
University of Cape Town
Department of Computer Science

Computer Science CSC115F

Final Exam

• Answer all questions.

• All questions that refer to elements of programming make reference to the Java
programming language as studied in class.

• Good luck !

Marks: 25

Time: ?? minutes

• Approximate marks per question are
shown in brackets

• The use of calculators is permitted

NAME:
Surname Initials

STUDENT NO: COURSE CODE: CSC

This paper consists of 2 questions and 4 pages (including this cover page).

Mark Allocation

Quest Marks Internal External Quest Marks Internal External

1 [15] 2 [10]

Total Total

Grand Total

Final Mark

Internal Examiner: External Examiner:

1

Section 1. Java Basics

Question 1. [15 marks]

a) List the 3 syntax errors in the following code fragment (line numbers are added
so you can refer to specific lines):

line1: public float func (integer a, float b)
line2: {
line3: float result = (1.0f+((a*2)+(b*3))
line4: return result;
line5: }

i) line1: integer is not a valid data type

ii) line3: missing)

iii) line1: missing ;

[3]

b) List one difference between constants and literals.

Constants are named values so can be reused by name while literals have to be
inserted verbatim wherever needed.

[2]

c) Why does the expression"day"<31 result in an error?

Incompatible data types.

[1]

d) Write the methodcalcRoot to calculate a root of a quadratic equation (i.e., a
value ofx for whichax2 + bx+ c = 0). Your method must assume thata, b andc
aredouble instance variables.calcRoot must take no parameters and return
a floating point result. In addition, ifb2− 4ac is negative, the returned value must
be0 and an error message must be written to the console (screen).

Remember that the roots are given by:x = −b±√b2−4ac
2a and that theMath.pow (x, y)

method calculatesxy.

public double calcRoot ()
{

if ((b * b - 4 * a * c) < 0)
{

System.out.println ("Error");
return 0;

}
return (- b + Math.pow (b * b - 4 * a * c, 0.5)) / (2 * a);

}

Marking guide: ignore syntax errors, -1/2 mark for each real error, round off to
next whole mark

2

or

1 – some basic structure eg. correct header
2 – expression written properly but lots of errors
3 – a few errors but too many to warrant a full score
4 – only minor syntax errors, with possibly one real error

[4]

e) Write a methodadjustedAverage to calculate the average of the two highest
marks in a set of three marks. For example, the adjusted average of 12, 24 and
36 is 30 because the smallest value is ignored. Your method must take 3 integer
parameters and return an integer.

public int adjustedAverage (int f, int g, int h)
{

if ((f <= g) && (g <= h))
return (g + h) / 2;

if ((g <= f) && (g <= h))
return (f + h) / 2;

return (f + g) / 2;
}

Marking guide: ignore syntax errors, assume 3 unique numbers, concentrate on
correctness of algorithm, -1/2 mark for each real error, round off to next whole
mark

or

1 – some basic structure eg. correct header
2 – somewhat of an idea in terms of algorithm
3 – algorithm works but not for all cases, or almost works
4 – algorithms works for most cases
5 – only minor syntax errors, with possibly one real error or oversight

[5]

3

Section 2. Number Systems

Question 2. [10 marks]

a) In boolean addition, explain what an overflow is and illustrate with an example.

An overflow occurs when adding the leftmost bits results in a carry, thereby sig-
nifying that the number of bits is insufficient to store the number. [2]

For example: 1001+1001 = (1)0010 overflow [1]

Marking notes: answer will still be correct if interpreted as 1-bit scenario.

[3]

b) Convert23.12510 into its hexadecimal representation. Show full calculations and
clearly indicate your final answer.

2 23

2 11 r 1

2 5 r 1

2 2 r 1

2 1 r 0

0 r 1

Thus,2310 = 101112 [1]

0.125 * 2 = 0.250 Intpart = 0
0.250 * 2 = 0.500 Intpart = 0
0.500 * 2 = 1.000 Intpart = 1
Thus,0.12510 = 0.0012 [1]

Thus,23.12510 = 10111.00102 = 17.216 [1]

[3]

c) Write an algorithm to add together 2 whole binary numbers in 1’s complement,
where the numbers have differing numbers of bits. Assume the numbers are al-
ready in 1’s complement and leave the result in 1’s complement form.

1. If the leading digit of the smaller number is 0, pad with 0’s to the left (else pad
with 1’s) until numbers are the same length
2. Add pairs of corresponding digits from the lsb to the msb, adding the carry
from each operation to the next addition
3. If there is a carry from the last addition, drop the carry and add 1 to the sum

Marking notes: first step may be omitted without losing marks, ignore sign-
dependence of padding, 1 mark lost for missing last step, marks lost for errors
in algorithm

[4]

4

