit/Byte Ordering

Endianess: ordering of bits or bytes in computer
Big Endian: bytes ordered from MSB to LSB
Little Endian: bytes ordered from LSB to MSB

Example: how is Hex A3 FC 6D E5 (32-bit) represented?
Big Endian: A3FC6DE5 (lowest byte address stores MSB)
Little Endian: E56DFCA3 (lowest byte address stores LSB)

Problems with multi-byte data: floats, ints etc
MIPS Big Endian, Intel x86 Little Endian
Bit ordering issues as well: endian on MSb/LSb
Can check using bitwise operators...

15

UCT-CS

Boolean Algebra & Logic

Modern computing devices are digital rather than analog
Use two discrete states to represent all entities: 0 and 1
Call these two logical states TRUE and FALSE

All operations will be on such values, and can only yield
such values
George Boole formalised such a logic algebra: “Boolean
Algebra”
Modern digital circuits are designed and optimised using
this theory
We implement “functions” (such as add, compare, etc.)
in hardware, using corresponding Boolean expressions

UCT-CS

Boolean Operators

There are 3 basic logic operators

A and B can only be TRUE or FALSE

TRUE represented by 1; FALSE by 0

ANOT ANOT
A+BA OR BOR

A.BA AND BAND

NotationUsageOperator

16

UCT-CS

To show the value of each operator (or combinations
thereof) we can use a Truth Table

AND is TRUE only if both args are TRUE
OR is TRUE if either is TRUE
NOT is a unary operator: inverts truth value

001111

101001

011010

110000

F=BF = AF=A+BF=A.BBA

UCT-CS

NAND, NOR and XOR

a) NAND is FALSE only both args are TRUE [NOT (A
AND B)]

b) NOR is TRUE only if both args are FALSE [NOT (A
OR B)]

c) XOR is TRUE is either input is TRUE, but not both

00011

10101

10110

01100

F=A BF=A+BF=A.BBA

17

UCT-CS

Logic Gates

These operators have symbolic
representations: “logic gates”
Building blocks for all computer circuits
Can specify arbitrary F using truth table;
and derive Boolean expression

UCT-CS

18

UCT-CS

Finding a Boolean
Representation

F = F(A,B,C); F called “output variable”
Find F values which are TRUE:

So, if A=0, B=1, C=0, then F = 1.
So, F1 =A.B.C
That is, we know our output is
TRUE for this expression (from the table).
Also have F2 = A.B.C & F3 = A.B.C

F TRUE if F1 TRUE or F2 TRUE or F3 TRUE
F = F1 + F2 + F3

Cases for F FALSE follows from F TRUE 0111
1011
0101
0001
1110
1010
0100
0000
FCBA

UCT-CS

Algebraic Identities

Commutative: A.B = B.A and A+B = B+A
Distributive:

A.(B+C) = (A.B) + (A.C)
A+(B.C) = (A+B).(A+C)

Identity Elements: 1.A = A and 0 + A = A
Inverse: A.A = 0 and A + A = 1
Associative:

A.(B.C) = (A.B).C and A+(B+C) = (A+B)+C

DeMorgan's Laws:
A.B = A + B and
A+B = A.B

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

