
Open Digital Libraries

Hussein Suleman

Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science and Applications

Edward A. Fox, Chair
James D. Arthur
Roger W. Ehrich

Srinidhi Varadarajan
Gail McMillan

November 19, 2002

Blacksburg, Virginia Tech

Keywords: digital library, interoperability, system architecture, protocol, component,
open archive

© 2002 Hussein Suleman

Open Digital Libraries

Hussein Suleman

(ABSTRACT)

Digital Libraries (DLs) are software systems specifically designed to assist users in
information seeking activities. Stemming from the intersection of library sciences and
computer networking, traditional DL systems impose library philosophies of structure
and management on the sprawling collections of data that are made possible through the
Internet.

DLs evolve to keep pace with innovation on the Internet so there is little standardization
in the architecture of such systems. However, in attempting to provide users with the
highest possible levels of service with the minimum possible effort, many systems work
collaboratively with others, e.g., meta-search engines. This type of system
interoperability is encouraged by the emergence of simple data transfer protocols such as
the Open Archives Initiative’s Protocol for Metadata Harvesting (OAI-PMH).

Open Digital Libraries are an extension of the work of the OAI. It is proposed in this
dissertation that the philosophy and approach adopted by the OAI can easily be extended
to support inter-component interaction within a componentized DL. In particular, DLs
can be built by connecting small components that communicate through a family of
lightweight protocols, using XML as the data interchange mechanism. In order to test the
feasibility of this, a set of protocols was designed based on a generalization of the work
of the OAI. Components adhering to these protocols were implemented and integrated
into production and research DLs. These systems were then evaluated for simplicity,
reusability, and performance.

On the whole, this study has shown promise in the approach of applying the fundamental
concepts of the OAI protocol to the task of DL component design and implementation.
Further, it has shown the feasibility of building componentized DL systems using
techniques that are a precursor to the Web Services approach to system design.

Thanks are given for the support of NSF through its grants CCR-9627922 and IIS-
0002935. Thanks also are given to the AmericanSouth.org project funded by the Mellon
Foundation.

 Page ii

Acknowledgements

First and foremost, I wish to thank my advisor, Dr Fox, whose constant encouragement,
inspiration, and support led me to believe in the importance of my work.

Thanks are due to my family, especially my mother, who from afar served as my
conscience by ensuring that working towards finishing my degree was my first priority.

Thanks to the members of the Digital Library Research Laboratory at Virginia Tech, who
contributed useful feedback throughout the course of my research. Special thanks go to
the late Robert France, as it was during a conversation with him in early 2001 that the
initial idea for my research was born.

Without enumerating their names, I acknowledge the support and feedback from many
collaborators at Virginia Tech and elsewhere who I have worked with during the
development of OAI-PMH and ODL.

Lastly, thanks to my friends all over the world, who have at some time or the other lived
with me in person or in spirit, for reaffirming my belief in the fundamental nature of
people and for being by my side as I discovered and rediscovered myself.

 Page iii

TTAABBLLEE OOFF CCOONNTTEENNTTSS

LIST OF FIGURES.. IX

LIST OF TABLES..XI

CHAPTER 1 INTRODUCTION... 1
1.1 PREAMBLE.. 1
1.2 CONTEXT.. 1

1.2.1 What is a Digital Library? ... 1
1.2.2 What is Interoperability? ... 2
1.2.3 What is an Open Archive? ... 2

1.3 MOTIVATION .. 3
1.4 OPEN DIGITAL LIBRARY DESIGN.. 6
1.5 RESEARCH CONTRIBUTIONS ... 9
1.6 OUTLINE OF DISSERTATION.. 9

CHAPTER 2 BACKGROUND: INTEROPERABILITY AND ARCHITECTURE............................ 10
2.1 INTRODUCTION TO THE OAI ... 10

2.1.1 Historical Background and Context... 10
2.1.2 Initial Technical Efforts ... 11
2.1.3 Evaluation: Community and Technical Meetings .. 11
2.1.4 Other Interoperability Efforts .. 12
2.1.5 DL Architecture Efforts.. 13

2.2 BASIC OA CONCEPTS ... 14
2.2.1 Repositories and Open Archives .. 14
2.2.2 Harvesting and Federation .. 15
2.2.3 Metadata and Data .. 16
2.2.4 Data and Service Providers ... 16

2.3 TECHNICAL FRAMEWORK... 17
2.3.1 Underlying Technology and Standards.. 17
2.3.2 Sets ... 18
2.3.3 Records .. 18
2.3.4 OAI Protocol for Metadata Harvesting ... 19
2.3.5 Flow Control.. 20
2.3.6 Registration Services.. 21
2.3.7 Expansion and Customization.. 21

2.4 REQUIREMENTS TO BE A PROVIDER .. 21
2.4.1 Data Provider .. 21
2.4.2 Service Provider... 22
2.4.3 Tools and Support .. 22

2.5 OAI SUPPORT FOR TYPICAL SERVICES... 23
2.5.1 Cross-Archive Searching ... 23
2.5.2 Reference Linking .. 23
2.5.3 Annotations .. 23
2.5.4 Filtering ... 23
2.5.5 Browsing .. 24

2.6 DIGITAL LIBRARY POLICIES FROM AN OAI PERSPECTIVE .. 24
2.6.1 Ownership and dissemination control over digital objects and metadata 24
2.6.2 Changes and withdrawal ... 24
2.6.3 Preservation... 24

 Page iv

2.6.4 Uniqueness of objects and collections ... 25
2.7 BUILDING OAI SUB-COMMUNITIES .. 25

2.7.1 Metadata formats ... 25
2.7.2 Protocol extensions .. 25
2.7.3 Shared semantics ... 26

2.8 CASE STUDY: OAI IN THE NDLTD COMMUNITY... 26
2.8.1 Context ... 26
2.8.2 Development of OAI MARC format ... 26
2.8.3 MetaLibraries .. 27
2.8.4 Name authority systems ... 27
2.8.5 Search and Classification for ETDs... 28

2.9 FUTURE DIRECTIONS .. 28
CHAPTER 3 ODL DESIGN CONSIDERATIONS .. 30

3.1 INTRODUCTION... 30
3.2 ODL VS. THE INTERNET: A PRACTICAL PERSPECTIVE ... 30

3.2.1 Simplicity ... 32
3.2.2 Openness.. 32
3.2.3 Independence of protocols ... 32
3.2.4 Loose coupling ... 33
3.2.5 Layers... 33
3.2.6 Reuse.. 33
3.2.7 Orthogonality with a Purpose.. 34

3.3 OPEN DIGITAL LIBRARY DESIGN.. 34
3.4 ODL VS. OOP: A THEORETICAL PERSPECTIVE.. 36

3.4.1 Overview .. 36
3.4.2 Mappings ... 37
3.4.3 Implications ... 38

CHAPTER 4 OPEN DIGITAL LIBRARY SERVICE PROTOCOLS ... 39
4.1 ODL SERVICES AS EXTENSIONS OF THE OAI-PMH.. 39
4.2 PROTOCOL DESIGN CONSIDERATIONS .. 39

4.2.1 OAI Sets as Parameters ... 39
4.2.2 Interface-directed Responses ... 39
4.2.3 Harvesting Granularity.. 40
4.2.4 Response-level Containers ... 40
4.2.5 Submission ... 40
4.2.6 Harvesting vs. Archive Access ... 41
4.2.7 Dublin Core Requirement .. 41
4.2.8 Customization of Components.. 41
4.2.9 Propagation of Information ... 41

4.3 EXTENDED OAI-PMH (XOAI-PMH) .. 41
4.3.1 Global Changes ... 42
4.3.2 Service Request Changes ... 42

4.4 PREFACE TO ODL PROTOCOL DESCRIPTIONS... 44
4.5 THE ODL-SUBMIT PROTOCOL V1.0.. 44

4.5.1 Description... 44
4.5.2 Interface Protocol .. 44
4.5.3 Interoperability Issues.. 45

4.6 THE ODL-RECENT PROTOCOL V1.0 ... 45
4.6.1 Description... 45
4.6.2 Interface Protocol .. 45
4.6.3 Interoperability Issues.. 45

4.7 THE ODL-UNION PROTOCOL V1.0 ... 46
4.7.1 Description... 46
4.7.2 Interface Protocol .. 46

 Page v

4.7.3 Interoperability Issues.. 47
4.8 THE ODL-SEARCH PROTOCOL V1.0 ... 48

4.8.1 Description... 48
4.8.2 Interface Protocol .. 49
4.8.3 Interoperability Issues.. 50
4.8.4 Query Language: odlsearch1... 50
4.8.5 Query Language: odlsearch2... 51

4.9 THE ODL-BROWSE PROTOCOL V1.0 .. 52
4.9.1 Description... 52
4.9.2 Interface Protocol .. 52
4.9.3 Interoperability Issues.. 54
4.9.4 Query Language: odlbrowse1.. 54

4.10 THE ODL-RECOMMEND PROTOCOL V1.0 ... 55
4.10.1 Description... 55
4.10.2 Interface Protocol .. 55
4.10.3 Interoperability Issues.. 57

4.11 THE ODL-RATE PROTOCOL V1.0 ... 58
4.11.1 Description... 58
4.11.2 Interface Protocol .. 58
4.11.3 Interoperability Issues.. 60

4.12 THE ODL-ANNOTATE PROTOCOL V1.0 .. 60
4.12.1 Description... 60
4.12.2 Interface Protocol .. 60
4.12.3 Interoperability Issues.. 63
4.12.4 Annotation Metadata Sub-Format: odlannotate1 .. 63
4.12.5 Annotation Metadata Sub-Format: discuss.. 64

4.13 THE ODL-REVIEW PROTOCOL V1.0 ... 64
4.13.1 Description... 64
4.13.2 Interface Protocol .. 67
4.13.3 Transaction Formats.. 69
4.13.4 Report Formats .. 74
4.13.5 Interoperability Issues.. 77

4.14 CASE STUDY: USING AN ODL-SEARCH COMPONENT... 78
CHAPTER 5 IMPLEMENTATION AND CASE STUDIES ... 80

5.1 INTRODUCTION... 80
5.2 IMPLEMENTATION .. 81

5.2.1 Platform ... 81
5.2.2 Customization .. 81
5.2.3 Component Details... 82
5.2.4 OAI Component Details ... 93
5.2.5 User Interfaces... 95

5.3 CASE STUDIES.. 101
5.3.1 Case study: ETD Union Catalog.. 101
5.3.2 Case study: CSTC .. 103
5.3.3 Case study: husseinsspace.com.. 105
5.3.4 Case study: JERIC ... 106
5.3.5 Case study: New CSTC .. 111

5.4 SUMMARY .. 114
CHAPTER 6 COMPONENT TESTING.. 115

6.1 INTRODUCTION... 115
6.2 DIRECT COMPONENT LOGIC ... 115

6.2.1 IRDB .. 115
6.2.2 DBBrowse .. 116

6.3 XOAI INTERFACE .. 117

 Page vi

6.4 WEB CLIENT TEST.. 118
6.5 PARSING TEST ... 119
6.6 REPOSITORY EXPLORER ... 120

6.6.1 Introduction.. 120
6.6.2 Design of the Repository Explorer... 121
6.6.3 Validation Procedure... 123
6.6.4 Options... 124
6.6.5 Automatic Testing .. 124
6.6.6 Component Explorer .. 125
6.6.7 Feedback.. 126

CHAPTER 7 ANALYSIS AND EVALUATION... 127
7.1 INTRODUCTION... 127
7.2 UNDERSTANDABILITY AND SIMPLICITY.. 127

7.2.1 Methodology .. 127
7.2.2 Results.. 128
7.2.3 Discussion.. 130
7.2.4 Conclusions.. 132

7.3 REUSABILITY.. 133
7.3.1 Case study: AmericanSouth.org... 133
7.3.2 Case study: CITIDEL... 133
7.3.3 Case study: BICTEL/e.. 134

7.4 EXTENSIBILITY ... 135
7.4.1 Sub-classing ... 135
7.4.2 Layering ... 135

7.5 PERFORMANCE ... 136
7.5.1 Communications and Protocol Overhead .. 136
7.5.2 Execution Speed: Nested Components ... 139
7.5.3 Execution Speed Optimizations.. 141
7.5.4 Load Analysis... 146
7.5.5 User Interface Response .. 147
7.5.6 Storage ... 148
7.5.7 Duplication of Data ... 149
7.5.8 Consistency .. 150
7.5.9 Network Bandwidth.. 151

7.6 SUMMARY .. 152
CHAPTER 8 FUTURE WORK .. 153

8.1 INTRODUCTION... 153
8.2 HARVESTING .. 153

8.2.1 Issues with Multiple Sources.. 153
8.2.2 Issues with Single Sources ... 154

8.3 USER INTERFACES .. 154
8.3.1 User Interaction API.. 154
8.3.2 MDEdit Generalization.. 155
8.3.3 Component Composition GUI.. 156
8.3.4 Portals.. 156

8.4 LOGGING .. 157
8.5 SECURITY ... 158
8.6 NEW PROTOCOLS AND COMPONENTS ... 158
8.7 TESTING ... 159
8.8 INSTALLATION AND REGISTRATION.. 160
8.9 PERFORMANCE ... 161
8.10 NEW STANDARDS ... 162

8.10.1 OAI-PMH v2.0 ... 162
8.10.2 SOAP-OAI and SOAP-ODL... 162

 Page vii

8.10.3 ODL v2.0.. 163
CHAPTER 9 CONCLUSIONS ... 165

REFERENCES ... 167

APPENDIX A SAMPLE XML SCHEMA FOR MDEDIT... 184

VITA.. 187

 Page viii

LLIISSTT OOFF FFIIGGUURREESS

Figure 1.1 Internal structure of typical ODL search component .. 7
Figure 1.2 Initial architecture of the CITIDEL system... 8
Figure 1.3 Architecture of the NDLTD Union Catalog Experimental System................... 8
Figure 2.1 Data flow for federation and harvesting.. 15
Figure 2.2 Layered organization of data storage and service provision 16
Figure 2.3 Fragment of XML illustrating namespaces and schema locations.................. 18
Figure 2.4 Sample record from the arXiv open archive.. 19
Figure 2.5 Minimal metadata record from arXiv with optional <about> section............. 21
Figure 2.6 Example sequence of requests and responses between service and data

providers ... 22
Figure 2.7 Fragment of sample record of XML encoding of MARC............................... 27
Figure 3.1 Encapsulation of network protocols, up to the level of ODL.......................... 31
Figure 3.2 Example networked architecture of an Open Digital Library 36
Figure 4.1 Simple ODL network using ODL-Union-compliant component 46
Figure 4.2 Hierarchical organization of ODL-Union-compliant components.................. 48
Figure 4.3 Simple ODL network using an ODL-Search-compliant component 49
Figure 4.4 Interface and component interaction during indexing and search operations . 79
Figure 5.1 Directory layout for a typical component.. 82
Figure 5.2 Internal architecture of DBUnion.. 83
Figure 5.3 Sample configuration for DBUnion .. 84
Figure 5.4 Internal architecture of IRDB.. 86
Figure 5.5 Fragment of DBBrowse configuration .. 87
Figure 5.6 Direct editing interface to Box component ... 88
Figure 5.7 Insertion procedure for new entries in a Thread component........................... 90
Figure 5.8 Sample configuration script for Filter ... 94
Figure 5.9 HTML rendering of metadata editor ... 100
Figure 5.10 Architecture of NDLTD ODL system... 102
Figure 5.11 Index page for NDLTD user interface... 102
Figure 5.12 Output from typical browse operation... 103
Figure 5.13 Architecture of CSTC, showing ODL components..................................... 104
Figure 5.14 CSTC interface for browsing, using DBBrowse component 104
Figure 5.15 Architecture of the guestbook addition to husseinsspace.com.................... 105
Figure 5.16 User interface for the guestbook on husseinsspace.com 106
Figure 5.17 Architecture of JERIC peer review system ... 109
Figure 5.18 User interface of JERIC peer review system... 110
Figure 5.19 Full details for a single resource or section ... 111
Figure 5.20 Architecture of new CSTC system.. 112
Figure 5.21 New CSTC initial welcome screen.. 112
Figure 5.22 New CSTC list of editing, reviewing, and submission tasks 113
Figure 5.23 New CSTC resource browsing .. 113
Figure 5.24 New CSTC full metadata and associated information 114
Figure 6.1 Layers at which component testing can be performed 115

 Page ix

Figure 6.2 Internet Explorer displaying an ODL request and response.......................... 120
Figure 6.3 Repository Explorer basic interface .. 121
Figure 6.4 Repository Explorer verb and parameter entry ... 122
Figure 6.5 Hyperlinked response from ListSets ... 122
Figure 6.6 Flow of data during validation/testing process.. 123
Figure 6.7 Language selection in Repository Explorer .. 124
Figure 6.8 Front page listing of components in Component Explorer 126
Figure 7.1 Architecture of simple componentized digital library................................... 127
Figure 7.2 Original architecture of CITIDEL, showing metadata layer distinct from

service layer .. 134
Figure 7.3 Testable interfaces for IRDB component .. 137
Figure 7.4 Load conditions with SpeedyCGI and without ... 147
Figure 8.1 Fragment of DBBrowse log file .. 157
Figure 8.2 Example of SOAP GetRecord service request body 163
Figure 8.3 Current and proposed models for OAI/ODL relationship............................. 164

 Page x

LLIISSTT OOFF TTAABBLLEESS

Table 2.1 Service requests in the OAI Protocol for Metadata Harvesting........................ 20
Table 3.1 Mapping of concepts from ODL OOP.. 36
Table 4.1 Assignment control matrix.. 66
Table 5.1 ODL reference components, descriptions, and protocols 80
Table 5.2 Names and descriptions of OAI components ... 81
Table 5.3 Parameters for DBUnion .. 85
Table 5.4 Parameters for DBBrowse .. 87
Table 5.5 Parameters for Filter ... 95
Table 5.6 List of additional MDEdit schema tags to define appearance of HTML forms 99
Table 7.1 Results to background information questions on survey 129
Table 7.2 Responses to questions on exercise .. 130
Table 7.3 Execution times for request submitted to different layers of ODL-IRDB...... 138
Table 7.4 Number of matches for each query... 138
Table 7.5 Time differences between pairs of consecutive tests...................................... 138
Table 7.6 Response times for ListIdentifiers vs. ListRecords .. 140
Table 7.7 Regular CGI vs. SpeedyCGI speed comparisons ... 142
Table 7.8 SpeedyCGI vs. direct API speed comparisons ... 142
Table 7.9 Average execution times under different load conditions 146
Table 7.10 Average execution times when using SpeedyCGI.. 146
Table 7.11 Execution times for user interface actions.. 148
Table 7.12 Illustration of duplication due to overlapping... 150

 Page xi

Chapter 1

IINNTTRROODDUUCCTTIIOONN

1.1 PREAMBLE
“What on earth is 'digital libraries' anyway?”

- A. Rakgole, Personal communication, May 2001

At first it was startling that people respond in this manner but that concern has been
replaced by a reluctant acceptance that most people, even fellow computer programmers,
do not have any idea what a Digital Library is. While to some it is obvious because of
personal experience, most people know either too little or too much to be able to
concisely define a Digital Library.

It is hardly the fault of computer users since the field is far from being well defined.
Unlike word processing or web browsing, where most computer users can cite at least
one example of a software package, Digital Libraries do not conjure up any immediate
images of familiarity. Instead, the ground has yet to be trod and systems research, as
opposed to systems production, is still largely the rule rather than the exception.

Recently much of this research has started to focus on the issues that deal with
connecting together distributed computer systems for information transfer instead of the
traditional distributed computing use. In this context, with the creation of new protocols
and the adoption of new software design models, it may be possible to design a new
breed of Digital Libraries that both support ongoing research and rapid installation of
production systems. That is the ultimate aim of this research, as motivated and expanded
upon in the following sections.

1.2 CONTEXT
Before launching into a detailed analysis of the problem space and the solution suggested
by this work, it is essential to set a proper context by defining the axial concepts of this
study.

1.2.1 What is a Digital Library?
A Digital Library is an electronic information storage system focused on

meeting the information seeking needs of its users.

There are many definitions for Digital Libraries (DLs) used in practice, each of which
attempts to model different facets of existing systems in order to create a well-defined
subspace of the set of all computer systems. Some definitions choose to enumerate the

 Page 1

services offered by DLs, such as searching and browsing, as being necessary and/or
sufficient to distinguish a DL from a non-DL. Other definitions try to fit DLs into formal
frameworks that may support a rigorous mathematical model. On a different plane, some
definitions will place emphasis on the human-centric aspects while others may stress the
machine-oriented aspects.

Consider several exemplary definitions. The Digital Library Federation (CLIR, 1998)
takes a typical approach by covering as many of the different aspects as possible while
Levy and Marshall choose a more minimalist approach (Levy and Marshall, 1995). Lesk
takes the extremely simple yet effective approach of stating that “you need to get stuff
into it, you need to be able to get stuff out of it…” (Lesk, 1997).

For the purposes of this study, a minimalist definition, such as what is provided in the
opening paragraph, is sufficient.

Examples of popular digital libraries are HowStuffWorks (Brain, 2002), Los Alamos
Physics e-Print archive (LANL, 2002), Internet Movie Database (Amazon.com, 2002),
Library of Congress’ American Memory project (Library of Congress, 2002a), and the
Networked Computer Science Technical Reference Library (Davis and Lagoze, 2000).

1.2.2 What is Interoperability?
Merriam-Webster (Merriam-Webster, 2002) defines interoperability as follows:

“Ability of a system (as a weapons system) to use the parts or equipment
of another system”

In the DL field, this definition contains appropriate analogies to respective computer
systems that share data and systems that work cooperatively in order to provide services
to users. An example of the former would be when databases are merged to form a
central searchable collection of data, like the OCLC WorldCat collection (OCLC Inc.,
2002b). An example of the latter would be when a meta-search engine uses multiple
search engines in its strategy to provide a more complete service for its users, like the
MetaCrawler system (InfoSpace, 2002).

In general, interoperability refers to the ability of a DL to work cooperatively with other
DLs in an attempt to provide higher quality services to users. There are many approaches
to achieve some degree of interoperability and one such approach involves the creation
and use of Open Archives.

1.2.3 What is an Open Archive?
An Open Archive is a computer interface to access a collection of data, where the
interface conforms to the specifications laid down by the Open Archives Initiative’s
(OAI, 2002) Protocol for Metadata Harvesting (Lagoze, et al., 2002).

The Open Archives Initiative is an organization formed by a broad range of researchers,
librarians, publishers, and archivists whose aim is to create simple standards to support
interoperability among systems. The most recent standard is the Protocol for Metadata

 Page 2

Harvesting, which specifies how two computer systems may communicate a stream of
structured records from one to the other on a continuous basis. A system that contains
the source data and that conforms to this protocol is called an Open Archive.

Examples of some DL systems that are, in whole or part, Open Archives are: Computer
Science Teaching Center (Fox, et al., 2002b), Computing and Information Technology
Interactive Digital Educational Library (Fox, et al., 2002a), Los Alamos e-Print archive
(LANL, 2002), the American Memory Project (Library of Congress, 2002a), and the
National Science, Technology, Engineering, and Mathematics Education Digital Library
(NSF, 2002).

1.3 MOTIVATION
Given the loosely defined nature of Digital Libraries it is hardly surprising that the field
does not easily converge on standards and technology. Most of the existing systems that
are classified as DLs are the result of custom-built software development projects with
intensive design, implementation and testing cycles. There are many reasons why this
effort is repeated for each project:

Many DLs are built in isolation as a response to the needs of a particular community,
in most cases not involving personnel with prior experience.

♦

♦

♦

♦

♦

♦

♦

Most modern DLs have WWW interfaces – thus the user interfaces and process flows
are fashioned to resemble the way people use the WWW, which itself changes with
time.

Each DL is aimed at meeting the needs of a particular community – so the underlying
program logic varies vastly among systems.

Most DLs are intended to be quick solutions to urgent community needs – so not
much thought goes into planning for future redeployment of the systems.

DLs, by the very nature of being responses to user needs, can be arbitrarily complex
so new projects sometimes choose to develop from scratch because it is cheaper than
adapting what already exists to a different scenario. As testimony to this, at the turn
of the millenium, Dijkstra wrote that computing’s central challenge of “how not to
make a mess of it” had not been met (Dijkstra, 2001).

As DL systems get more complex, extensibility becomes more difficult and as a result
maintainability is compromised.

There are very few software toolkits available to build DLs.

The natural solution would be to create software toolkits. A few institutions have
investigated that approach. Dienst (Lagoze and Davis, 1995) is a DL system developed
at Cornell University with tasks clearly divided and specified by a protocol based on
HTTP and eventually using XML. It was developed to support the distributed operation
of the NCSTRL project and, while technically sound, required an investment in software,
methodology, and support that some prospective users were not willing to make. The

 Page 3

Repository-in-a-Box (NHSE, 2002) software from University of Tennessee is an
alternative as is the E-Prints (OpCit, 2002) software from Southampton University. Both
these toolkits avoid many problems related to complexity of DLs by defining workflows
that are not easy to change. All of these and other systems have had varying degrees of
success among archivists looking for drop-in solutions but they generally suffer from two
basic problems:

The range of possible workflows is restricted by the design of the system. ♦

♦ The software is either built as a monolithic system or as components that
communicate using non-standard protocols – in both cases making understanding and
modification a complex process.

Most modern programming environments adopt some form of component model as it is
widely accepted as good software engineering practice. Even in the DL community, as
far back as 1994, early discussions on the future of DLs (Gladney, et al., 1994) concluded
that components were an integral part of the solution. Other scientific communities
embraced component technology as an aid to rapidly and correctly solving problems - for
example, the Sieve framework at Virginia Tech (Sieve, 2002) encapsulates scientific
functionality into software components. However, in spite of the widespread use of such
technology, for the reasons outlined above, the DL community did not in general adopt a
single component framework.

In October of 1999 the Open Archives Initiative (OAI) (Van de Sompel and Lagoze,
2000) was launched in an attempt to address interoperability issues among the many
existing and independent DLs. The focus was on high-level communication among
systems and simplicity of protocols. The OAI has since received much media attention in
the DL community and, primarily because of the simplicity of its standards, has attracted
many early adopters.

The OAI Protocol for Metadata Harvesting in essence supports a system of
interconnected components, where each component is a DL. Also, since the protocol is
simple and widely accepted it is far from being a custom solution of a single project. The
OAI protocol can be thought of as the glue that binds together components of a larger
DL. However, since DLs are themselves defined only loosely, this collaborative system
can be composed of individual component DLs, each with different functionality. In the
extreme case, each component DL can supply the functionality of exactly one service
expected by a user (or part of a service). This leads to the basic hypothesis of this
research:

Digital Libraries can be modeled as networks of extended Open Archives,
where each extended Open Archive is a source of data and/or a provider

of services.

 Page 4

The “extensions” are necessary since Open Archives are optimized for the provision of
data – but are generalizable to other tasks with a few minor changes.

This hypothesis is further motivated by the following factors:

Componentization is built into the system by design if every service is delivered by
an extended Open Archive. This inherently supports reuse and allows for
interoperability at the level of individual services within the DL.

♦

♦

♦

♦

♦

♦

♦

It more closely resembles the way that physical libraries work. In a physical library
the individual systems interoperate within their own communities. For example, the
purchasing department interoperates with the booksellers and the inter-library loan
department interoperates with peer departments at other libraries. The head of the
acquisitions department can be replaced because he or she understands a common
protocol for all libraries. Interoperability is achieved at the level of individual
services rather than at the level of organizations.

There is currently a significant difference in technology between research DLs and
production DLs. The former focuses on experimental concepts and technology while
the latter deals with the real issues of meeting the needs of users. Connecting the two
is not usually a simple task, but if both systems subscribed to a common protocol that
will greatly simplify matters – OAI can supply that protocol.

The Internet is without a doubt the single most effective information dissemination
tool of current times. This was primarily possible because of the simplicity of the
protocols it relied on and the hierarchical manner in which protocols such as HTTP
(Fielding, et al., 1999) built on more fundamental protocols such as IP and TCP. The
OAI provides us with a simple protocol to transfer metadata; building simple layered
extensions to this protocol will closely follow the proven methodology of the
networking community (ISO, 1994).

While complex system interactions might support complex operations, they also raise
the bar on adoption of new technology. A good example is the hypertext community
where the WWW has succeeded well beyond other projects simply because its model
was always a simple one (Berners-Lee and Fischetti, 1999). Modeling DL services as
Open Archives will encourage such a degree of simplicity.

Scholarly communication is a rapidly changing field and many people are slow in
making the transition to new forms of communication in spite of a growing number of
advocates like Stevan Harnad (Harnad, 1999). The success of new DL systems in this
arena relies on keeping pace with current thinking on how publications are created,
processed, and distributed. A simple component model will greatly simplify changes
in the workflow of the DL to support the gradual shift to new and improved
processes.

User interface design and workflow management are complex tasks but common
base-level services – mediators in DL language or middleware in three-tier client-
server development (Umar, 1997) – have emerged in practice, for example, searching
and browsing. If an arbitrarily complex user interface can access DL components in a

 Page 5

standard manner it will be easier to interchange components and add new services –
the OAI protocol can be the basis of that standard protocol for components. Norman
advocates that designs should be visible, understandable and natural in their mappings
(Norman, 1990). The OAI protocol is already establishing itself in those areas so it
makes an ideal foundation upon which to build.

To prove the stated hypothesis a DL component framework based on the OAI protocol
was designed, implemented, and tested. The aspects that were tested and analyzed
include:

- that the design and implementation are effective in meeting real users’ needs,

- that the DL component network model is equivalent in functionality to a
monolithic system,

- that there is no significant performance degradation inherent in using a DL
component network instead of a monolithic system,

- that the component framework is easily understood and extensible,

- that most DL services can be modeled within this framework, and

- that basic assumptions about the OAI protocol are true, including that it is
efficient in transferring metadata and that if used in specific configurations it will
correctly and completely duplicate a stream of metadata records.

1.4 OPEN DIGITAL LIBRARY DESIGN
In order to comply with the requirements listed above, the proposed Open Digital Library
must be based on the following fundamental design principles:

- All services must be standard components encapsulated within extended Open
Archives, accessed by other services through their OAI interfaces, and with all
input parameters being instantiations of standard OAI parameters, with semantics
overloaded as necessary.

- User interfaces must be custom-built for each application, communicating with a
collection of service components through their OAI interfaces for data access
(e.g., search) and other extended OAI interfaces for data processing (e.g., review).

Figure 1.1 shows a simplified view of a typical search engine component.

 Page 6

Search
OAI Data Provider

OAI Harvester

Search Engine
Internal Processing

Figure 1.1 Internal structure of typical ODL search component

The reason for standardization in services but not user interfaces is to avoid addressing
the arbitrary interface complexity of an online system. At this time, it is not possible to
specify a system workflow and user interface in a standard manner without either
resorting to the complexity of a programming language or restricting the problem
domain. To make an analogy, this research deals with what’s under the hood – not the
knobs on the dashboard.

Figure 1.2 illustrates the initial design philosophy behind the technical infrastructure for
the CITIDEL project. The system is a combination of six Open Archives working
cooperatively to provide the functionality of a single DL, complete with support for
extended interoperability with other systems. In this case the DL Core is the mechanism
by which each of the top-level services accesses each of the bottom-level services,
possibly a registry of basic archives.

 Page 7

OA: Papers

DL CORE SYSTEM

OA: Applets OA: Syllabi

Papers InterfaceApplets Interface Syllabi Interface

OA: All MetadataOA: Reviews OA: Annotations

Search/BrowseReview Annotate

DATA INPUT (OAI Service Provider and Direct Input)

USER
SERVICES

~~~~

PUBLIC
DL

INTERFACE

DATA OUTPUT (OAI Data Provider)

Service
Layer

Data
Layer

 

Figure 1.2 Initial architecture of the CITIDEL system 

In a different context, the NDLTD Union Catalog project (Suleman, et al., 2001) collects 
the same metadata from multiple partners and has a different internal structure but 
utilizes the same basic components as shown in the CITIDEL design.  Figure 1.3 shows 
where OAI is used as a communications medium in the prototype user interface layered 
over the NDLTD Union Archive or Merged Collection. All arrows represent data being 
accessed or transferred through OAI or extended OAI interfaces, and all nodes labeled 
“OA” are Open Archives.  The functionality of the “Search”, “Browse” and “Recent” 
service components is discussed in Chapters 4 and 5. 

OA: Merged
Collection

OA: University 1 OA: University 3

OA: BrowseOA: Search OA: Recent

USER INTERFACE

OA: University 2 …

Service Layer

Data Layer

Interface

 

Figure 1.3 Architecture of the NDLTD Union Catalog Experimental System 

In a similar fashion, other DL systems can be modeled within this framework, the details 
of which are outlined and discussed in later sections. 

 Page 8 



 

1.5 RESEARCH CONTRIBUTIONS 
This research makes the following contributions to the field of DL interoperability and 
architecture: 

- The design of a component framework for DLs based on OAI. 

- For each DL service, a set of specific semantics for the general parts of the OAI 
protocol. 

- An evaluation of the Open DL design to show that it meets its stated 
requirements. 

- A verification of the applicability of the standard OAI protocol to DLs. 

- Recommendations for extensions of the OAI protocol to support better 
componentization and interoperability and more functionality within a DL. 

- Recommendations for additional/alternative OAI protocols and protocol bindings 
where applicable to complete the DL framework by complementing what has 
already been specified. 

- A toolkit for building basic componentized ODLs. 

- A set of testing tools to validate the OAI protocol and derivatives defined as ODL 
protocols. 

1.6 OUTLINE OF DISSERTATION 
Chapter 1 outlines the motivation, problem space, and scope of the research.  

Chapter 2 discusses historical and current research in interoperability and architecture, 
including an in-depth description and analysis of the OAI protocol. 

Chapter 3 presents the ODL design framework with parallels with design philosophies 
drawn from the development of the Internet, and contrasted with Object Oriented 
Programming. 

Chapter 4 defines a comprehensive set of DL services within this design framework, as 
semantic overlays over the OAI protocol. 

Chapter 5 discusses the implementation of this framework in the context of reference 
components and case studies including the NDLTD Union Catalog, Journal on 
Educational Resources in Computing (JERIC), and CSTC. 

Chapter 6 discusses testing techniques for ODL component implementations to verify 
both the component logic and external interfaces. 

Chapter 7 is an evaluation and analysis of the design and implementation. 

Chapter 8 presents recommendations for future work. 

Chapter 9 is the conclusion. 

 Page 9 



 

Chapter 2   

BBAACCKKGGRROOUUNNDD::  IINNTTEERROOPPEERRAABBIILLIITTYY  AANNDD  

AARRCCHHIITTEECCTTUURREE  

2.1 INTRODUCTION TO THE OAI 

2.1.1 Historical Background and Context 
The World Wide Web (WWW) is frequently thought of as the technology that 
revolutionized computer networking by effectively breaking down the barriers between 
the providers of content and the users of that content.  The underlying idea was not 
particularly a novel one since the hypertext community has been investigating such 
avenues for decades.  However, it was backed up by free, easy to utilize software that 
satisfied a need in the rapidly advancing networked community, and so it was immensely 
successful. 

The WWW broke down a major barrier in making information freely accessible, but it 
also created information management problems for which simple solutions did not exist.  
One such problem is that of persistence: how can we guarantee that a digital object on the 
WWW will always exist?  Another question has to do with authority: how much trust can 
we place in the authenticity of a source of digital objects?  These and other concerns led 
some individuals and organizations to begin creating managed repositories of digital 
information, nowadays called Digital Libraries (DLs), with additional and specialized 
services to enhance the users’ experience beyond what the WWW had to offer. 

While the WWW thrived because of its distributed nature, most DLs tried to provide one-
stop shopping for users in specific communities.  As the number of DLs increased, users 
looking for resources found that they needed to search through many DLs before finding 
what they needed.  Most DLs are driven by databases; thus the popular search engines do 
not index their contents.  As a result, search engines are not of much use to users who 
want to perform searches across multiple DLs. 

In order to address this need, different approaches were taken by various communities of 
users.  The Z39.50 (ANSI/NISO, 1995) protocol was designed for client/server access 
and adapted to federated searching, whereby a system performing a search operation on 
multiple repositories could send the query to all of them in a standardized format and 
then process the returned results as appropriate.  The Harvest system (Bowman et al., 
1995) attempted to gather metadata from websites and create a central searchable index.  
The Dienst protocol from Cornell University (Davis and Lagoze, 2000) and the STARTS 
protocol from Stanford University (Gravano et al., 1997) both implemented variations of 
federated search algorithms, where queries are sent to remote sites in real-time.  Kahn 

 Page 10 



 

and Wilensky’s Repository Access Protocol (Kahn and Wilensky, 1995) allowed remote 
access to the contents of a repository, thus facilitating search and browsing operations.  
These projects had varying degrees of success, in most cases limited to large or research 
DLs where there was a commitment to building interoperability into the systems.  
Smaller DLs were not prepared to make the investment in a complex protocol for 
interoperability, especially since the rewards were not immediately tangible.  

In October 1999, a meeting of representatives of various existing archives was held in 
Santa Fe, New Mexico, USA, to address the concern that interoperability was beyond the 
reach of most DL systems.  Delegates at this meeting included representatives of the 
Association of Research Libraries, Coalition for Networked Information, Council on 
Library and Information Resources, Digital Library Federation, Library of Congress, 
Networked Digital Library of Theses and Dissertations (NDLTD), Scholarly Publishing 
and Academic Resources Coalition, and various universities and research institutes.  The 
primary focus of delegates was on facilitating the creation of a Universal Preprint Service 
(Van de Sompel, et al., 2000) – a DL that contained all electronic pre-prints such as 
papers, articles, and theses.  The result of this meeting, the Santa Fe Convention (Van de 
Sompel and Lagoze, 2000), was an agreement among the parties to subscribe to a 
common standard for interoperability based on transfer of metadata from repositories 
using a minimal protocol and leveraging existing technology to achieve this. 

2.1.2 Initial Technical Efforts 
The Santa Fe Convention laid the groundwork for future efforts by defining the guiding 
principles of the Open Archives Initiative (OAI) (OAI, 2001) – principles that are largely 
unchanged after 3 years of further discussion within an expanding community of digital 
librarians and users of information. 

At the Santa Fe meeting, it was decided that archives should be able to exchange 
metadata with one another using a modified subset of the Dienst protocol.  As is often the 
case, however, this first iteration of the interoperability protocol led to much debate over 
semantics and ambiguities inherent within the specifications.  Early implementations for 
the Computer Science Teaching Center (Fox, et al., 2002b) and the Physics Preprint 
Archive (LANL, 2002) were based on subtly different interpretations of the protocol.  
Discussions among implementers of the protocol convinced some proponents of the 
Santa Fe Convention that more work was needed to make the protocol specification 
robust and thus truly standardized.  This notion was formalized at two workshops and a 
technical committee meeting, which, along with a Steering Committee, guided the 
evolution of that initial protocol into its subsequent incarnations. 

2.1.3 Evaluation: Community and Technical Meetings 
The OAI held two workshops in conjunction with the ACM DL2000 (San Antonio, USA, 
June 2000) and ECDL 2000 (Lisbon, Portugal, September 2000) conferences, where the 
initial work was evaluated and a future course was charted for the OAI. 

Unlike the inaugural meeting, these workshops were openly advertised to digital library 
practitioners and they drew a broad range of participants from sectors of the community 

 Page 11 



 

ranging from publishers to researchers.  It was unanimously agreed that the initial 
protocol needed revision and that the OAI needed to broaden its scope to serve 
communities beyond its initial mandate of pre-print archives.  To address these issues, a 
technical committee was formed and tasked with revising the protocol to eliminate the 
shortcomings that were recognized and to meet the needs of the larger OAI community.  
This committee met in September 2000 in Ithaca, NY, USA to launch an intensive period 
of writing, implementing and testing, which culminated in the official release of version 
1.0 of the OAI Protocol for Metadata Harvesting (OAI-PMH) in January 2001 (Lagoze 
and Van de Sompel, 2001).  This protocol, having undergone extensive alpha testing 
prior to release, promised to provide a simple mechanism for DLs to interoperate 
effectively.  The release of the protocol was, however, underscored by the stipulation that 
the first version was for experimentation and not stable production-level use. 

Later that year the protocol specification received a minor upgrade to version 1.1 because 
of changes made to the underlying XML Schema standard (Fallside, 2001).   

Thereafter, a second technical committee was formed to exhaustively evaluate the initial 
OAI protocol and design a version to address all of the concerns of the OAI community 
at large.  A few changes were made to the specification to enhance generality while 
retaining simplicity.  (These are discussed in later sections.)  After a second lengthy 
process of alpha and beta testing, the OAI-PMH version 2.0 was released in June 2002 
(Lagoze, et al., 2002). 

2.1.4 Other Interoperability Efforts 
In the meanwhile, various other communities had begun to investigate aspects of this 
problem and devise solutions that are often contrasted with the approaches taken by the 
OAI. 

In the Business-to-Business (B2B) community, the RosettaNet’s Partner Interface 
Process (Greef, 1998) has attempted to define clear semantics for the interactions among 
businesses in an attempt to extend the functionality of Electronic Data Interchange (EDI) 
into the new era of XML-based data exchange.  The ebXML project (Grangard, 2001) 
has gone a step further in trying to define frameworks and registration services to build 
upon the emerging encoding and discovery standards on the Internet. 

As a collaborative effort among industry and academia, a number of protocols based on 
XML are beginning to emerge.  The Simple Object Access Protocol or SOAP (Box, et. 
al., 2000) defines a standard encapsulation mechanism to support distributed computation 
through the exchange of XML-encoded data.  It does not define the semantics of tasks but 
merely provides a standard mechanism to specify remote procedure calls and their 
results.  This is something like the XML-RPC protocol (Winer, 1999), and does as well, 
but XML-RPC is significantly simpler than the more general SOAP protocol.  The Web 
Distributed Data Exchange or WDDX protocol (Simeonov, 1998) is yet another attempt 
to pass data over the WWW, but with an emphasis on simple structured data as opposed 
to procedures in XML-RPC and objects in SOAP. 

 Page 12 



 

In order to adopt the structured data or remote Web service invocation functionality, it is 
necessary to first locate the provider of the services and determine the format of requests 
and responses.  To address the latter, the Web Services Description Language or WSDL 
(Ogbuji, 2000) was created to concisely describe the locations of services along with their 
parameters and expected results.  To address the former issue of service discovery, the 
Universal Description, Discovery, and Integration of Business for the Web service – or 
UDDI (Ariba, et al., 2000) – was introduced to provide a distributed registry of Web 
Services. 

In various combinations, these standards promise to change the way that the Web 
currently operates by allowing for greater automation and interoperability among diverse 
networked systems.  There is one thread that is common to many of these projects, and 
that is that they are strictly syntactical.  While the OAI protocol tries to define a simple 
syntax and concentrate on the semantics of interoperability, many other widely touted 
solutions standardize on the syntax but leave semantics to communities.  The OAI-PMH, 
serving the DL community, is in a unique position where it defines the semantics needed 
to provide access to data sources, and possibly also acts as a layer upon which higher-
level DL services may be built. 

2.1.5 DL Architecture Efforts 
While interoperability is the focus of many current efforts, it is a need that is largely 
driven by the widely varying designs of existing digital libraries.  The DL field has 
historically been faced with the almost contradictory requirements to build extensible but 
tightly integrated systems.  Users in a particular community expect a search engine to 
understand them intimately but at the same time developers are expected to surgically 
extract a search engine and install it into a completely different application.  To address 
this, various projects have attempted to model DLs in ways that integrate interoperability 
with architecture design. 

The Dienst system (Lagoze and Davis, 1995) discussed previously is an implementation 
of the Dienst protocol – a formal specification of the way in which various components 
interacting within the digital library use HTTP (and eventually XML as well) as the 
underlying layer.  Members of the Networked Computer Science Technical Reference 
Library (Leiner, 1998) used earlier versions of Dienst for many years as the basis of their 
DL architecture and interoperability solution.  The Dienst system had varying degrees of 
success and was a leading influence on the development of the OAI protocol, which now 
uses newer standards and a more general approach than Dienst.  The Open Digitial 
Library (ODL) components build upon this generality to perform innovative functions. 

The FEDORA project (Payette and Lagoze, 1998) further developed the Dienst 
repository architecture by defining abstract interfaces to structured digital objects, 
initially implemented over a CORBA communications medium. 

Also using CORBA is the Stanford InfoBus project (Baldonado, et al., 1997; Roscheisen, 
et al., 1998), which developed an approach for interconnecting systems using distinct 
protocols for each purpose.  The InfoBus project views interoperable components as an 
enabler for a suite of higher-level DL services.  In contrast, the ODL project uses 

 Page 13 



 

interoperable protocols at all levels within and at the exterior edges of componentized 
systems. 

In the field of software agents, multi-agent systems can be thought of as being analogous 
to distributed digital libraries, since both use a network of intelligent service-based 
systems to satisfy the information needs of a user.  In the case of the DL, this intelligence 
in implicit in the semantics built into its services.  Intelligent agents, on the other hand, 
are plagued with the age-old problem of achieving far greater success at the level of 
syntactic interoperability than semantic interoperability (Nwana and Ndumu, 1999).  
Projects such as the Knowledge Query and Manipulation Language (KQML) (Finin, et 
al., 1997) address this problem by attempting to define basic semantics for query 
answering.  The University of Michigan Digital Library Project (Birmingham, 1995) built 
DLs as collections of autonomous agents, with protocol-level negotiation to perform 
tasks collaboratively.  These projects are complicated by the various different layers of 
definition that are needed – a problem avoided in ODL by building upon the strong 
foundations already established by the OAI. 

The OpenDLib project (Castelli and Pagano, 2002) has taken an approach informed by 
the development of the OAI-PMH to build DLs as componentized systems with open 
inter-component communication protocols.  While very similar, the prime difference 
between ODL and OpenDLib is that ODL assumes all components are OA-like to exploit 
the simplicity and understandability of OAI-PMH. 

All of these component models are built upon popular syntactic layers, such as HTTP and 
CORBA, and define additional semantics where necessary.  This need for a common 
communications mechanism also is a driving force behind interoperability protocols such 
as SDLIP (Paepcke, 2000) and OAI-PMH.  The latter was investigated through ODL as 
the basis for an alternative glue to bind together components in a DL. 

In general, the Open Digital Library is an attempt to infuse interoperability into all 
aspects of the digital library. Building upon a simple and easily understood protocol like 
the OAI-PMH has the desirable effect of extending a simple model of semantics into all 
interactions.  Ultimately, it is hoped that such component network approaches to DLs will 
garner as much support among DL architects as OAI does in the interoperability sector. 

2.2 BASIC OA CONCEPTS  

2.2.1 Repositories and Open Archives 
The words “Open Archive” frequently conjure up images of information access without 
any associated cost or restriction.  While this is a goal for many proponents of the OAI, it 
places too many restrictions on DLs that want to conform to OAI standards.  So, the OAI 
defines an Open Archive (OA) simply as being an archive that implements the OAI 
Protocol for Metadata Harvesting, thus allowing remote archives to access its metadata 
using an “open” standard. 

 Page 14 



 

A “Repository” is often used as a synonym for an OA.  In the traditional DL context, a 
repository is a collection of digital objects, but in the context of the OAI, it has to be 
network accessible and it has to support the OAI Protocol for Metadata Harvesting.   

2.2.2 Harvesting and Federation 
The first crucial decision made by the OAI was the selection of a method to achieve basic 
interoperability among repositories, with special emphasis placed on the ability to do 
cross-archival searching.  It is generally considered that there are two major approaches 
to accomplish this: harvesting and federation. 

Federation refers to the case where the DL sends the search criteria to multiple remote 
repositories and the results are gathered, combined, and presented to the user.  Harvesting 
is when the DL collects metadata from remote repositories, stores it locally and then 
performs searches on the local copy of the metadata.  Figure 2.1 illustrates the differences 
in data flow. 

 

DL 
Local 
Copy DL 

Remote 
DL 2 

Remote 
DL 1 … Remote 

DL 2 
Remote 

DL 1 … 

Federation 

Query Query 

Results Results 

Query 

Results 

Metadata Metadata 

User 
User 

Search 
Search 

Harvesting 

 

Figure 2.1 Data flow for federation and harvesting 

Federation is a more expensive mode of operation in terms of network and search system 
constraints since each repository has to support a complex search language and fast real-
time responses to queries. Harvesting requires only that individual archives be able to 
transfer metadata to a requesting DL.  The frequency of queries, quantity of metadata, 
and availability of network resources also factor into this comparison but, in general, 
federation places a greater burden on the remote sites while harvesting reduces the 
demand on remote sites and concentrates the processing at a central DL site.  Since it is 
likely that providers of services, such as search engines, will expend the effort to store, 
index, classify, and otherwise manage searchable metadata, the OAI opted for harvesting, 
primarily as a means of lowering the barrier to interoperability for providers of data. 

 Page 15 



 

2.2.3 Metadata and Data 
The question of what to harvest is a contentious issue for many, as it is not obvious 
whether an archive should be sharing its metadata, its digital objects, or both.  There are 
advantages to exchanging complete digital objects since that will support operations like 
full-text search of text documents.  However, in most instances DLs need only harvest 
metadata in order to provide search, classification, and related services.  This approach 
was adopted by the OAI, with the implicit understanding that the metadata will contain 
pointers to the concrete rendering of digital objects. 

2.2.4 Data and Service Providers 
A data provider maintains a repository that allows external online access to its metadata 
through the OAI Protocol for Metadata Harvesting.  In the interest of brevity, “data 
provider” is sometimes used to refer to such repositories.  A service provider is an entity 
that harvests metadata from data providers in order to present users with higher-level 
services.  This distinction allows for a clean separation between the provider of data and 
the provider of services (as illustrated in Figure 2.2).  This helps eliminate the current 
barrier to quality services that arose because of the historical connection between 
ownership of data and provision of services.  In general, archives with large quantities of 
content emphasize information management over the provision of user services.  On the 
other hand, if information management is not a primary function of an archive, more 
effort can be devoted to service provision.  The OAI attempts to clarify and separate these 
approaches to present users with the best of both worlds. 

 
User Services 

Repository of Digital Objects 

Metadata Abstraction 

 

Figure 2.2 Layered organization of data storage and service provision 

 Page 16 



 

2.3 TECHNICAL FRAMEWORK 

2.3.1 Underlying Technology and Standards 

2.3.1.1 HTTP 
In creating a protocol for interoperability, it was considered prudent to build upon the 
existing infrastructure provided by the WWW.  Thus, the OAI Protocol for Metadata 
Harvesting is based on HTTP (Fielding, et al., 1999), closely following the model upon 
which HTTP is based, and leveraging its mechanisms for redirection, error handling, and 
parameter passing.  The Protocol for Metadata Harvesting is a request-response protocol 
– the client makes requests for data and the server returns corresponding responses. 

2.3.1.2 XML 
While all requests are encoded as HTTP GET or PUT operations, responses are in XML 
(Bray et al., 2000) so as to allow for structure within the response data.  This is especially 
well suited to handling the case where a service provider requests structured metadata 
from a data repository.  The frequently thorny issue of character encoding also has been 
deftly avoided by utilizing the support for such features in XML. 

2.3.1.3 XSD and Namespaces 
Data quality and correctness of implementations are crucial to the success of any new 
standard.  To maintain such quality, automatic and manual testing can be performed on 
data providers to ensure conformance to the protocol.  In both instances, this testing is 
largely driven by precise definitions of valid XML responses in the form of XML 
Schema Descriptions (XSD) (Fallside, 2000).  While XSD is still a very young 
technology, it greatly enhances the ability to specify what constitutes a valid XML 
document.  Service providers and conformance testing tools like the Repository Explorer 
(Suleman, 2001) use XSD tools to automatically validate XML responses from data 
providers. 

XML tags may be grouped together by using a prefix for each group called a namespace. 
Namespaces are used to support the reuse of existing semantics and schemata, making 
validation a modular process.  For example, some responses contain metadata fields 
embedded within a larger structure – in these cases, the metadata will use one namespace 
and the rest of the XML can belong to another namespace. 

 Page 17 



 

 
<testxml xmlns="space1" xsi:schemaLocation="space1 space1.xsd"> 
 
  <name>Joe Smith</name> 
  <comment>testxml, name and comment are in the namespace space1</comment> 
 
  <metadata xmlns="space2" xsi:schemaLocation="space2 space2.xsd"> 
    <date>2000-02-28</date> 
    <description> 
      metadata, data and description are in the namespace space2 
    </description> 
  </metadata> 
 
</testxml> 

 

Figure 2.3 Fragment of XML illustrating namespaces and schema locations 

Figure 2.3 is a fragment of typical XML where namespaces are used to delineate tags 
from different namespaces by means of “xmlns” attributes.  At the same time, the schema 
for each namespace is indicated with an “xsi:schemaLocation” attribute that creates a 
mapping from the namespace to the XSD document that can be used to validate the 
XML. 

2.3.1.4 Dublin Core 
It is compulsory that all open archives be able to generate metadata for all resources in 
unqualified Dublin Core (DC) (DCMI, 1997).  This will ensure that service providers 
who do not understand any other metadata format will at least be able to glean the basic 
information about resources from their DC renditions.  Dublin Core is almost never the 
best choice for metadata for any given repository, but its generality makes it suitable for 
interoperability in the context of the OAI and its application to various different types of 
repositories such as papers, theses, and multimedia documents.  In addition to DC, 
repositories also may support other optional metadata formats that are better suited to 
represent the objects they contain.  Thus, repositories connected with NDLTD also can 
support MARC or ETDMS – the electronic thesis metadata standard (Atkins, et al., 
2001). 

2.3.2 Sets 
Sets are a special construct which allow a repository to expose its internal structure to 
service providers.  It is not compulsory for an archive to support set constructs but it 
provides one more mechanism for selective harvesting.  There are no predefined 
semantics for what constitutes a set so any use of sets must be by explicit agreement 
between data providers and service providers.  For example, in the context of NDLTD, a 
national archive might have sets for each region, and subsets for each university. 

2.3.3 Records 
A record is the metadata bundle that is associated with a unique identifier.  Usually, 
records correspond to simple digital objects but this is not necessary – records also can 

 Page 18 



 

refer to collections or sub-objects.  Records are encapsulated within a special structure 
that includes both the metadata and a header containing special fields used to support the 
harvesting operation. Figure 2.3 displays a typical record. 

   <record> 
   <header> 
    <identifier>oai:arXiv:alg-geom/9202004</identifier> 
    <datestamp>1992-02-10</datestamp> 
   </header> 
   <metadata> 
    <oai_dc xmlns="http://purl.org/dc/elements/1.1/"> 
     <title>Mirror symmetry and rational curves on quintic threefolds: a guide  
            for mathematicians</title> 
     <creator>Morrison, David R.</creator> 
     <subject>Algebraic Geometry</subject> 
     <description> We give a mathematical account of a recent string theory  
                  calculation which predicts the number of rational curves on  
                  the generic quintic threefold.</description> 
     <date>1992-02-10</date> 
     <type>e-print</type> 
     <identifier>http://arXiv.org/abs/alg-geom/9202004</identifier> 
    </oai_dc> 
   </metadata> 
  </record> 

 

Figure 2.4 Sample record from the arXiv open archive 

2.3.4 OAI Protocol for Metadata Harvesting 
The OAI Protocol for Metadata Harvesting supports 6 service requests or “verbs” that 
may be submitted to a repository.  The protocol specifies the formats for HTTP queries 
and XML responses for each of these.  These service requests, along with their 
parameters and descriptions, are listed in Table 2.1. 

 Page 19 



 

Service Request Description Parameters 

Identify Return information about the 
repository, e.g., name of the 
repository, the protocol version, 
administrator’s email address.  There 
also is an extension mechanism for a 
repository to specify additional 
information by supplying its own 
schema. 

(none) 

ListMetadataFormats List all metadata formats supported by 
the archive, or all the metadata 
formats in which a particular object 
may be rendered. 

identifier – object for which to list metadata 
formats. 

ListSets List the sets (and subsets, recursively) 
contained within the repository. 

resumptionToken – token to get next batch of 
sets 

ListIdentifiers List identifiers for all objects or, if 
specified, those within a given date 
range and/or within a given set.  

set – the set to list identifiers from 

from – starting date 

until – ending date 

resumptionToken – token to get next batch of 
identifiers 

metadataPrefix – format to use (version 2.0 only) 

GetRecord Retrieve the metadata for a single 
object in a specified metadata format. 

identifier – object for which to return metadata 

metadataPrefix – format to use 

ListRecords List complete metadata for all objects 
or, if specified, within a given date 
range and/or within a given set. 

set – the set to list identifiers from 

from – starting date 

until – ending date 

resumptionToken – token to get next batch of 
records 

metadataPrefix – format to use 

Table 2.1 Service requests in the OAI Protocol for Metadata Harvesting 

2.3.5 Flow Control 
In principle, the OAI subscribes to the philosophy that the act of a service provider 
harvesting a repository ought not to interfere with the regular use of the archive by users 
through, for example, an existing WWW-based search and retrieval interface.  However, 
some service requests have the ability to return very long response sets, e.g., 
ListRecords. So, to prevent overloading, the data provider can break result sets into 
chunks and return one chunk per request with a token being passed to keep track of the 
state of the system.  Additional tags were introduced in version 2.0 of the OAI-PMH to 
indicate the position of the result set fragment within the complete set of results and to 
specify an expiration date for the token.  Other flow control mechanisms, like the ability 
to redirect a request or the ability to postpone a request, are inherited from the underlying 
HTTP protocol. 

 Page 20 



 

2.3.6 Registration Services 
Registration of conformant repositories is useful within communities with shared 
interests.  For example, NDLTD will have a listing of all its member institutions that 
implement the OAI protocol.  Registration can be automated by using the Identify service 
request to return information about an archive.  On a more global scale, the OAI is 
attempting to register all repositories in order to possibly provide a name resolution 
service from identifiers to repositories.  While not a requirement for all archives, OAI-
PMH v2.0 recommends also the use of fully qualified domain names for repository 
identifiers, thus delegating the task of maintaining uniqueness to an existing naming 
authority. 

2.3.7 Expansion and Customization 
The protocol has optional features in some strategic places to allow for future expansion. 
Most importantly, there is no restriction on which metadata formats may be supported as 
long as each one has an associated schema description.  Also, the data returned by the 
Identify request includes optional sections for descriptions that conform to external 
schemata.  Similarly, each record has an optional <about> section that may contain 
information about the metadata object, as opposed to the digital object associated with the 
metadata.  Figure 2.5 displays a minimal metadata record with this optional section. 

 
  <record> 
   <header> 
    <identifier>oai:arXiv:alg-geom/9202004</identifier> 
    <datestamp>1992-02-10</datestamp> 
   </header> 
   <metadata> 
    <oai_dc xmlns="http://purl.org/dc/elements/1.1/"> 
     <title>Mirror symmetry and rational curves on quintic threefolds: a guide  
            for mathematicians</title> 
     <creator>Morrison, David R.</creator> 
    </oai_dc> 
   </metadata> 
   <about> 
    <oai_dc xmlns="http://purl.org/dc/elements/1.1/"> 
     <creator>University Library Cataloguing Service</creator> 
    </oai_dc> 
   </about> 
  </record> 

 

Figure 2.5 Minimal metadata record from arXiv with optional <about> section 

2.4 REQUIREMENTS TO BE A PROVIDER 

2.4.1 Data Provider 
Any archive that wishes to become a Data Provider must satisfy a few basic 
requirements.  Firstly, and most importantly, the archive must have an online interface 
and a Web server that can be used for the purposes of the protocol.  Then, each record in 
the archive must be persistent or at least must contain a persistent identifier, each of 
which must be unique within the archive.  It also is highly recommended that each 

 Page 21 



 

archive have a unique archive name embedded within its identifiers for records so that 
OAI records can be globally unique – the OAI protocol suggests that unique identifiers 
adopt the form “oai:archive_id:record_id”.  Finally, every record must have an associated 
date stamp to allow for harvesting of records within a particular date range. 

2.4.2 Service Provider 
Service providers may use the data they harvest as they wish to, within the boundaries 
laid out by the data providers.  While the protocol does allow for an entire archive’s 
contents to be harvested, it is expected that service providers will use date ranges to 
incrementally harvest new additions to a repository.  This is illustrated in Figure 2.6 

 

T 
  I

   
M

   
E 

Service Provider Data Provider 

Get all records 

Records: M, N, O 

Start with 3 
records: M, N, O 

Add records: P, Q 

Store: M, N, O 
Store current date 
D1 

Get all records since D1 

Records: P, Q 
Store: P, Q 
Store current date 
D2 

Get all records since D2 

No new records Store current date 
D3 Add record R 

Get all records since D3 

Record: R Store: R 
Store current date 
D4 …

 

 

Figure 2.6 Example sequence of requests and responses between service and data providers 

2.4.3 Tools and Support 
The OAI website contains links to a number of useful resources that may assist 
developers in making their archives compliant with the protocol.  The Repository 
Explorer is a tool that allows a user to interactively browse through an archive using only 
the OAI interface, while checking the interface thoroughly for errors in encoding or 
protocol semantics.  There also is information on joining a mailing list of developers, 

 Page 22 



 

who are willing to share their code and expertise in various programming languages and 
on various platforms to ease the process of developing Open Archives.  There is a 
growing library of tools and sample implementations to support new adopters of the 
technology. 

2.5 OAI SUPPORT FOR TYPICAL SERVICES 

2.5.1 Cross-Archive Searching 
The most obvious service to provide would be cross-archive searching.  The service 
provider can harvest metadata in one or more formats from multiple remote OAs and 
index the data according to collection, set, or specific fields within the metadata.  Such an 
experimental search engine has already been developed at Old Dominion University (Liu, 
2001) in parallel with the development of the OAI protocol.  Other projects such as 
TORII (Bertocco, 2001) and OLAC (Bird and Simons, 2001) provide cross-archive 
searching as one of the services offered to their users. 

2.5.2 Reference Linking 
The ability to navigate quickly from one electronic publication to another that it 
references is a goal of many reference-linking techniques such as SFX, developed at the 
University of Ghent (Van de Sompel and Hochstenbach, 1999).  OAI-accessible 
bibliographic metadata will greatly improve the quality and quantity of data available for 
constructing cross-reference databases.  References can even be augmented or replaced 
by OAI identifiers, with an appropriate name resolution service to redirect the user to the 
DL that contains the referenced object.  

2.5.3 Annotations 
Since annotations are additions to existing documents, adding such a service to an 
existing DL usually requires the construction of a separate annotation database.  In 
leveraging the OAI protocol, such a separate database can itself be an OA – then any 
entry in the OA of annotations will refer back to records in other existing OAs.  A service 
provider then can retrieve data from both the source OA and annotation OA before 
displaying the metadata to the user. 

2.5.4 Filtering 
In a profile-based filtering system, users can indicate a set of interests and then all objects 
corresponding to those interests will be presented to them on a continuous basis.  This 
mode of operation is perfectly suited to the OAI protocol because of the inherently 
incremental nature of harvesting.  Thus, a filtering or routing system can use the OAI 
protocol to harvest new metadata and then route that as appropriate based on a set of 
stored profiles. 

 Page 23 



 

2.5.5 Browsing 
Unlike searching, a browsing service often requires that the metadata contain fields with 
controlled vocabularies that can be used to build categories within which the objects may 
be placed.  The support for arbitrary metadata formats in the OAI protocol allows 
embedding of categorical data into an appropriate metadata format.  In addition, the 
requirement for strict conformance to an XML schema can ensure that a controlled 
vocabulary is adhered to. 

2.6 DIGITAL LIBRARY POLICIES FROM AN OAI PERSPECTIVE 

2.6.1 Ownership and dissemination control over digital objects 
and metadata 
One of the major concerns that librarians have about this technology is its impact on 
ownership of digital objects and metadata.  Some archives will openly share both with all 
and sundry while many archives will only share their metadata.  There also are many 
archives that will share metadata for the purposes of building cross-archival search 
services but insist on users switching over to their website for the purpose of enforcing 
“brand recognition” or to request payment for resources.  All of these scenarios are 
feasible since the OAI requires only that the metadata point to the object, and this can 
easily be in the form of an indirect link through the originating archive.  In the case of an 
archive that needs to restrict access to only a specified set of service providers, that can 
be accomplished through the access control mechanisms built into the HTTP protocol. 
These allow a server to accept or reject HTTP requests based on the requesting client’s IP 
address or based on a name and password authentication mechanism.  For additional 
security, the SSL protocol (Freier, et al., 1996) may be used to encrypt all transmissions. 

2.6.2 Changes and withdrawal 
Besides ownership, most archives also reserve the right to make changes to the metadata 
that is associated with their digital objects.  In order to propagate changes, all an archive 
needs to do is update the date stamp on the record so that future requests for incremental 
changes will result in the changed record being disseminated once again to service 
providers.  Service providers are expected to understand that a record received with the 
same identifier as a previous one is an updated version.  Deletions are handled in a 
similar way in the OAI protocol – if identifiers for deleted records are stored at the 
archive, these can be returned to service providers with a special attribute that is set to 
indicate that the record has been deleted at the source.  

2.6.3 Preservation 
Preservation of digital objects is a basic requirement of the OAI.  Any archive 
subscribing to the OAI model of interoperability must maintain a stable collection of 
digital objects.  The HTTP protocol has a feature to redirect URLs automatically - since 
objects are usually referred to by URLs, this HTTP feature can be exploited to preserve 
the integrity of metadata.  Also, if it is expected that objects will change location often 

 Page 24 



 

during their lifetime, they can be allocated PURLs (Shafer, et al., 1996) or Handles (Sun 
and Lannom, 2002) instead of regular URLs to increase the level of persistence.  An 
essential aspect of any DL is the migration of content to newer archival technology – this 
is vital for interoperability efforts like the OAI since inaccessible content at a data 
provider will adversely affect every harvester of that data provider. 

2.6.4 Uniqueness of objects and collections 
The OAI does not require that every implementer of the harvesting protocol have a 
unique archive identifier.  However, this is recommended so as to create a globally 
unique namespace for OAI identifiers.  This will allow for the creation of services that 
are analogous to DNS name resolution – given an OAI identifier, the resolver with full 
knowledge of all OAs can direct a user to the archive that contains the resource. 

Within archives each record must have a unique identifier so that any single GetRecord 
request for metadata associated with the identifier will be unambiguous. 

2.7 BUILDING OAI SUB-COMMUNITIES 

2.7.1 Metadata formats 
Communities of archives with similar interests may benefit greatly from developing their 
own metadata formats or simply specifying their existing metadata formats in a form that 
is usable with the OAI protocol.  The protocol was designed to support a much higher 
level of semantic interoperability than is allowed by unqualified Dublin Core, so it is 
expected that individual archives will choose the most appropriate format for exporting 
their data.  For example, libraries will probably use a form of MARC encoded in XML 
while repositories of educational resources may instead wish to use the IMS metadata 
format (IMS, 1999).  Thus, providers of services will be able to supply users with more 
information, and archives will truly be able to interoperate if they have the same 
underlying metadata formats. 

Some representatives of pre-print archives have already begun discussion of a metadata 
format suited for their purposes and it is hoped that this process will be initiated within 
other DL communities as well. 

In the context of ODL, metadata formats can be defined with specific semantics to enable 
the provision of high-level services; examples of these are given in Chapter Four. 

2.7.2 Protocol extensions 
While the protocol as specified is useful for some purposes, there is no reason why an 
individual community cannot enhance or change the protocol to support additional 
features.  These can take the form of either changes or additions and could be internal, 
with an external interface that conforms to the base protocol.  Nobody expects that this 
protocol is a perfect solution to every problem; rather it is a stable and tested protocol that 
will be used for experimentation in research and production environments, leading to 
further evaluation and possibly newer versions in the future as supporting standards and 

 Page 25 



 

techniques emerge.  The encoding of a protocol version into the protocol further ensures 
that any future updates will not confuse service providers. 

ODL exploits this ability by layering additional semantics over the basic OAI protocol. 

2.7.3 Shared semantics 
Along with shared metadata formats a community must share a common understanding 
of the semantics of each chosen metadata format.  Thus, for example, if a community 
decides to use the RFC1807 metadata format (Lasher and Cohen, 1995), some loosely 
defined fields can be further restricted for the purposes of the community, thus allowing 
for a more tightly coupled interoperable environment.  Of course, the parallel DC 
metadata set must still be supported so this creates the situation where an archive may 
export its data in a well-defined community-specific format and a loosely defined general 
format satisfying the general OAI community. 

2.8 CASE STUDY: OAI IN THE NDLTD COMMUNITY 

2.8.1 Context 
NDLTD, the Networked Digital Library of Theses and Dissertations, (Fox, 1999; Fox, 
2002; Fox, et al., 1996; Fox, et al., 1997; Suleman, et al., 2001) is an international 
alliance of universities where students submit electronic versions of their theses and 
dissertations.  As a preliminary step towards creating a universal catalogue of 
publications, the community has defined a metadata standard to meet its particular needs.  
This metadata standard, ETDMS – the Electronic Thesis and Dissertation Metadata Set 
(Atkins, et al., 2001), is an extension of Dublin Core with additional fields for the 
provision of information about the type of thesis or dissertation.  The fields inherited 
from Dublin Core are given specific semantics that will be understood by all members of 
the community.  Ultimately, this metadata format will be exported from all NDLTD sites 
that are accessible through the OAI Protocol for Metadata Harvesting. 

2.8.2 Development of OAI MARC format 
In order to support libraries that are part of NDLTD, an XML version of the US-MARC 
metadata format has been specified in a cooperative effort between Virginia Tech’s 
Digital Library Research Laboratory and Herbert Van de Sompel (then at Cornell 
University).  This mapping does not attempt to encode each MARC field into a separate 
XML tag, but rather encodes the fields as name/value pairs, with subfields used as 
required.  See Figure 2.7 for a fragment of oai_marc XML (Van de Sompel, 2000). 

 Page 26 



 

 <oai_marc xmlns="http://www.openarchives.org/OIA/oai_marc" status="n" type="a" 
level="m" catForm="a"> 
  <fixfield id="1">"tmp96303807"</fixfield>  
  <fixfield id="3">"OCoLC"</fixfield>  
  <fixfield id="5">"19970728102440.0"</fixfield>  
  <fixfield id="8">"971114s1996 dcu f000 0 eng d"</fixfield>  
  <varfield id="35" i1="" i2=""> 
    <subfield label="a">1258-02760</subfield>  
  </varfield> 
  <varfield id="40" i1="" i2=""> 
    <subfield label="d">GPO</subfield>  
    <subfield label="d">DLC</subfield>  
    <subfield label="d">MvI</subfield>  
  </varfield> 
  <varfield id="49" i1="" i2=""> 
    <subfield label="a">VPII</subfield>  
  </varfield> 
  <varfield id="74" i1="" i2=""> 
    <subfield label="a">0378-H-12</subfield>  
  </varfield> 
  . 
  . 
  . 

 

Figure 2.7 Fragment of sample record of XML encoding of MARC 

The biggest challenges were in encoding of the character sets.  Since the XML style 
recommended by the OAI is to use Unicode entities, all ANSEL characters need to be 
translated into Unicode before being exported.  Composite characters also need to be 
changed since they are encoded differently in MARC and XML.  Nevertheless, this 
MARC encoding in XML has generated much interest from librarians because of its 
simplicity and the fact that any problems can be fixed at a level outside of the schema 
description.  Further work has resulted in a new standard recently developed by the 
Library of Congress and included as a recommendation for version 2.0 of the OAI-PMH. 

2.8.3 MetaLibraries 
In a library environment, cataloguing information is a vital resource that is shared among 
libraries.  The OAI protocol provides a low barrier method of exchanging such 
cataloguing information without having to invest in high-end technology solutions.  The 
existence of the oai_marc encoding further simplifies the task since there is now a 
standard way of transferring MARC records in XML. 

While this may not appear very useful to large research and even public libraries, it can 
be very useful for smaller organizations that operate libraries.  It provides a means for 
these smaller libraries to share their metadata with larger as well as peer institutions.  
Conceptually, it is even possible for an appropriate organization to make available a 
“metalibrary” catalogue that describes every book in every OAI accessible library.  This 
has been done as part of the ODL prototype system and is discussed in later chapters. 

2.8.4 Name authority systems 
The authoritativeness of names is always a problem when dealing with large quantities of 
data that contain references to individuals.  One solution is to maintain a central (or 

 Page 27 



 

distributed) database of names (personal and institutional) and then use links to this in 
each metadata item.  NDLTD has adopted this approach and is currently working with 
OCLC (OCLC, 2002a) to set up such a system (Suleman, et al., 2001).  While name 
information is not usually considered to be metadata, the OAI protocol can be used for 
name lookups by issuing GetRecord requests with the name identifier as the parameter.  
This is being pursued actively and illustrates another scenario where the OAI protocol 
can be used for simple metadata access by identifier.  The OAI protocol is usually 
restricted to batch transfers of metadata, but in this case it is used as a repository access 
protocol, functioning as the interface between the name authority database and users of 
such information. 

2.8.5 Search and Classification for ETDs 
NDLTD comprises a number of research universities with collections of electronic theses 
and dissertations.  These collections are, however, managed as independent projects, very 
loosely linked.  As an initial attempt to develop a cross-archive search service, Powell 
and Fox (Powell and Fox, 1998) created a federated search system.  This suffers from the 
problem of scalability since each new archive can introduce new search semantics that 
will need to be integrated into the rest of the system.  Also, there is no easy means of 
integrating the results from different systems into a single result list. 

As an alternative approach, Virginia Tech is working with VTLS (VTLS, 2002) to 
develop a cross-archive search system based on their Virtua software.  This project is 
using the OAI protocol to transfer metadata from individual ETD repositories into a 
central NDLTD collection that subsequently serves as a data source for Virtua and 
Virginia Tech’s IR research system, MARIAN (France, 2001).  In this instance, OAI 
technology is bridging the gaps among various different archives to increase the visibility 
of scholarly publications. 

2.9 FUTURE DIRECTIONS 
The Open Archives Initiative has provided the community of electronic libraries with a 
simple but extensible protocol to facilitate interoperability.  But why do we need 
interoperability?  The short answer is that there are very few digital libraries that have 
both extensive collections and effective services.  Some contain lots of data. Others 
provide lots of services.  In either case, users do not easily find the resources related to 
their particular information needs.  Through OAI we can turn these problems into 
advantages by helping both data providers and service providers do a better job at their 
specialties, while streamlining the data provider to service provider connection.  By 
building interoperable DLs, we can provide users with the best of both worlds, making 
searching of DLs a feasible notion without compromising on the quality of information 
management that sets digital libraries apart from the mass of data on the WWW.  Part of 
this entails open exportation of data using the OAI protocol.  This approach has received 
much support from the DL community in general.  Just as important, however, is the 
development of high quality services that operate over the collections of data.  This is 
progressing at a much slower pace.  The Open Digital Library project seeks to design an 
architecture that will make the provision of services as simple as the provision of data, 

 Page 28 



 

thus eliminating the bottleneck in development, management and interoperability of 
digital libraries, ultimately enabling the participation of users all over the globe in the 
new “Information Age”. 

 

 

 Page 29 



 

Chapter 3   

OODDLL  DDEESSIIGGNN  CCOONNSSIIDDEERRAATTIIOONNSS  

3.1 INTRODUCTION 
An Open Digital Library is a network of extended Open Archives that work together to 
supply the services required by information seekers.  Each node within this network is an 
ODL service, designed to conform to a set of principles for maximum reusability at the 
levels of design, implementation, and information sharing. 

The Open Digital Library design framework allows for building digital libraries in a 
systematic manner based on current principles of good software engineering, in the 
context of the state of the art in digital library services and networked information 
provision.  The ODL design specifies strategies for the construction of modular DLs in a 
new information society where we can no longer afford to consider issues such as 
interoperability to be optional afterthoughts.   

As previously discussed, this approach to building digital library systems is motivated by 
numerous factors, including the emergence and growing popularity of the Protocol for 
Metadata Harvesting (PMH) designed and championed by the Open Archives Initiative 
(OAI).  The ODL is based on extensions of this protocol to provide maximum reuse of 
existing standards in support of greater functionality and applicability to domains not 
normally associated with metadata harvesting.   

In an online community where new standards are being created all the time, ODL 
presents not just one more standard, but a set of guidelines for building on what exists – 
an elaborate attempt to define simpler protocols that will work rather than complex 
protocols that are complete.  But, at the same time, ODL can be contrasted with other 
interoperability protocols to illustrate how these extensions enable a natural mapping to 
known technology. 

This chapter discusses principles of ODL and its parallels to other technologies, as a 
prelude to a concrete mapping of DL services to ODL service components in the next 
chapter.  It begins with a discussion of the influences of the Internet on ODL, followed by 
a specification of what an ODL protocol conforms to, and concludes with a mapping to a 
programming paradigm to demonstrate a degree of completeness. 

3.2 ODL VS. THE INTERNET: A PRACTICAL PERSPECTIVE 
ODL is not in itself a new idea.  It is, however, the application of an idea from 
fundamental domains in computer science to an emerging field that is on the periphery of 
the discipline, namely Digital Libraries.  There are stark similarities between ODL and 

 Page 30 



 

the way in which the Internet has evolved, leading to a set of guiding principles, which 
may serve as indicators of probable success.   

The success of the Internet as a large-scale network of interoperable systems cannot be 
ignored.  Of course many people believe that this success is the panacea for our problems 
and we need not invent new technology.  The counter argument is just as compelling – 
there are many who believe that a little more structure would aid greatly in supporting 
innovative user services.  As an example, the Semantic Web project (Berners-Lee, et al., 
2001) is an attempt to add meaning to the links in the WWW to aid with machine 
understanding of the tangle of content.  The OAI approach is to build layers over the 
Internet to add delicate shades of meaning that will support data transfer operations 
within the archiving community.  ODL components, in turn, add meaning to the OAI 
protocol to support more complex and useful services than just data transfer.  Figure 3.1 
illustrates this encapsulation. 

ODL Component Protocols

OAI Protocol for Metadata Harvesting

HTTP

TCP/IP

 

Figure 3.1 Encapsulation of network protocols, up to the level of ODL 

This layered approach to building standards assumes an implicit inheritance of principles 
from one layer to the next.  The OAI protocol adopts many of the design methodologies 
of the HTTP protocol.  The parameters are passed using a well-established standard 
called the Common Gateway Interface or CGI (Gundavaram, 1996) and errors are 
returned via the HTTP protocol mechanism.  There are many pre-defined error messages 
in HTTP and as far as possible these are used to indicate OAI errors.  The advantage of 
this approach can be stated best in the language of the Dublin Core community, which 
recommends that it be possible for extensions to standards to be “dumbed down” to the 
original standard (DCMI, 2000).  Thus, while it is possible to access an OAI archive 
using an OAI client like the Repository Explorer (Suleman, 2001), it is still possible to 
use an HTTP client.  Similarly, in the ideal case, it ought to be possible to “dumb down” 
any ODL protocol into the OAI protocol (and, transitively, into the HTTP protocol). 

To support this layering, ODL must be designed to be consistent with Internet and OAI 
protocol design.  Design principles from the former can be extrapolated from the way in 
which individual services have evolved to effectively serve the needs of users.  The 

 Page 31 



 

following principles are prime examples of issues in design that need to be carried 
through to ODL protocol design. 

3.2.1 Simplicity 
The prime driving force behind the Internet was its simplicity, where each component 
was constructed in such a way that it can be understood as a single, complete, and 
independent entity (Berners-Lee, 1996).  The protocols are minimalist and in many 
instances new protocols start off with very few features and more complexity evolves 
only after acceptance.  Many new protocols are being designed to be complete solutions 
and they fail not because of technical inadequacies but because of reluctance of the 
targeted community to accept a new complex standard.  The Open Archives Initiative 
was launched as a direct response to this problem – its principle mission focusing quite 
specifically on establishing a low-barrier to interoperability (Lagoze and Van de Sompel, 
2001).  ODL must of necessity continue the tradition of this “low-barrier” to adequately 
address the needs of the community for DL components. 

3.2.2 Openness 
The Internet operates on the basis of a set of standards that are owned by the community 
itself.  There is no standards body that summarily issues new standards.  Instead, each 
standard is written as a “Request For Comments” and posted for discussion (RFC Editor, 
et al., 1999).  On the surface, the obvious problem with this solution is one of 
management and quality control.  However, as evidenced by its success and the success 
of the emerging open source community, peer acceptance and feedback are usually 
sufficient motivation to support the process of creation, whether of new standards or new 
software (Raymond and Young, 2001).  The ODL design should therefore build on open 
standards and itself be open to comment and revision, to gain maximum benefit from the 
modus operandi of the networked community. 

3.2.3 Independence of protocols 
POP (Myers and Rose, 1996) and IMAP (Crispin, 1996) are two examples of very 
popular Internet protocols that allow a client program to access a remote mailbox.  While 
both of these rely on the fundamental TCP/IP layer, they do not have any requirements 
for collocation, development, or installation in parallel – they are completely separate 
protocols.  This has far-reaching consequences in that each protocol is allowed to develop 
separately of the other.  As it turns out, each protocol is attributed to a separate group of 
people and, while they share some ideas, the different services are driven by different 
goals (Gray, 1995).  The DL community has not generally adopted this idea.  In general, 
most DLs tend to attempt provision of a wide range of services using the same base of 
code, protocols, and data storage.  As a result, many compromises have to be made to 
support multiple collocated services.  A typical example of this is the DL based on a 
database, which uses SQL queries for searching and browsing instead of implementing a 
separate IR system for searching (e.g., CSTC, WCR, E-Prints).  ODL adopts the notion of 
independence of services from the Internet and advocates that every service be 

 Page 32 



 

completely separated so as to maximize the quality of that individual service without 
having to make compromises to support others. 

3.2.4 Loose coupling 
When analyzing existing DL systems, one of the greatest failings is the degree to which 
individual modules are coupled.  This coupling of various services is motivated by the 
fact that a wide range of functions can be shared among modules when the system is 
being built from scratch.  However, if the system is not being built from scratch, tightly 
coupled modules are not easy to reuse.  To address this, modular development can be 
extended to the level of componentization, with loose coupling and well-defined 
communication protocols so that the development of systems shifts from programming to 
composition of independent components (Nierstrasz and Dami, 1995; Szyperski, 2000).  
This has already manifested itself on the Internet where all popular services communicate 
through well-defined protocols.  Learning from those experiences as well as the 
experiences of the software development community, such componentization needs to be 
an intrinsic part of an ODL. 

3.2.5 Layers 
Computer networking evolved from a motley collection of network protocols to the well-
understood system that is TCP/IP.  With both practice and the theory of the ISO’s Open 
Systems Interconnection model (ISO, 1994) backing it, TCP/IP has proven that layering 
of protocols does in fact work – that the levels of encapsulation, processing, and 
sometimes redundant information introduced has a payoff in terms of ultimate 
deployment of the technology.  ODL uses a similar layered approach, with protocols 
being devised as extensions of the OAI-PMH or other existing ODL protocols.  As seen 
in the somewhat offbeat Hypertext Coffee-Pot Control Protocol (Masinter, 1998), it is 
possible to design a protocol as a layer over HTTP to accomplish a very different goal, 
but without redefining the basic semantics of HTTP.  ODL components apply the same 
philosophy to proposed extensions of the OAI protocol. 

3.2.6 Reuse 
Reuse is important both in the context of software and design methodologies.  In terms of 
software reuse, the Internet has proven time and again the software engineering mantra of 
reusing existing software in the development of new projects.  As an example of such, 
there are numerous projects, such as the Perl and PHP interpreters, that have adopted and 
incorporated the Expat XML parser (Cooper, 1999) rather than reinvent the wheel. 

From the design perspective, Internet protocols may be designed separately, but the 
vocabulary and even semantics are retained across projects as reuse greatly diminishes 
the learning curve.  It is counter-intuitive to introduce a new and unknown vocabulary for 
every component, so ODL components are designed to reuse semantics established by 
prior components if at all possible. 

 Page 33 



 

3.2.7 Orthogonality with a Purpose 
From a theoretical perspective, orthogonality helps in creating complete models of a 
software system.  But orthogonality in a protocol is not always efficient and, from a 
pragmatic perspective, not necessary in some cases.  The HTTP protocol, for example, 
allows a user to obtain a document given its location but does not support finding a 
document’s location, given its name.  This is perfectly reasonable since the latter is best 
done by alternate means (e.g., search engines), thus enabling an optimization of the 
server for the functionality that is most prominently requested.  ODL designs follow a 
similar philosophy of design to address real use cases, rather than design for the sake of 
completeness. 

3.3 OPEN DIGITAL LIBRARY DESIGN 
Based upon the experiences gleaned from the development of the Internet, better models 
for developing networked information services can be derived.  One such model is the 
foundation for the Open Digital Library – a set of basic principles for the development of 
componentized digital libraries.  The ODL design principles guide a generalization of the 
OAI protocol so that it may be used for purposes that go beyond its original intention, 
namely to provide higher-level DL services.  These basic principles are as follows: 

1. All DL services must be encapsulated within components that are extensions of Open 
Archives.   

• 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

This is in keeping with the desirable design goals discussed above. 

Simplicity – The OAI protocol is simple and well understood. 

Openness – The OAI protocol is already in the public domain. 

Independence of protocols – By designing each DL service within its own 
Open Archive, they are forced to be separate and separable. 

Loose Coupling – Open Archives are accessed at a high level through 
HTTP, which is stateless – thus each DL service also will be stateless and 
only loosely coupled with other components. 

Layers – An Open Archive need not be a single entity – it can contain other 
Open Archives or work collaboratively with them.  Each DL service built as 
a layer above other services can retain its essential semantics and extend 
them only when required. 

Reuse – Building systems as components leads to reuse of the end-results as 
well as the intermediate results such as the design process. 

Orthogonality – The OAI protocol requires a practical degree of 
orthogonality and this requirement will be inherited by any service DL that 
builds on the OAI protocol. 

 Page 34 



 

Examples of components: Search Engine, Browse Engine, Recommendation 
Engine, Rating Service, Review System, Annotation Engine 

• 

• 

• 

• 

• 

• 

• 

• 

2. All access to the DL services must be through their extended OAI interfaces. 

Search engines can use the set parameter to encode a query and then return the 
search results as either a set of metadata records or a set of identifiers depending 
on whether the ListRecords or ListIdentifiers request was issued. 

Recommendation engines can use the set parameter to specify the user for whom 
recommendations are being requested.  If the set parameter is not provided, then 
system-wide recommendations can be provided. 

3. All DL services must get access to other data sources using the OAI protocol. 

Search engines can be connected to data sources by providing them with the 
baseURLs of the OAI interfaces to the collections.  The search engines will then 
use OAI harvesters to collect metadata in specified formats from the data 
providers to build their inverted files or other internal representations of the 
collection. 

Recommendation engines can similarly be connected to data sources and use 
OAI harvesters in order to obtain metadata records from the data sources.  In this 
case, the DL services can create pre-optimized recommendations for specific 
users or user classes. 

4. The semantics of each ODL protocol must be extended or overloaded as allowed by 
the underlying protocol, but without contradicting the essential meaning. 

Search engines can use dynamic sets in order to encode queries.  This is not part 
of the OAI protocol, but the OAI protocol does not prohibit this use. 

Recommendation services can use the optional nature of the set parameter to 
distinguish between individual recommendations and global recommendations.  
Once again, this is not specifically prohibited and is in keeping with the essence 
of set semantics. 

5. Digital Libraries must be constructed as networks of extended Open Archives. 

Each node of the network will be an extended Open Archive, while each link will 
be accessed through the OAI protocol (with extensions if necessary).  Figure 3.2 
provides an example of this architectural model. 

 Page 35 



 

Local Archive

Data Input

Remote Archive

Browse

Union Catalog

Search Recommend

Resource Discovery

User Interface
OAI/ODL component
OAI/ODL protocol

 

Figure 3.2 Example networked architecture of an Open Digital Library 

3.4 ODL VS. OOP: A THEORETICAL PERSPECTIVE 

3.4.1 Overview 
From the perspective of programming language design, there are striking similarities 
between ODL and Object-Oriented Programming (OOP).  A complete mapping between 
these two technologies suggests that properties of one can be restated in the vocabulary of 
the other, providing a theoretical backdrop for ODL.  Table 3.1 shows such a mapping, 
with short descriptions of each concept immediately following. 

ODL OOP 

Protocol Class 

Service Instance or Object 

Service Request Message 

Service Request Handler Method 

Remote Service Request Remote Method Invocation 

Service Name Resolution Binding 

Service Request Parameters Method Parameters 

Semantic Overlays Inheritance 

Dumb-Down Principle Polymorphism 

Table 3.1 Mapping of concepts from ODL OOP 

 Page 36 



 

3.4.2 Mappings 

3.4.2.1 Protocol  Class 
An OOP class is the type definition that specifies how to interact with objects of that 
type.  Similarly, an ODL protocol is the definition that specifies how to interact with 
services that follow the specified protocol. 

3.4.2.2 Service  Instance 
An OOP instance is a run-time encapsulated analogue of a class, containing data and 
methods that operate on it.  Similarly, an ODL service is the run-time encapsulation of 
functionality specified by a protocol, and the interface to access that functionality. 

3.4.2.3 Service Request  Message 
An OOP message is a request passed to an object to invoke one of its methods.  
Similarly, an ODL service request is a request passed to a service to invoke one of its 
request handlers. 

3.4.2.4 Service Request Handler  Method 
An OOP method is a procedure or function that provides a functional interface to the 
outside world.  Similarly, an ODL service request handler provides functionality to the 
calling components. 

3.4.2.5 Remote Service Request  Remote Method Invocation 
An OOP remote method invocation is when the caller of a method is remotely located.  
An ODL remote service request occurs similarly. 

3.4.2.6 Service Name Resolution  Binding 
In OOP, binding is when the correct method is chosen in response to a message.  In ODL 
components, service name resolution is when the correct service request handler is called 
in response to a service request. 

3.4.2.7 Service Request Parameters  Method Parameters 
Since service requests are analogous to methods, their parameters are similarly 
analogous. 

3.4.2.8 Semantic Overlays  Inheritance 
In OOP, inheritance is when an object acquires the properties of another as a precursor to 
building upon what already exists.  An ODL component, similarly, builds upon OAI and 
other ODL components by overlaying additional semantics. 

 Page 37 



 

3.4.2.9 Dumb-Down Principle  Polymorphism 
In OOP, polymorphism is when an object can be used as if it were any of its 
predecessors.  Similarly, the “dumb-down” principle implies that an ODL service may be 
accessed through the semantics of any of its predecessors. 

3.4.2.10 Base Protocol  Base Class 
An OOP base class is analogous to a base protocol in ODL from which other protocols 
are derived. 

3.4.3 Implications 
With so much in common, it is also possible to explain some of the issues that affect 
ODL in terms of its OOP counterpart. 

For example, in OOP, there is sometimes a root base class from which all other classes 
are derived.  This is sometimes called an “Object” or “TObject” class.  In ODL, this root 
base class is the OAI protocol, from which a whole suite of protocols can be derived in 
order to provide extended functionality, in a manner analogous to OOP inheritance. 

As another example, OOP has the concept of pure virtual functions, which cannot be 
called without being overridden.  In the OAI protocol, a prime example of an analogy to 
this is the ListSets service request, for which a handler has to be defined in the context of 
a particular archive before such service requests can be handled.  Many implementers 
simply ignore this and use an empty response while others generate a result list by 
various means.  Implicitly, in each of these cases, the implementers are defining a layer 
of additional semantics over the OAI protocol – what in OOP would be subclassing – 
before creating the service.  In OOP this is the familiar definition of a function to 
override a pure virtual function before creating instances. 

These typical use cases illustrate the natural manner in which the OAI protocol lends 
itself to a hierarchical system of layered semantics.  This is the very basis for the design 
of ODL and such a system of layered semantics is presented in detail in the next chapter 
as a concrete design conforming to the requirements stated in this chapter. 

 

 Page 38 



 

Chapter 4   

OOPPEENN  DDIIGGIITTAALL  LLIIBBRRAARRYY  SSEERRVVIICCEE  PPRROOTTOOCCOOLLSS  

4.1 ODL SERVICES AS EXTENSIONS OF THE OAI-PMH 
The primary hypothesis of this work is that DLs can be built as networks of extended 
Open Archives instead of as monolithic systems.  Based on the design principles 
elaborated upon in the previous chapter, it is possible to design ODL services as 
mappings of use-case scenarios from traditional DLs to operations performed in the 
context of extended Open Archives.  Each of a number of popular DL services is defined 
in this manner in this chapter. 

The framework for each of these services is based on a general model for an extended 
Open Archive, referred to hereafter as the XOAI-PMH (Extended OAI-PMH).  Then, for 
each service, a general description is given, followed by a formal description of the 
protocols to interface with the originating data source(s), the user interface, and other 
peer services. 

4.2 PROTOCOL DESIGN CONSIDERATIONS 

4.2.1 OAI Sets as Parameters 
Many ODL component parameters that do not correspond to existing OAI parameters can 
be mapped into the OAI set parameter.  This allows for a service protocol to be used by 
standard OAI tools while not violating the generally understood set semantics.  Since sets 
are simply subsets of an archive, specifying a list of parameters that generate that subset 
is still consistent with the general notion. 

4.2.2 Interface-directed Responses 
The purpose of building ODL upon the foundations of OAI is largely due to the fact that 
OAI already defines a basic format for requests and responses.  In particular, the response 
format allows for encapsulation of a list of arbitrary records in arbitrary metadata formats 
as determined by the interaction between the data and service providers.  This response 
format need not be redefined and in many cases can be presented to the user after stylistic 
transformation without any preprocessing.  To accomplish this, the request can be 
structured to provide responses that are as close as possible to the requirements of the 
user interface.  As an example, search engines can provide parameters (such as start and 
stop) to extract portions of the results from a longer list so that the search components 
need not return every result in their OAI responses. 

 Page 39 



 

4.2.3 Harvesting Granularity 
The OAI protocol uses a datestamp in order to support harvesting by date, but the 
granularity is a single day since these datestamps contain only dates and not times.  After 
taking into account the differences in timezones, a harvester has to overlap harvesting 
dates by at least one day in order not to miss any new entries.  This is not problematic for 
archives being harvested to provide cross-archive services.  However, within a single 
archive it is a problem as individual services need to appear to be consistent to the user.  
As an example, if a user submits a new entry to an archive and then modifies the entry on 
the same day, a harvester will not detect the modifications unless it overlaps its 
harvesting datestamp range.  The other solution is to use a finer granularity.  While this 
does violate version 1.1 of the OAI protocol, it can be applied to all ODL protocols so it 
will be consistent.  Version 2.0 already supports such a finer granularity for datestamps.  
The protocol descriptions that follow are independent of the datestamp granularity but 
their effectiveness and efficiency depend on selecting the correct balance between 
overlapping harvests and using finer granularities. 

4.2.4 Response-level Containers 
Another feature discussed within the OAI is the use of structured data containers, at the 
level of the OAI response, to return information about the act of creating the response as 
a whole.  Currently, there exist containers within each record (in the form of the about 
tags) where data providers may include meta-information about each metadata record.  
For many services this is not sufficiently general as some information pertains to the 
request as a whole.  As an example, a search engine can return the search result rank and 
number of hits in these <about> containers but use of the latter will not be efficient or 
correct since it is information about the whole response rather than each record.  This 
information is on par with the resumptionToken and must be encoded in a similar 
manner.  The following protocol descriptions assume the existence of such a response-
level container. 

4.2.5 Submission 
The OAI protocol was conceived as an add-on layer to existing systems in order to 
support interoperability.  As a result, the only supported data access mechanism allows a 
system to export its data to others.  There is no mechanism to input additional data into an 
archive through its OAI interface.  This is not a problem if harvesting is the only goal of 
the protocol but for more general operations such as those envisioned for ODL 
components, it is sometimes desirable to have a general-purpose service request to add an 
item to the archive.  This service request can take the form of a PutRecord request which 
will be symmetric to the existing GetRecord request.  In terms of the Kahn-Wilensky 
Framework (Kahn and Wilensky, 1995), adding a PutRecord request will make the OAI-
PMH into a complete “repository access protocol”. 

 Page 40 



 

4.2.6 Harvesting vs. Archive Access 
In the context of ODL services, most operations that are performed are accesses to data 
through the OAI interface, as opposed to the traditional use of the OAI interface for 
harvesting on a continuous basis.  In most cases, harvesting is still possible, though the 
semantics of harvesting from non-archive components is questionable.  For example, 
while most people can easily comprehend the concept of harvesting from an archive, 
harvesting from a search engine is not as familiar.  For other components such as 
recommendation engines, where the component may incorporate multiple OAI interfaces, 
the semantics of harvesting and its stability are not as obvious.  Thus, for ODL 
components, their interfaces are simply specified in terms of OAI service requests, 
independent of the fact that the same set of service requests also may be used for 
harvesting operations. 

4.2.7 Dublin Core Requirement 
Since most of the service-level components are only accessed through their well-defined 
interfaces, it becomes irrelevant to map the metadata to Dublin Core.  Also, many of the 
internal data formats used by components are not amenable to a DC mapping. 

4.2.8 Customization of Components 
Every ODL component must be reusable and, as such, may have a set of configurable 
parameters that govern its operation.  These parameters must be documented and easily 
modifiable as the components are used in different environments and for different 
purposes.  The mechanism by which the components are customized is, however, beyond 
the scope of these definitions of the components. 

4.2.9 Propagation of Information 
In the OAI-PMH, a datestamp is used to track changes as well as support incremental 
harvesting.  However, in a network of Open Archives, changes do not necessarily 
correspond to harvesting activities.  For example, with a 2-day overlap in harvesting, 
some of the records received on the second day may not be new records.  Since the 
datestamp is the only way of signaling a modification, this has to be updated to propagate 
records to second-level archives.  Thus, each incoming record intended to be forwarded 
to other archives must be immediately stamped with the current date and time. 

4.3 EXTENDED OAI-PMH (XOAI-PMH) 
The XOAI-PMH is a general extension of the OAI-PMH to support encapsulation of 
various DL services within OAI-like components.  This extension takes the form of a set 
of additional parameters and service requests for version 1.1 of the OAI-PMH.  In 
addition, some responses and other protocol information are refined or added to as 
specified. 

Note: Version 1.1 of the OAI-PMH was used because this work was done before version 
2.0 was released. 

 Page 41 



 

4.3.1 Global Changes 

4.3.1.1 DC Requirement 
Dublin Core is not a required metadata format. 

4.3.1.2 Harvesting Granularity 
All datestamps used for the purposes of harvesting, including datestamp tags and from 
and until parameters, may use the "Complete date plus hours, minutes and seconds" 
variant of ISO8601.  The format of this is “YYYY-MM-DDThh:mm:ssTZD”, as 
described in section 3.2 of the OAI-PMH specification. 

4.3.1.3 Identify Container 
A response to Identify must contain information about the semantics understood by the 
component, in the form of a protocol name and version.  This is to be encoded as follows: 

<odl-description> 

   <protocol>ODL-Union</protocol> 

   <version>1.0</version> 

</odl-description> 

In the case of multi-function components, this element type can be repeated. 

4.3.1.4 Response-Level Containers 
All responses may have additional containers to hold information pertaining to the 
creation of the response as a whole.  These containers appear at the very end of the 
response and take the form of responseContainer tags containing any valid XML. For 
example: 

<responseContainer> 

   <hits>hits</hits> 

</responseContainer> 

4.3.2 Service Request Changes 

4.3.2.1 PutRecord (new service request) 

 Semantics: 
Add, modify or delete a record from the archive.  If a record exists with the same identifier 
and metadataPrefix, replace it with the given one.  Update the datestamp on the record to 
reflect the current local date/time of the archive.  If the status parameter is used to 
indicate deletion, delete all metadata for the record from the archive.  

 Page 42 



 

 Parameters: 
identifier 

The identifier associated with the record.  This is an optional field (if status is not 
“deleted”) and if not specified, the archive must assign a new and unique identifier 
for the record. 

sets 
A comma-separated list of sets that the record is to become a part of.  This is an 
optional field and if not specified, the record does not belong to any sets. 

metadataPrefix 
The metadata prefix associated with the metadata format of the record. 

metadata 
The metadata record as an XML fragment.  Complete schema and namespace 
information must be provided but the XML header must be omitted.  If the metadata 
field is not trivially small, the HTTP POST operation must be used instead of HTTP 
GET to avoid limits on URL-encoded query lengths that are common in Web 
servers. 

status 
This is an optional parameter – if it is provided and its value is “deleted” then all 
parameters but identifier are ignored and all metadata records corresponding to this 
record are deleted. 

 Return Values: 
The response contains the identifier assigned to the record just stored. 

 Exceptions: 
If any required parameters are missing or in an invalid format, then an HTTP status-code 
of 400 is returned to indicate illegal parameters. 

 Page 43 



 

 Example Request: 

Verb=PutRecord&metadataPrefix=oai_dc&identifier=oai:ABC:123
&metadata=<test%20xmlns%3D”testns”%20xsi%3AschemaLoca
tion%3D”testschema”><title>aTitle<%2Ftitle><%2Ftest> 

 Example Response: 

<?xml version="1.0" encoding="UTF-8" ?> 

<PutRecord xmlns=”http://www.odl.org/ODL/1.1/ODL_PutRecord” 
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” 
xsi:schemaLocation="http://www.odl.org/ODL/1.1/ODL_PutRecor
d  http://www.odl.org/ODL/1.1/ODL_PutRecord.xsd"> 

<responseDate>2001-10-27T19:20:30-05:00</responseDate> 

<requestURL>http://an.oa.org/OAIscript?verb=PutRecord&metad
ataPrefix=oai_dc&identifier=oai:ABC:123&metadata=&lt;test%2
0xmlns%3D”testns”%20xsi%3AschemaLocation%3D”testschema”&gt;
&lt;title&gt;aTitle&lt;%2Ftitle&gt;&lt;%2Ftest&gt;</request
URL> 

   <identifier>oai:XYZ:123</identifier> 

</PutRecord> 

4.4 PREFACE TO ODL PROTOCOL DESCRIPTIONS 
Each of the ODL service components will be described with the following sections: 

Description: A short description of the background and functionality of the component. 

Interface Protocol: The protocol used to communicate with the component. 

Interoperability Issues: Issues to address regarding interoperability with peer components. 

4.5 THE ODL-SUBMIT PROTOCOL V1.0 

4.5.1 Description 
An Open Archive is a repository that allows read access but not write access. ODL-
Submit is a trivial variant of XOAI-PMH to add support for write-access to an Open 
Archive, allowing for the addition, modification, and deletion of items in an archive.  

4.5.2 Interface Protocol 

4.5.2.1 Identify, ListMetadataFormats, ListSets, GetRecord, ListIdentifiers, 
ListRecords, PutRecord 

Inherited from XOAI-PMH / OAI-PMH. 

 Page 44 

http://www.odld.org/ODL/1.1/ODL_PutRecord
http://www.w3.org/2001/XMLSchema-instance
http://www.odld.org/ODL/1.1/ODL_PutRecord
http://www.odld.org/ODL/1.1/ODL_PutRecord
http://www.odld.org/ODL/1.1/ODL_PutRecord.xsd"


 

4.5.3 Interoperability Issues 
Since the read-only aspect of such components make them appear like standard Open 
Archives, hierarchical harvesting may be performed to aggregate data as necessary. 

4.6 THE ODL-RECENT PROTOCOL V1.0 

4.6.1 Description 
In order to pique their interests, many DLs present users with a listing of some sample 
items that have just been added.  This can be accomplished using a simple extension that 
returns records in their original format but only returns recent ones.  In terms of 
implementation, this entails regularly harvesting from the source archive and storing only 
the recent entries and/or their identifiers locally. 

4.6.2 Interface Protocol 

4.6.2.1 Identify, ListMetadataFormats, GetRecord 
Inherited from XOAI-PMH / OAI-PMH. 

4.6.2.2 PutRecord 
Not supported. 

4.6.2.3 ListSets 

 ODL-Recent Results:  
Empty list. 

4.6.2.4 ListIdentifiers, ListRecords 

 Semantics: 
Return a fixed, small number of identifiers or records as specified in the configuration of 
the component, corresponding to a random sample from among the newest records 
encountered by the component. 

4.6.3 Interoperability Issues 
Peer components conforming to ODL-Recent can be aggregated at a higher level if the 
higher level component harvests from each of the lower-level ones.  Thus, a central DL 
system can use an ODL-Recent-compliant component that harvests records from each of 
its contributing DLs’ peer ODL-Recent-compliant components.  

 Page 45 



 

4.7 THE ODL-UNION PROTOCOL V1.0 

4.7.1 Description 
In some instances metadata from multiple archives can be coalesced into a single archive 
to support specific requirements such as a reduction in network traffic where multiple 
services require the use of the metadata from remote locations.  Also, where the archives 
are established to parallel an organization that is itself hierarchical, it may be useful to 
gather all the metadata into root nodes to provide centralized services across the entire 
organization (or subsets of it).  Figure 4.1 illustrates a simple ODL network using a 
component that conforms to the ODL-Union protocol. 

Archive X 

Archive Y 

ODL-Union 

 

 

User Interface 
 

OAI/ODL component 
 

OAI/ODL protocol Archive Z 

 

Figure 4.1 Simple ODL network using ODL-Union-compliant component 

The ODL-Union-compliant component collects metadata from multiple sources and 
republishes it via a single XOAI-PMH interface.  The algorithm used to harvest the data 
is implementation-dependent since the choice of algorithm affects network usage but not 
the logic of the protocol.  Parameters may be set to select the metadata formats and sets to 
harvest from each source archive.  From the perspective of the component, the whole 
archive can be harvested, thus losing set information, or the individual sets can be 
harvested with a more sophisticated algorithm – the component will republish whatever 
information it can obtain. 

4.7.2 Interface Protocol 

4.7.2.1 Identify, GetRecord, ListIdentifiers, ListRecords 
Inherited from XOAI-PMH / OAI-PMH. 

4.7.2.2 PutRecord 
Not supported. 

 Page 46 



 

4.7.2.3 ListMetadataFormats 

 ODL-Union Results:  
List of metadata formats representative of all records currently in archive. 

4.7.2.4 ListSets 

 ODL-Union Results:  
List of pairs of archive identifiers and source sets, where each pair is separated by a 

slash. For any archive harvested only as a whole, the source set will be omitted, 
resulting in just archive identifiers. 

 XOAI Response Encoding: 

… 

<set> 

   <setSpec>archive1</setSpec> 

   <setName>archive1</setName> 

</set> 

<set> 

   <setSpec>archive2/set</setSpec> 

   <setName>archive2/set</setName> 

</set> 

… 

4.7.3 Interoperability Issues 
Components supporting ODL-Union provide almost transparent access to the data 
contained in each source archive.  However, in order to differentiate among the various 
source archives, archive names are added as sets or prefixed to each existing set within an 
archive.  As a result, any peer ODL-Union-compliant components will be linked together 
in a parent-child manner rather than as peers (as shown in Figure 4.2).  This preserves the 
integrity of each source archive as a separate entity within the union archive, but it 
requires that if two distinct union archives acquire the same identifier/record then a 
higher-level union will include the disputed identifier/record in both sets. 

 Page 47 



 

ODL-Union  o1

Archive a2

Archive a3

Archive a1

ODL-Union

Sets: s1, s2

Sets: o1/a1/s1,
o1/a1/s2, o1/a2,
a3/s1, a3/s2

Sets: a1/s1, a1/s2, a2 Sets: s1, s2

Sets: (none)

 

Figure 4.2 Hierarchical organization of ODL-Union-compliant components 

4.8 THE ODL-SEARCH PROTOCOL V1.0 

4.8.1 Description 
Search engines have become a ubiquitous part of digital information seeking, reminiscent 
of the omnipresent card catalog in the libraries of old.  Very few traditional libraries will 
not use an OPAC (Online Public Access Catalog) these days – and very few OPACs will 
not provide a function to search based on keyword or author.  Nevertheless, they are still 
not well defined because of the wide array of functions that are attributed to search 
engines.  In their book on search engines, Berry and Browne provide only a hint of a 
definition when they state that we look to search engines for “concise, organized 
responses” to “vague questions about topics that we’re unfamiliar with ourselves” (Berry 
and Brown, 1999).  Kowalski, writing about information retrieval (IR) systems, 
enumerates the two most common views of search engines: the “fuzzy” IR system and 
the “structured” database (Kowalski, 1997).  Brewer takes a philosophical approach and 
calls search engines the “fundamental solution to anarchy and chaos” (Brewer, 2001) 

Given this uncertainty about what a search engine is, it is hardly surprising that DLs tend 
to vary widely in their interpretation of search functionality.  The Greenstone system 
(Witten, et al., 2000) is based on the MG Information Retrieval system (Witten, et al., 
1999) and so provides users with the ability to specify IR-like queries.  On the other 
hand, the E-Prints system (OpCit, 2002) uses SQL queries so it only allows precise 
queries.  Designing a general protocol for search engines has to take into account this 
variance, so the exact nature of the query must be abstracted from the protocol that 
supports it.  The results from the query, on the other hand, may be in approximately the 
same format.  There have been various attempts to specify interfaces for searching such 
as Z39.50 (ANSI/NISO, 1995) and STARTS (Green, et al., 2001), but they concentrated 
on completely specifying queries whereas ODL-Search concentrates on encapsulating the 
query process in OAI-like technology.  SDLIP (Paepcke, et al., 2000) takes a similar 

 Page 48 



 

approach to ODL-Search, but it is defined as a standalone remote search protocol 
whereas ODL-Search is part of a larger suite of protocols for DL componentization. 

Figure 4.3 shows a simple ODL network using an ODL-Search-compliant component. 

Search Interface 

ODL-Search  

 

User Interface 
 

OAI/ODL component 
 

OAI/ODL protocol OA 
 

Figure 4.3 Simple ODL network using an ODL-Search-compliant component 

4.8.2 Interface Protocol 

4.8.2.1 Identify, ListMetadataFormats 
Inherited from XOAI-PMH / OAI-PMH. 

4.8.2.2 GetRecord, PutRecord 
Not supported. 

4.8.2.3 ListSets 

 ODL-Search Results:  
Empty list. 

4.8.2.4 ListIdentifiers, ListRecords 

 ODL-Search Parameters: 
qlang 

Name of query language used to indicate the semantics for the query that follows.  
The query language is a controlled vocabulary, with examples of syntax and 
semantics in a later section. 

query 
Search query in language understood by search engine. 

start 
Index of first item to return from complete list of results, ranked in order of 
decreasing relevance of the identifier/record to the query.   This, along with the next 
parameter, allows selection of a range of results from within the complete list. 

 Page 49 



 

stop 
Index of last item to return from complete ranked list of results. 

 XOAI Parameter Encoding: 
set 

qlang/query/start/stop 

 XOAI Request Encoding: 

…Verb=ListIdentifiers&set=qlang/query/start/stop… 

…Verb=ListRecords&set=qlang/query/start/stop… 

 Additional ODL-Search Results: 
hits 

Estimated total number of hits.  This could be the actual number, but formally 
defined as an estimate, it allows for approximate searching. 

 XOAI Response Encoding: 

… 

<responseContainer> 

   <hits>hits</hits> 

</responseContainer> 

… 

4.8.3 Interoperability Issues 
Search engine interoperability is usually equated with the concept of federated or meta- 
searching – where queries are sent to remote sites, from which results are gathered and 
merged.  In the NDLTD project, Powell and Fox built a system to support federated 
searching among collections of theses and dissertations (Powell and Fox, 1998).  
Disparities in search interfaces present one major obstacle, which can be avoided to some 
degree by using the ODL-Search protocol.  ODL-Search thus can form the basis of a 
federated system of search engines.  Differences in query languages will not be solved 
but mapping from one keyword-based query syntax to another is possible – thus existing 
search engines can be retrofitted with an ODL-Search interface. 

4.8.4 Query Language: odlsearch1 

4.8.4.1 Syntax 
( ‘+’ | ‘-’  ) ? ( field ‘:’ ) ? term ( space ( ‘+’ | ‘-’ ) ? ( field ‘:’ ) ? term )* 

 Page 50 



 

4.8.4.2 Parameters 
field 

The name of a tag in the original XML data.  In the case of Dublin Core records, this 
can be “title”, “creator”, or any of the other 13 tags. 

term 
The single word on which to perform a search operation. 

space 
The space character. 

4.8.4.3 Description 
The results of a search correspond to those documents that contain one or more of the 
query terms, ranked in a consistent manner based on a model of relevance specific to the 
search engine.  Query terms that are prefixed with a field designator must be searched for 
in only the corresponding XML nodes and their children.  If a query term is prefixed with 
“+” then all results must contain that term, and if it is prefixed with “-” then no results 
may contain that term. 

4.8.4.4 Examples 
• coffee 

• coffee java 

• +coffee java 

• coffee +java 

• +coffee +java 

• +computer -science 

• +title:www 

• +contributor:fox 

• +language:ger +description:computer 

4.8.5 Query Language: odlsearch2 

4.8.5.1 Syntax 
oai_identifier ( ‘,’ oai_identifier )* 

4.8.5.2 Parameters 
oai_identifier 

Any identifier that refers to a record in the source archive of the search engine. 

 Page 51 



 

4.8.5.3 Description 
This mimics a feedback mechanism where a user may request more documents like a 
given one or a list of documents.  The list of documents to use as a search query is 
specified in terms of the OAI identifiers.  The method of extracting the query terms and 
merging together terms from different documents is implementation dependent. 

4.8.5.4 Examples 
• oai:archive1:123 

• oai:archive1:a1,oai:archive2:a2,oai:archive3:a3 

4.9 THE ODL-BROWSE PROTOCOL V1.0 

4.9.1 Description 
The definition for browsing is a contentious issue in the arena of networked information.  
While it is apparent from its definition that browsing entails seeking information by 
scanning through items, what is not apparent is its relationship to searching.  Since most 
search engines execute queries and present the user with a list of options, browsing 
through those options is considered a natural post-search selection activity.  However, 
browsing also may allow a user to scan through the entire contents of a system, a function 
not usually associated with searching, which tends to narrow and reorganize the search 
space.  

With this philosophy in mind, and since the implementation requirements for browsing 
are vastly different from those for searching, ODL-Browse is treated as a separate 
protocol, with different component instantiations.  While ODL-Search-compliant 
components can be built around information retrieval systems, ODL-Browse-compliant 
components can be built around indexed relational databases. 

4.9.2 Interface Protocol 

4.9.2.1 Identify, ListMetadataFormats 
Inherited from XOAI-PMH / OAI-PMH. 

4.9.2.2 GetRecord, PutRecord 
Not supported. 

4.9.2.3 ListSets 

 ODL-Browse Results: 
browsable_category_1…browsable_category_n  

List of browsable categories in a form suitable for submission back to the browse 
engine. 

 Page 52 



 

 XOAI Response Encoding: 

… 

<set> 

   <setName>browsable_category_i</setName> 

   <setSpec>browsable_category_i</setSpec> 

</set> 

<set> 

   <setName>browsable_category_i+1</setName> 

   <setSpec>browsable_category_i+1</setSpec> 

</set> 

… 

4.9.2.4 ListIdentifiers, ListRecords 

 ODL-Browse Parameters: 
qlang 

Name of browse query language used, to indicate the semantics for the browse 
request that follows.  The browse query language is a controlled vocabulary, with the 
currently only defined name being “odlbrowse1”. 

criteria 
Selection criteria in language understood by browse engine. 

start 
Index of first item to return from complete list of results.   This, along with the next 
parameter, allows selection of a range of results from within the complete list. 

stop 
Index of last item to return from complete list of results. 

 XOAI Parameter Encoding: 
set 

qlang/criteria/start/stop 

 XOAI Request Encoding: 

…Verb=ListIdentifiers&set=qlang/criteria/start/stop… 

…Verb=ListRecords&set=qlang/criteria/start/stop… 

 Additional ODL-Browse Results: 
hits 

Estimated total number of hits. 

 Page 53 



 

 XOAI Response Encoding: 

… 

<responseContainer> 

   <hits>hits</hits> 

</responseContainer> 

… 

4.9.3 Interoperability Issues 
If two or more browse engines are working together, they need to merge the results.  
Since the order and meaning of the result list depends on the exact nature of the browser, 
this is largely dependent on implementation. 

4.9.4 Query Language: odlbrowse1 

4.9.4.1 Syntax 
( ( category ‘(‘ value ( ‘,’ value ) * ‘)’ ) | ( ‘sort’ ‘(’ ( ‘+’ | ‘-’ ) category ( ‘,’ ( ‘+’ | ‘-’ ) category ) 

* ‘)’ )  ) + 

4.9.4.2 Parameters 
category(value) 

List of categories and their associated values for those categories with controlled 
vocabularies.  This is typically used for such categories as “year”. 

sort(category) 
List of categories without controlled vocabularies, which may form the basis for 
sorting but not for selection.  The prefixes “+” and “-” denote ascending and 
descending order respectively for the category that immediately follows. 

4.9.4.3 Description 
The results are those documents that contain all the category/value pairs, sorted in the 
order specified by the sort parameter.  The sort order is a list of categories on which to 
sort, in order from left to right, each optionally prefixed by a “+” or “-” to indicate 
ascending or descending order respectively. 

4.9.4.4 Examples 
• year(2001) 

• author(Hussein Suleman) 

• sort(year) 

• sort(+year,-author) 

• year(1997)author(Hussein Suleman) 

 Page 54 



 

• author(Hussein Suleman)year(2001)sort(title) 

• author(Hussein Suleman)institution(Virginia Tech)sort(-year,+title) 

4.10 THE ODL-RECOMMEND PROTOCOL V1.0 

4.10.1 Description 
The first attempts at providing recommendations were in the form of collaborative 
filtering where users can annotate a data source to aid other users in determining 
relevance of objects (Goldberg, 1992).  This has since broadened into the current notion 
of recommender systems which are responsible for making suggestions for relevant 
resources when a user does not have enough expertise or experience to make those 
choices (Resnick, 1997). 

In general, a recommender system must accept the identity of a user or subject and 
produce a set of potentially relevant recommendations.  In the context of OAI these 
recommendations may be either lists of identifiers or metadata records. 

The input into a recommender component depends on its internal functionality.  Two 
possible methods of generating recommendations are: 

1. to use static or dynamic user profiles based on user input or past activity, or 

2. to exploit the similarities among people based on common history as a predictor of 
future behavior.   

Each of these has different requirements for data management, hence for input into the 
component. 

In the first case, when all that exists is a profile of preferences or past behavior, this 
profile has to be applied to a search engine in order to generate a set of recommendations.  
This mode of generating recommendations does not involve collaboration among users. 

In the second case, where recommendations are generated from the similarities in 
behavior among subjects, there is no need to perform an explicit search operation.  
Instead, interactions between users and resources must be tracked and used as an 
indication of interest.  Algorithms specific to the component implementation then can 
interrogate this list of interests to recommend users, based on resources and other users, 
and resources, based on resources and other users. 

This list of records, after ranking and deduping, is considered to be the recommendation.  
Metadata may be retrieved if necessary from the metadata archive. 

4.10.2 Interface Protocol 

4.10.2.1 Identify, ListMetadataFormats 
Inherited from XOAI-PMH / OAI-PMH. 

 Page 55 



 

4.10.2.2 GetRecord 
Not supported. 

4.10.2.3 ListSets 

 ODL-Recommend Results:  
Empty list. 

4.10.2.4 PutRecord 

 Semantics: 
Informs the recommender engine that a user has expressed interest in a resource, 
normally through the act of viewing that resource. 

 ODL-Recommend Parameters: 
user_identifier 

The OAI identifier of the user who accessed the resource. 

resource_identifier 
The OAI identifier of the resource that was accessed. 

 XOAI Parameter Encoding: 
metadataPrefix 

oai_dc 

metadata 
<dc> 
   <identifier>user_identifier</identifier> 
   <relation>resource_identifier</relation> 
</dc> 

 XOAI Request Encoding: 

…Verb=PutRecord&metadataPrefix=oai_dc&metadata=<dc><identif
ier>user_identifier<%2Fidentifier><relation>resource_
identifier<%2Frelation><%2Fdc> 

4.10.2.5 ListIdentifiers 

 ODL-Recommend Parameters: 
type 

Type of recommendation sought: RR = resource to resources, RP = resource to 
users, PP = user to users, PR = user to resources. 

subject 
OAI identifier of the user or resource used as the basis for recommendations. 

 Page 56 



 

start 
Index of first item to return from complete ranked list of results.   This, along with the 
next parameter, allows selection of a range of results from within the complete list. 

stop 
Index of last item to return from complete ranked list of results 

 XOAI Parameter Encoding: 
set 

type/start/stop/subject 

 XOAI Request Encoding: 

…Verb=ListIdentifiers&set=type/start/stop/subject… 

 Additional ODL-Recommend Results: 
hits 

Estimated total number of hits.  This can be the actual number, but formally defined 
as an estimate it allows for approximate searching. 

 XOAI Response Encoding: 

… 

<responseContainer> 

   <hits>hits</hits> 

</responseContainer> 

… 

4.10.2.6 ListRecords 

 Semantics: 
Lists all records added to the archive using PutRecord in oai_dc format, using 
conventional parameter semantics. 

4.10.3 Interoperability Issues 
Since all recommendation records may be harvested using ListRecords, it is possible to 
use a harvester to obtain usage information from one component and enter it into another.  
This can be useful for DLs to incorporate usage statistics from external sites that host 
copies of their metadata. 

 Page 57 



 

4.11 THE ODL-RATE PROTOCOL V1.0 

4.11.1 Description 
Many existing DL systems allow users to assign numerical ratings to an item, the average 
of which is subsequently displayed to other users as a simple peer review mechanism.  
These tend to be popular because users easily understand them.  Many booksellers (e.g., 
Amazon) and movie websites (e.g., Internet Movie Database) have adopted the use of 
ratings as a simpler alternative to full-blown reviews. 

ODL-Rate is used to specify ratings and generate averages for display. 

4.11.2 Interface Protocol 

4.11.2.1 Identify, ListMetadataFormats 
Inherited from XOAI-PMH / OAI-PMH. 

4.11.2.2 ListMetadataFormats 

 ODL-Rate Results:  
odl_rating 

4.11.2.3 ListSets 
Not supported. 

4.11.2.4 ListIdentifiers, ListRecords 

 Semantics: 
Lists all records added to the archive using PutRecord in odl_rating format, using 
conventional parameter semantics. 

4.11.2.5 PutRecord 

 Semantics: 
Whenever a user rates an object, a record is created and added to the archive. 

 ODL-Rate Parameters: 
subject_identifier 

The OAI identifier of the user who created the rating.  If this user had rated the 
object previously, the old rating is replaced. 

object_identifier 
The OAI identifier of the resource that is being rated. 

 Page 58 



 

num_rating 
The numerical rating value assigned. 

 XOAI Parameter Encoding: 
metadataPrefix 

odl_rating 

metadata 
<odl_rating> 
   <subject>subject_identifier</subject> 
   <object>object_identifier</object> 
   <rating>num_rating</rating> 
</odl_rating> 

 XOAI Request Encoding: 

…Verb=PutRecord&metadataPrefix=odl_rating&metadata=<odl_rat
ing><subject>subject_identifier<%2Fsubject><object>ob
ject_identifier<%2Fobject><rating>num_rating<%2Fratin
g><%2Fodl_rating> 

4.11.2.6 GetRecord 

 ODL-Rate Parameters:  
object_identifier 

An identifier for which to return the average rating. 

 XOAI Parameter Encoding: 
identifier 

object_identifier  

metadataPrefix 
oai_rating_average 

 XOAI Request Encoding: 

…Verb=GetRecord&identifier=object_identifier&metadataPrefix
=oai_rating_average 

 ODL-Rate Results:  
ave 

The average rating value. 

num 
The number of ratings on which the average is based. 

 Page 59 



 

 XOAI Response Encoding: 

… 

<record> 

   <header> 

      <identifier>object_identifier</identifier> 

      <datestamp>YYYY-MM-DDThh:mm:ssTZD</datestamp> 

   </header> 

   <metadata> 

      <oai_rating_average xmlns=”…” xsi:schemaLocation=”…”> 

         <average>ave</average> 

         <number>num</number> 

      </oai_rating> 

   </metadata> 

</record> 

… 

4.11.3 Interoperability Issues 
Any ODL-Rate-compliant component can interoperate with other peer components by 
harvesting their odl_rating records and incorporating them into its database.  This will 
work as long as the identifier schemes are globally unique or disjoint.   

4.12 THE ODL-ANNOTATE PROTOCOL V1.0 

4.12.1 Description 
Annotations take the form of any additional pieces of metadata attached to a digital 
object.  These annotations can take the form of reviews, ratings, corrections, or simply 
user comments.  Some of these tasks can, however, be addressed more effectively using 
specialized components so this component will not address the specificity required in 
order to do peer-reviews. 

If annotations are always attached to a digital object there is an implicit parent element 
for every annotation.  Also, since a comment can be a reply or follow-up to another 
comment, it is possible to build a tree structure, mimicking the operation of the popular 
threaded discussion boards and newsgroups.  In doing so, each annotation is considered 
to be equivalent to a first-class object, thus supporting a recursive operation. 

4.12.2 Interface Protocol 

4.12.2.1 Identify 
Inherited from XOAI-PMH / OAI-PMH. 

 Page 60 



 

4.12.2.2 PutRecord 

 Semantics: 
Every new annotation is submitted to the ODL-Annotate component through this service 
request in the form of a metadata record. 

 ODL-Annotate Parameters: 
parent_identifier 

OAI identifier of the node which is being annotated. 

annotation 
XML fragment corresponding to an annotation. 

 XOAI Parameter Encoding: 
sets 

parent_identifier 

metadata 
annotation 

 XOAI Request Encoding: 

…Verb=PutRecord&set=parent_identifier&metadataPrefix=odl_an
notate&metadata=<annotation><subject>subject_identifi
er<%2Fsubject><comment>annotation<%2Fcomment><%2Fanno
tation> 

4.12.2.3 ListMetadataFormats 

 ODL-Annotate Results: 
List of all metadata formats in the annotation archive. 

4.12.2.4 ListSets 

 ODL-Annotate Results:  
List of all non-leaf identifiers. 

4.12.2.5 GetRecord 

 ODL-Annotate Parameters: 
parent_identifier 

Identifier of a node whose parent record is requested. 

identifier 
Identifier of single item to return. 

 Page 61 



 

 XOAI Parameter Encoding: 
identifier 

parent/parent_identifier 
  or  
identifier 

4.12.2.6 ListIdentifiers / ListRecords 

 ODL-Annotate Parameters: 
parent_identifier 

OAI identifier of the parent node from which to start listing annotations in a depth-
first search manner. 

start 
Index of first item to return from complete list.  This, along with the next parameter, 
allows selection of a range of results from within the complete list. 

stop 
Index of last item to return from complete list of annotations. 

 XOAI Parameter Encoding: 
set 

start/stop/parent_identifier 

 XOAI Request Encoding: 

…Verb=ListIdentifiers&set=start/stop/parent_identifier… 

…Verb=ListRecords&metadataPrefix=odl_annotate&set=start/sto
p/parent_identifier… 

 Additional ODL-Annotate Results: 
hits 

Estimated total number of hits. 

level 
Indentation level for each record in ListRecords responses (encoded in about 
containers). 

 Page 62 



 

 XOAI Response Encoding: 

… 

<responseContainer> 

   <hits>hits</hits> 

</responseContainer> 

… 

4.12.3 Interoperability Issues 
An ODL-Annotate-compliant component can harvest annotations from any other peer 
component and integrate them into its collection.  Since annotations can only exist for 
older records, the harvester will have a guarantee that it will obtain complete sub-trees 
during the harvesting operation.  Also, harvesting has to be on a set-by-set basis since 
version 1.1 of the OAI-PMH does not include set information with the records.  In future 
versions of XOAI-PMH, this may not be necessary since set membership information is 
contained in record headers in OAI-PMH version 2.0. 

In scenarios with multiple ODL-Annotate-compliant components, whether or not a 
component republishes harvested annotations determines to what degree the data is 
filtered through the network.  To get maximum dissemination, each component must 
publish all its harvested records along with its original records, and then when harvesting 
it can ignore records with their own identifiers. 

4.12.4 Annotation Metadata Sub-Format: odlannotate1 

4.12.4.1 Syntax 
<text>text_string</text> 

4.12.4.2 Parameters 
text_string 

Any piece of text. 

4.12.4.3 Description 
This language for annotations simply defines an annotation as being a piece of human-
readable text.  There is no location information and there are no controlled vocabularies. 

4.12.4.4 Examples 
• <text>This resource is really bad !</text> 

• <text>The author should be barred from using a computer in the future!</text> 

 Page 63 



 

4.12.5 Annotation Metadata Sub-Format: discuss 

4.12.5.1 Syntax 
<discuss> 

   <from>Hussein</form> 
   <userid>oaiuser:1</userid> 
   <datestamp>12 August 2002</datestamp> 
   <subject>just testing</subject> 
   <body>testing 1,2,3</testing> 
</discuss> 

4.12.5.2 Description 
This is a metadata record that may be used for a discussion board or threaded forum or 
for simple annotations to resources in a digital library. 

4.13 THE ODL-REVIEW PROTOCOL V1.0 

4.13.1 Description 
Peer or user reviews are a special case of annotations with very specific semantics.  There 
is usually just a single level of entries (no threading) and the metadata stored is specific to 
the project and non-trivial.  The ODL-Annotate component can be specialized for this 
purpose by defining a set of metadata formats for reviews.   

However, when using a hierarchical organization for the reviewable resources, an 
indexed database approach is more efficient to store the non-linear data associated with 
peer-review workflow.  The state of the system can be stored in an XML database, XML 
file, or a set of tables in a relational database.  Then, transactions can be posted when 
workflow information is being updated, e.g., an editor is assigned to a resource.  Reports 
generated from the system can be mapped to ListRecords requests with specific 
metadata formats. 

4.13.1.1 Transactions 
Based primarily on an analysis of the CSTC system (CSTC, 2002), but also taking into 
account the typical peer review process for journals and conferences, the following 
system has been devised to leverage the capability for multiple metadata formats in the 
OAI protocol to drive a reviewing system’s workflow.  Firstly, the set of metadata 
formats corresponding to the following different transactions that occur during the 
lifecycle of the review process are defined: 

• Assign editor to resource. 

• Decline to be an editor. 

• Revoke editorial privileges for an editor from a resource. 

• Submit a resource for review. 

 Page 64 



 

• Add a subsection to the hierarchy of sections and resources. 

• Move a resource to a different subsection. 

• Change the status of a resource/section. 

• Submit a review for a resource. 

Each transaction is assigned an identifier upon submission to the reviewing engine, to be 
used to refer to the transaction in the future.  These are necessary, for example, where a 
user declines to be an editor but accepts a reviewing responsibility; the reviewing engine 
has to be able to distinguish between the two different assignments, albeit that they are 
for the same resource and involve the same person. 

4.13.1.2 Resources and Sections 
All resources reside in sections within the reviewing engine (this does not correspond to 
any organization of the resources external to the system) to enable the pre-assignment of 
editors to sets of resources.  A section is a container or set that may contain resources or 
other sections.  This allows the construction of hierarchical sections.  For example, a 
typical section structure for a journal can be: 

JERIC 
 Volume 1 
  Issue 1 
   Resource a 
   Resource b 
   Resource c 
  Issue 2 
   Resource d 
   Resource e 
   Resource f 

This concept can be generalized for other purposes.  For a conference, the sections might 
be only one level deep and correspond to the various tracks of submission.  An optional 
higher-level structure can support reviewing for multiple conferences within a series. 

Each section and resource has a status flag.  For sections, these can indicate if the section 
is open for further submissions (open), only open for reviewing of resources already 
submitted (underreview), or closed to both submission and reviewing (closed).  For 
resources, the status flag indicates if the resource is under review (underreview), accepted 
(accepted), rejected (rejected), or awaiting resubmission from the original contributor 
(resubmit).  New sections are automatically “open” while new resources are 
“underreview”.  These status flags can be changed by submitting an appropriate 
transaction. 

Metadata for resources may be stored in a different component.  This protocol defines 
only the workflow management procedures.  Thus, when a resource is submitted, the 
metadata is first stored in a different component and then the reviewing engine is notified 
by means of a corresponding transaction.  If the resource’s status is “resubmit” and a new 

 Page 65 



 

version is submitted, the new version becomes authoritative, and the old version is stored 
as a draft. 

4.13.1.3 Users and Permissions 
Users are assumed to have their information stored in some external archive, possibly the 
same that is used for logins and authentication.  It is assumed that every user has a unique 
identifier associated with him or her in this system. 

A user of the system has, by default, no privileges except to submit resources to any of 
the currently open sections.  There are two built-in boundary roles and any number of 
intermediate roles.  The “Administrator” is the person who logs into the system first and 
therefore has full control over the reviewing system.  A “Reviewer” is a person who 
reviews an actual resource.  In between these two categories could be any number of 
editors. 

An editor is a person who has reviewing responsibility for a section or a resource.  
Editors may assign other editors or reviewers to sections or resources as specified by an 
assignment control matrix (an example of such a matrix is shown in Table 4.1). 

From \ To Administrator Managing Editor Assistant 
Editor 

Guest 
Editor 

Resource 
Editor 

Reviewer 

Administrator Y Y Y Y Y Y 

Managing Editor N N Y Y Y Y 

Assistant Editor N N N Y Y Y 

Guest Editor N N N N Y Y 

Resource Editor N N N N N Y 

Reviewer N N N N N N 

Table 4.1 Assignment control matrix 

When the system is initialized, the administrator is assigned control of a top-level node in 
the hierarchy.  Then, the administrator may create a section, say JERIC, and assign 
managing editors to it.  The managing editors, in turn, then create issues (and volumes) 
and assign guest editors to them.  If there are any assistants, they can help with the 
process in a very specific capacity.  Resource editors may optionally be assigned as 
specialists who can assist with individual resources by finding reviewers and making 
recommendations for those resources.   

If a section is created (or resource is submitted) and no editor is assigned then the editors 
for the immediately containing section automatically have authority over the new 
addition as well. 

Notifications can be sent to the most specific editors – if there is a guest editor, the 
managing editor will not be bothered with notifications of reviews being submitted or 
reviewers declining.  However, all editors in the chain going back to the administrator 

 Page 66 



 

will have the authority to make changes to the system (i.e., submit transactions to operate 
on child nodes of the section they are assigned to). 

4.13.2 Interface Protocol 

4.13.2.1 PutRecord 

 ODL-Review Parameters: 
transaction 

XML fragment corresponding to a transaction. 

 XOAI Parameter Encoding: 
metadataPrefix 

odl_review 

metadata 
transaction 

 XOAI Request Encoding: 

…Verb=PutRecord&metadataPrefix=odl_review&metadata=<odl_rev
iew><actor>oai_reviewuser_2<%2Factor><resource><addse
ction><name>Volume%20<%2Fname><section>oai_review_1<%
2Fsection><%2Faddsection><%2Fresource><%2Fodl_review> 

4.13.2.2 ListMetadataFormats 

 ODL-Review Results: 
odl_review 

4.13.2.3 ListSets 

 ODL-Review Results:  
Not supported. 

4.13.2.4 GetRecord 

 ODL-Review Parameters: 
resource_identifier  

OAI identifier of the resource for which to list a summary. 

 XOAI Parameter Encoding: 
identifier 

resource_identifier 

 Page 67 



 

metadataPrefix 
resource_summary 

4.13.2.5 ListIdentifiers 
Inherited from XOAI-PMH / OAI-PMH. 

4.13.2.6 ListRecords 

 ODL-Review Parameters: 
report_type 

Type of the report requested: 
editing_summary: list of resources for which the user is an editor. 
reviewing_summary: list of resources for which the user in a reviewer. 
children_summary: list of children for a given resource. 
open_summary: list of all sections open for submission. 
notclosed_summary: list of all sections open for submission or reviewing. 
submitted_summary: list of all resources submitted by a user. 

resource_identifier or user_identifier 
OAI identifier of the resource or user for which to generate the report. 

start 
Index of first item to return from complete list.   This, along with the next parameter, 
allows selection of a range of results from within the complete list. 

stop 
Index of last item to return from complete list. 

 XOAI Parameter Encoding: 
metadataPrefix 

report_type 

set 
start/stop/resource_identifier  
start/stop/user_identifier 

 XOAI Request Encoding: 

…Verb=ListRecords&set=start/stop/resource_identifier&metada
taPrefix=report_type… 

 Additional ODL-Review Results: 
hits 

Estimated total number of hits. 

 Page 68 



 

 XOAI Response Encoding: 

… 

<responseContainer> 

   <hits>hits</hits> 

</responseContainer> 

… 

4.13.3 Transaction Formats 

4.13.3.1 Assign editor to section or resource 

 Parameters: 
actor 

Identifier of the editor performing the assignment (from the user database). 

role 
Name of the editorial role. 

name 
Name of the editor. 

id 
Identifier of the editor being assigned. 

resource 
Identifier of the transaction corresponding to the creation of the section or resource 
to which the editor is assigned. 

deadline 
Date by which the reviewing must be completed. 

 Page 69 



 

 Sample XML encoding: 

<odl_review> 
   <actor>oai:reviewuser:1</actor> 
   <editor> 
      <assign> 
         <role>Managing Editor</role> 
         <name>Boots Cassel</name> 
         <id>oai:reviewuser:2</id> 
         <resource>oai:review:1</resource> 
         <deadline>2002-12-12</deadline> 
      </assign> 
   </editor> 
</odl_review> 

4.13.3.2 Decline to be the editor for a resource or section 

 Parameters: 
actor 

Identifier of the editor who is declining. 

id 
Identifier of the assignment transaction. 

 Sample XML encoding: 

<odl_review> 
   <actor>oai:reviewuser:2</actor> 
   <editor> 
      <decline> 
         <id>oai:review:2</id> 
      </decline> 
   </editor> 
</odl_review> 

4.13.3.3 Revoke editorial privileges from an editor 

 Parameters: 
actor 

Identifier of the editor who is revoking the privilege. 

id 
Identifier of the assignment transaction. 

 Page 70 



 

 Sample XML encoding: 

<odl_review> 
   <actor>oai:reviewuser:1</actor> 
   <editor> 
      <revoke> 
         <id>oai:review:2</id> 
      </revoke> 
   </editor> 
</odl_review> 

4.13.3.4 Submit a resource for review 

 Parameters: 
actor 

Identifier of the submitter. 

title 
Name of the resource. 

baseURL 
URL of the OAI-PMH archive where the resource may be found. 

id 
OAI identifier of the resource. 

metadataPrefix 
Metadata format in which the resource exists. 

section 
Section in which to add the resource, or identifier of resource being resubmitted. 

 Sample XML encoding: 

<odl_review> 
   <actor>oai:reviewuser:20</actor> 
   <resource> 
      <submit> 
         <title>Test Title #1</title> 
         <baseURL>http://anarchive.org/OAI</baseURL> 
         <id>oai:anarchive:123</id> 
         <metadataPrefix>oai_dc</metadataPrefix> 
         <section>oai:review:4</section> 
      </submit> 
   </resource> 
</odl_review> 

4.13.3.5 Create a new section 

 Parameters: 
actor 

Identifier of the editor. 

 Page 71 



 

name 
Name of the new section. 

section 
Existing section in which to add the new entry. 

 Sample XML encoding: 

<odl_review> 
   <actor>oai:reviewuser:2</actor> 
   <resource> 
      <addsection> 
         <name>Volume 1, Issue 4</name> 
         <section>oai:review:1</section> 
      </addsection> 
   </resource> 
</odl_review> 

4.13.3.6 Change the status of a section or resource 

 Parameters: 
actor 

Identifier of the editor. 

id 
Identifier of the resource or section. 

status 
New status for the section or resource. 

 Sample XML encoding: 

<odl_review> 
   <actor>oai:reviewuser:2</actor> 
   <resource> 
      <changestatus> 
         <id>oai:review:6</id> 
         <status>open</status> 
      </changestatus> 
   </resource> 
</odl_review> 

4.13.3.7 Move a resource or section 

 Parameters: 
actor 

Identifier of the editor. 

id 
Identifier of the resource or section. 

 Page 72 



 

section_id 
New section to which to move the existing resource or section. 

 Sample XML encoding: 

<odl_review> 
   <actor>oai:reviewuser:2</actor> 
   <resource> 
      <move> 
         <id>oai:review:6</id> 
         <section_id>oai:review:9</section_id> 
      </move> 
   </resource> 
</odl_review> 

4.13.3.8 Submit a review 

 Parameters: 
actor 

Identifier of the reviewer. 

baseURL 
URL of the OAI-PMH archive where the review has been stored. 

id 
OAI identifier of the review. 

metadataPrefix 
Metadata format of the review. 

resource_id 
Internal identifier of the resource being reviewed. 

 Page 73 



 

 Sample XML encoding: 

<odl_review> 
   <actor>oai:reviewuser:7</actor> 
   <resource> 
      <review> 
         <baseURL>http://reviews.org/OAI</baseURL> 
         <id>oai:reviewmd:458</id> 
         <metadataPrefix>odl_review_2</metadataPrefix> 
         <resource_id>oai:review:12</resource_id> 
      </review> 
   </resource> 
</odl_review> 

4.13.4 Report Formats 

4.13.4.1 Resource Summary 
The following is a sample metadata record generated in response to a GetRecord request 
with a metadataPrefix of “resource_summary”.  Most fields correspond to those of the 
transactions listed in the previous sections. 

 Page 74 



 

<section> 
   <editor> 
      <role>Administrator</role> 
      <id>oai:reviewuser:1</id> 
   </editor> 
   <section> 
      <title>JERIC</title> 
      <internal_id>oai:review:1</internal_id> 
      <editor> 
         <role>Managing Editor</role> 
         <name>Boots Cassel</name> 
         <id>oai:reviewuser:2</id> 
         <internal_id>oai:review:2</internal_id> 
      </editor> 
      <section> 
         <title>Volume 1 Issue 4</title> 
         <internal_id>oai:review:4</internal_id> 
         <editor> 
            <role>Guest Editor</role> 
            <name>Bill Yurcik</name> 
            <id>oai:reviewuser:4</id> 
            <internal_id>oai:review:5</internal_id> 
         </editor> 
         <resource> 
            <title>Test Title #1</title> 
            <internal_id>oai:review:6</internal_id> 
            <status>underreview</status> 
            <submitter>oai:reviewuser:34</submitter> 
            <baseURL>http://anarchive.org/OAI</baseURL> 
            <id>oai:anarchive:123</id> 
            <metadataPrefix>oai_dc</metadataPrefix> 
            <editor> 
               <role>Resource Editor</role> 
               <name>JAN Lee</name> 
               <id>oai:reviewuser:5</id> 
               <internal_id>oai:review:7</internal_id> 
               <deadline>2002-12-12</deadline> 
            </editor> 
            <editor> 
               <role>Reviewer</role> 
               <name>Hussein Suleman</name> 
               <id>oai:reviewuser:6</id> 
               <internal_id>oai:review:8</internal_id> 
               <deadline>2002-12-09</deadline> 
            </editor> 
            <review> 
               <internal_id>oai:review:9</internal_id> 
               <baseURL>http://reviews.org/OAI</baseURL> 
               <id>oai:reviewmd:456</id> 
               <metadataPrefix>odl_review_1</metadataPrefix> 
               <editor>oai:review:8</editor> 
            </review> 
            <draft> 
               <internal_id>oai:review:9</internal_id> 
               <title>Old title for test #1</title> 
               <baseURL>http://reviews.org/OAI</baseURL> 

 Page 75 



 

               <id>oai:reviewmd:456</id> 
               <metadataPrefix>odl_review_1</metadataPrefix> 
            </draft> 
         </resource> 
      </section> 
   </section> 
</section> 

4.13.4.2 Editing Summary 
The following is a sample metadata record generated in response to ListRecords with a 
metadataPrefix of “editing_summary”.  Most fields correspond to those of the 
transactions listed in the previous sections.  path is a text field that indicates the position 
of the resource within the tree of sections as a list from the root node to the parent node 
of the resource. 

<resource> 
   <title>Test Title #1</title> 
   <internal_id>oai:review:1</internal_id> 
   <editor> 
      <role>Administrator</role> 
      <deadline>2002-12-09</deadline> 
   </editor> 
   <path>JERIC / Volume 1 / Section 1</path> 
</resource> 

4.13.4.3 Reviewing Summary 
The following is a sample metadata record generated in response to ListRecords with a 
metadataPrefix of “reviewing_summary”.  The semantics of individual fields are the 
same as for the “editing_summary” case. 

<resource> 
   <title>Test Title #1</title> 
   <internal_id>oai:review:1</internal_id> 
   <editor> 
      <role>Administrator</role> 
      <id>oai:reviewuser:1</id> 
      <deadline>2002-12-09</deadline> 
   </editor> 
   <path>JERIC / Volume 1 / Section 1</path> 
</resource> 

4.13.4.4 Submitted Summary 
The following is a sample metadata record generated in response to ListRecords with a 
metadataPrefix of “submitted_summary”.  The semantics of individual fields are the 
same as for the “editing_summary” case. 

 Page 76 



 

<resource> 
   <title>Test Title #1</title> 
   <internal_id>oai:review:1</internal_id> 
   <path>JERIC / Volume 1 / Section 1</path> 
   <status>underreview</status> 
</resource> 

4.13.4.5 Children Summary 
The following is a sample metadata record generated in response to ListRecords with a 
metadataPrefix of “children_summary”.  The semantics of individual fields are the same 
as for the “editing_summary” case. 

<section> 
   <title>Section 1</title> 
   <path>JERIC / Volume 1</path> 
   <internal_id>oai:review:3</internal_id> 
</section> 

4.13.4.6 Open Summary 
The following is a sample metadata record generated in response to ListRecords with a 
metadataPrefix of “open_summary”.  The semantics of individual fields are the same as 
for the “editing_summary” case. 

<section> 
   <title>Section 1</title> 
   <internal_id>oai:review:3</internal_id> 
   <path>JERIC / Volume 1</path> 
</section> 

4.13.4.7 NotClosed Summary 
The following is a sample metadata record generated in response to ListRecords with a 
metadataPrefix of “notclosed_summary”.  The semantics of individual fields are the 
same as for the “editing_summary” case. 

<section> 
   <title>Section 1</title> 
   <internal_id>oai:review:3</internal_id> 
   <path>JERIC / Volume 1</path> 
</section> 

4.13.5 Interoperability Issues 
The stream of transactions can be harvested to duplicate the functionality on a peer 
component.  Also, this stream can be used as an audit trail to indicate the history of 
operations performed on a single resource.  To enable this functionality, a component 
must store set information to link transactions to the resources upon which they operate. 

 Page 77 



 

4.14 CASE STUDY: USING AN ODL-SEARCH COMPONENT 
Figure 4.4 illustrates a sequence of interactions corresponding to a typical use of an 
ODL-Search-compliant component.  The ODL network consists of a source of data in the 
form of an OAI-compliant archive and a component that understands ODL-Search.  The 
user interface layer is made up of a client’s Web browser and the Web server, with scripts 
to generate HTML pages and forward requests to the ODL network. 

There are two functions performed: indexing of the data and searching.  In the former 
case, the ODL-Search-compliant component harvests data from the source archive using 
a typical harvesting algorithm, such as periodic ListRecords requests with the date range 
used to obtain only new or updated records. 

To perform a search, the user submits a query by filling in a form on an HTML page.  
This query is then sent to the Web server, which invokes a script (or handler) to process 
it.  The script extracts the parameters, formulates an ODL-Search ListRecords request 
and submits this to the ODL-Search-compliant component.  Upon receiving the request, 
the component performs a search using its internal indices and then proceeds to obtain 
each metadata record from the source OAI archive.  The metadata records are merged 
together and returned to the script as a single ListRecords response.  The script then 
formats this response for display and it is sent back to the user in the form of a “search 
results” HTML page. 

 Page 78 



 

ODL NetworkUser Interface
Web ServerWeb Browser ODL-Search OAI Archive

Continuous indexing
of data stream

Harvest:
ListRecords

requests

Data is formatted and
sent to client

User submits query

Records are
extracted and merged

ODL request is
formulated and sent
to ODL-Search

User loads search
query page

Search is conducted
and records are
requested from
source

HTML Page

Submit query

Submit
ODL-Search

request
(ListRecords)

GetRecord
request

<GetRecord>
response

<ListRecords>
response

HTML Page

GetRecord
request

<GetRecord>
response

...
...

Perform
search

IN
D

EX
SE

AR
C

H

<ListRecords>
responses

 

Figure 4.4 Interface and component interaction during indexing and search operations 

 

 

 

 Page 79 



 

Chapter 5   

IIMMPPLLEEMMEENNTTAATTIIOONN  AANNDD  CCAASSEE  SSTTUUDDIIEESS  

5.1 INTRODUCTION 
In order to test the feasibility of the proposed componentized architecture for digital 
libraries using real world scenarios, various components were implemented to support 
basic DL services, using ODL and OAI protocols for both inter-component 
communication and communication between the components and the user interface. 

These components were then integrated into multiple digital library systems with 
different requirements and varied technologies.  This chapter discusses approaches and 
issues in implementation and integration.  That is followed in the next chapter by testing 
techniques and then by analysis and evaluation in the following chapter. 

The implemented components can be considered as reference implementations of the 
previously discussed ODL protocols.  Table 5.1 lists the components, brief descriptions 
of them, and the protocols that they respond to. 

Name of Component Description Interface Protocol 

DBUnion Multiple data source merger ODL-Union 

IRDB Search engine ODL-Search 

DBBrowse Category-based browser ODL-Browse 

WhatsNew Tracker for recent entries ODL-Recent 

Box Dumb archive supporting submit and retrieve ODL-Submit 

Thread Threaded annotation engine ODL-Annotate 

Suggest Recommender system ODL-Recommend 

DBRate Ratings manager ODL-Rate 

DBReview Peer review workflow manager ODL-Review 

Table 5.1 ODL reference components, descriptions, and protocols 

In addition, some OAI components were created to assist in setting up OAI repositories at 
remote locations and to standardize the implementation of OAI repositories for different 
projects.  Unlike the ODL components that are aimed at provision of services, OAI 
components implement data provider interfaces for archives.  These are listed, along with 
their descriptions, in Table 5.2. 

 Page 80 



 

Name of Component Description 

ETD-db Extensions Adds OAI-PMH v1.1 support to the ETD-db software for management of ETD 
workflow. 

XMLFile Creates a standalone OAI-PMH v2.0 data provider to expose a system of files as 
an OAI archive. 

Filter Filters an OAI archive to correct errors in implementation such as errors with XML 
encodings. 

Table 5.2 Names and descriptions of OAI components 

Initially, for the prototype ETD Union Catalog system (Suleman and Fox, 2001), some 
ODL components were derived from the original OAI protocol rather than the XOAI 
protocol, to allow for the use of existing testing and validation tools.  Subsequent to the 
construction of the ETD Union Catalog system, all components were upgraded to 
conform to the relevant ODL protocols. 

5.2 IMPLEMENTATION 

5.2.1 Platform 
Each component was built as a separate set of scripts using the Perl language, with data 
stored in mySQL databases and files.  At first, components used standard Perl modules 
such as XML::DOM to process XML documents using the DOM interface (Apparao, et 
al., 1998).  These modules are distributed through the Comprehensive Perl Archive 
Network so the modules are reasonably portable – this was tested in the second case 
study.  However, many of the modules had pre-requisites and some used external 
libraries that did not always install successfully.  To minimize component installation 
problems arising because of this, some of the core Perl modules were rewritten in pure 
Perl.  This involves modules to perform CGI string processing, XML parsing, and DOM 
tree manipulation. 

All coding was done on a Linux platform, with some testing on Digital Unix and 
Microsoft Windows as well.  Wherever possible object-oriented programming was 
adopted to maximize the use of common components, e.g., modules that assist in 
harvesting and publishing data through OAI interfaces.  Some components also were sub-
classed from others (e.g., DBReview from Box) – this is discussed later. 

5.2.2 Customization 
The configurable information for each component is stored in an appropriate 
configuration file, in a well-defined XML format specific to each component.  This 
configuration is used to define the archives from which to harvest data as well as the 
harvesting parameters, the databases to use and how to access them as well as any 
parameters needed for the internal operation of the component. 

Configuration is done by means of a command-line configuration script that reads in the 
parameters from the XML file and poses a sequence of questions to the user, with 

 Page 81 



 

additional supporting explanations as appropriate.  The scripts are specific to each 
component and, in addition to setting variables, also perform sanity tests to check that: 

• The database access modules, if necessary, are installed properly. 

• The database, if specified, is accessible. 

• The OAI/ODL source archive, if specified, is accessible. 

• The metadataPrefix and set parameters are legal for any source OAI/ODL archives. 

• The formats for various other component-specific parameters are legal. 

During this configuration process, each component is created as an instance of the 
associated component template or class, with its own interface script and data storage 
area.  The program code for the component resides in libraries shared with other 
instances of the same component template.  This prevents unnecessary duplication of 
code.  In addition, where a project uses multiple components, all shared libraries can be 
merged to further optimize space use, while sacrificing some component independence in 
favor of greater cohesion.  Figure 5.1 shows an example of the directory structure used 
for components to achieve this flexibility. 

 top level of component or project 
 component_X_instances  
  instance_1 
   config.xml 
   oai_interface.pl 
  instance_2 
   config.xml 
   oai_interface.pl 
 lib 
  component_X 
   library_file_1 
   library_file_2 

 

Figure 5.1 Directory layout for a typical component 

5.2.3 Component Details 

5.2.3.1 DBUnion 
DBUnion aggregates metadata from multiple Open Archives and ODL components into a 
single collection, itself accessible through an XOAI-PMH interface.  The internal 
architecture of the DBUnion component is illustrated in Figure 5.2.  There are two major 
parts to the component: the first uses an OAI/ODL harvester to collect metadata from 
various sources and store it in a database; the second makes this metadata available 
through an XOAI-PMH interface.  The harvester part of the component is periodically 
called by a cron scheduler rather than staying resident in memory. 

 Page 82 



 

DBUnion
OAI Data Provider

OAI Harvester

Merged Database of
Metadata

CRON

 

Figure 5.2 Internal architecture of DBUnion 

The configuration for DBUnion is specified using an XML file.  An example of this is 
shown in Figure 5.3.  The parameters are mostly free-form text fields, but using XML 
allows for infinite levels of multiplicity and nesting.  In the example shown, there are 
three metadata sources being harvested and the data is stored in the specified database.   

The database is specified by its name, a username and password to access it, and a table 
prefix to use for this instance of the component.  This allows for the use of different 
databases and also for multiple components or multiple instances of a single component 
using the same database, while avoiding naming conflicts. 

 Page 83 



 

<unionconfig>

   <database>DBI:mysql:etdunion</database>
   <dbusername>etdunion</dbusername>
   <dbpassword></dbpassword>
   <table>unioncat</table>

   <archive>
      <identifier>VTETD</identifier>
      <url>http://oai.dlib.vt.edu/cgi-bin/VTETD/VTETD.pl</url>
      <metadataPrefix>oai_dc</metadataPrefix>
      <interval>0.25</interval>
      <interrequestgap>15</interrequestgap>
   </archive>

   <archive>
      <identifier>VTETD</identifier>
      <url>http://oai.dlib.vt.edu/cgi-bin/VTETD/VTETD.pl</url>
      <metadataPrefix>oai_etdms</metadataPrefix>
      <interval>0.25</interval>
      <interrequestgap>15</interrequestgap>
   </archive>

   <archive>
      <identifier>HUBerlin</identifier>
      <url>http://dochost.rz.hu-berlin.de/OAI-script</url>
      <metadataPrefix>oai_dc</metadataPrefix>
      <interval>1</interval>
      <set>HUBerlin:dissertationen</set>
   </archive>

</unionconfig>
 

Figure 5.3 Sample configuration for DBUnion  

The parameters for each archive are explained in Table 5.3.  There can be multiple 
archive definitions and each may be associated with multiple metadata formats.  For 
consistency, when multiple metadata formats are being used, the algorithm for harvesting 
uses a different sequence of OAI requests, which are slower and consume more network 
bandwidth.  To avoid the extra overhead where consistency is not absolutely required, 
multiple archive definitions with different metadataPrefix parameters can be specified for 
a single baseURL. 

 

 Page 84 



 

Parameter Syntax Semantics [M]andatory, 
[R]epeatable 

identifier String of characters A unique identifier for the repository. M 

url Full URL BaseURL of archive. M 

metadataPrefix Registered 
metadataPrefix 

Metadata format or formats to harvest. MR 

interval Integer Frequency of harvesting in seconds. M 

interrequestgap Integer Number of seconds to wait between 
sending back “resumptionToken”s. 

(defaults to 15) 

overlap Integer Number of seconds to overlap when 
doing incremental harvesting. 

(defaults to 172800) 

set setSpec The single set to harvest from as 
opposed to the whole collection. 

(defaults to whole 
collection – i.e., no set) 

granularity ‘second’ or ‘day’ Whether to use datestamps with or 
without time information, respectively. 

(defaults to ‘second’) 

Table 5.3 Parameters for DBUnion 

5.2.3.2 IRDB 
IRDB is a simple search engine – it collects metadata from a single OAI/ODL source and 
pre-processes it in order to support search queries submitted through its own ODL-Search 
interface.  The search engine uses a database to store and index inverted file data.  This 
database is then used to support answering of term-based queries.  The architecture of 
IRDB is shown in Figure 5.4.   

The parameters supplied during configuration are very similar to those for the DBUnion 
component with the exception that multiple archives are disallowed.  This restriction 
exists in order to avoid having to store the origin of each record as well – with just a 
single source it can be assumed that this is always the origin.  The need for an originating 
archive arises because IRDB does not store copies of the original metadata.  Instead, it 
processes the metadata and discards it, assuming that if the metadata is required in the 
future the component can always reissue a GetRecord request to the source archive.  
Thus, when a search is conducted through ListRecords, the set of identifiers is 
determined from the inverted files and then metadata for each is obtained from the source 
archive and merged before being returned to the requestor. 

At the core of the component is a simple IR (information retrieval) system, written 
expressly for this purpose in Perl.  The IR module indexes arbitrary fragments of XML 
by extracting individual words (after removing stopwords and stemming) and using tags 
to denote fields and sub-fields.  The query language is “odlsearch1”, as specified in the 
previous chapter, and the ranking algorithm uses a simple sum of individual weights.  
Based on the popular observance that most users do not browse through all search results 
(Nielsen, 2001), the IR system only retrieves the n highest-ranking documents for each 
term in order to provide up to n ranked results.  This lazy evaluation technique, suggested 
by techniques used in the MARIAN system (France, 2001), greatly reduces search time 

 Page 85 



 

but still provides the same results to users (albeit without an accurate estimate of the size 
of the full result set). 

 

 IRDB 
OAI Data Provider 

OAI Harvester 

Inverted File 
Database 

CRON 

 

Figure 5.4 Internal architecture of IRDB 

5.2.3.3 DBBrowse 
DBBrowse indexes records by particular fields within the metadata to support category-
based browsing.  It also supports sorting of the results by arbitrary pre-specified fields.  
The internal architecture is similar to IRDB but the tables that are stored are indices for 
individual fields.  The ODL-Browse protocol is used to submit requests for records to the 
component – these are then translated into appropriate SQL queries to extract identifiers 
from the pre-calculated index tables.  

Configuration information for DBBrowse is a superset of that for DBUnion, with the 
addition of a specification of fields that need to be indexed.  Figure 5.5 shows a sample 
fragment from a typical configuration file, and Table 5.4 discusses the syntax and 
semantics of these specifications. 

The DBBrowse component accepts queries in the “odlbrowse1” format, as specified in 
the previous chapter. 

 Page 86 



 

   <browser>
      <name>year</name>
      <field>dc/date</field>
      <type>controlled</type>
      <retransform>
         <from>^(.*)([0-9]{4})(.*)$</from>
         <to>$2</to>
      </retransform>
   </browser>

   <browser>
      <name>title</name>
      <field>dc/title</field>
      <type>freetext</type>
   </browser>

 

Figure 5.5 Fragment of DBBrowse configuration 

Parameter Syntax Semantics [M]andatory, 
[R]epeatble 

name String of characters The name by which the field will be accessed by 
the component. 

M 

field XPath (Clark and DeRose, 
1999) specification 

The position of the text to index within each XML 
record. 

MR 

type ‘controlled’ or ‘freetext’ Whether the field can be used for restricting the 
search space or just for sorting, respectively. 

M 

retransform Containing <from> and 
<to> fields 

Regular expression transformations for controlled 
vocabulary fields.  Once one “from” field matches, 
the “to” transformation is applied and subsequent 
“retransform”s are ignored. 

R 

Table 5.4 Parameters for DBBrowse 

5.2.3.4 WhatsNew 
WhatsNew, implementing the ODL-Recent protocol, provides a random sample of recent 
records encountered by the component when harvesting from its source archive.  It stores 
all recent identifiers in a database table and when a request for records is encountered, it 
extracts a fixed number of these at random and sends back either the identifiers or the 
corresponding metadata records, depending on the request. 

The configuration information is similar to DBUnion and the internal architecture is 
similar to IRDB.  One additional configuration parameter, recententries, specifies the 
number of items to return in response to ListIdentifiers or ListRecords. 

5.2.3.5 Box 
The Box component implements ODL-Submit, a simple extension of the XOAI protocol 
to support adding records to an archive.  The Box component stores arbitrary fragments 

 Page 87 



 

of XML in a database keyed on the identifier and metadataPrefix parameters.  There is no 
predetermined metadata format supported by the component – it simply determines the 
list of formats by extracting the relevant information from the xsi:schemaLocation 
attribute that is found in the root element of every OAI record.  Sets can be specified 
using the sets parameter of PutRecord and these are indexed in a separate table to 
support per-set harvesting. 

Configuration of the component involves specifying the database in terms of its location 
and the username and password to use to connect to it.  Since this component is an 
archive that others can harvest from, additional OAI-like parameters are specified, e.g., 
the number of records to generate before creating a resumptionToken.  To prevent 
unauthorized changes to the component, access control lists are specified to indicate, by 
IP address or domain name, which machines are allowed to read from and write to the 
component. 

Box supports two additional external interfaces: a simplified OAI interface to make the 
component behave like an OAI-compliant repository (as opposed to an XOAI-compliant 
component) and a rudimentary user interface to support viewing and editing of records 
stored in the component.  Figure 5.6 displays the front page of this user interface for a 
typical archive. 

 

Figure 5.6 Direct editing interface to Box component 

This user interface uses just the XOAI service requests in order to communicate with the 
archive.  By issuing a sequence of ListIdentifiers, ListMetadataFormats, GetRecord, 
and PutRecord commands, it is possible to directly edit the contents of the archive for 
testing and maintenance purposes. 

 Page 88 



 

Such an interface is naturally a security hazard, so an additional access control list is 
maintained to specify which client machines will be allowed access to the editing 
functionality. 

5.2.3.6 Thread 
Thread implements the ODL-Annotate protocol to store and retrieve threaded 
annotations.  New annotations are stored in a database and requests for annotations are 
retrieved when necessary.   

Threading of messages and replies is accomplished by means of an automatically 
generated thread number associated with each entry.  This thread number is used to order 
the entries so they resemble a discussion forum.  New entries are given a thread number 
higher than the last entry in the system.  Replies to previous entries are given a thread 
number mid-way between the two existing entries above and below the reply to be 
inserted.  If the thread numbers above and below the entry are consecutive, then thread 
numbers for all entries from the topmost up until the point of insertion are renumbered so 
that gaps are created for the current and future operations.  This process is illustrated in 
Figure 5.7. 

 Page 89 



 

 

Id Thread No. 
Entry_3 6 
Entry_2 4 
Entry_1 2 

Id Thread No. 
Entry_3 6 
Entry_3_1 5 
Entry_2 4 
Entry_1 2 

Operation: Insert reply to Entry_3 

Id Thread No. 
Entry_3 9 
Entry_3_1 7 
Entry_2 4 
Entry_1 2 

Id Thread No. 
Entry_3 9 
Entry_3_1 7 
Entry_3_1_1 5 
Entry_2 4 
Entry_1 2 

Operation: Insert reply to Entry_3_1 

Step 2 : Insert new entry 

Step 1 : Renumber entries 
above insertion point 

 

Figure 5.7 Insertion procedure for new entries in a Thread component 

Configuration of Thread requires the specification of a database in terms of location and 
connection details.  In addition, the threading epoch can be specified – where epoch 
refers to the maximum (initial) difference in thread numbers.  This epoch is used to 
assign new thread numbers as well as expand the “space” between two entries if needed.  
Larger epoch values result in fewer rescaling operations, which are database intensive.  
However, the maximum number of annotations that may be stored in the component 
depends on the highest thread number so unnecessary gaps are undesirable.  For instances 
with few replies (and therefore little actual threading), small epoch numbers are more 
suitable, hence this option is configurable on a per-instance basis. 

5.2.3.7 Suggest 
Suggest implements the ODL-Recommend protocol to provide recommendations to users 
based on past history of activity.  Each time a user accesses a resource, this interaction is 

 Page 90 



 

submitted to the Suggest component and stored in a database.  In this context access 
refers to any activity that constitutes a basis for recommendation, typically the viewing of 
metadata or the digital object.  Requests for recommendations are then generated from 
this list of stored interactions. 

The algorithms used to generate recommendations use only the information stored in the 
(user, resource) tuples stored by the component, as listed below: 

To generate a list of users who have accessed a given resource R: 

Return all users with resource=R 

To generate a list of users with similar interests to a given user U: 

Find all resources AR with user=U 

For each resource R in AR 

 Find all users AU who accessed R 

  For each user U in AU 

   Add a vote to U in AU2 

Return the users from AU2 with the highest votes 

To generate a list of resources accessed by users who had accessed a given resource R: 

Find all users AU with resource=R 

For each user U in AU 

 Find all resources AR accessed by user U 

  For each resource R in AR 

   Add a vote to R in AR2 

Return the resources from AR2 with the highest votes 

To generate a list of resources accessed by users with similar interests to a given user: 

Find all resources AR with user=U 

For each resource R in AR 

 Find all users AU who accessed R 

  For each user U in AU 

   Add a vote to U in AU2 

Select into AU3 the users from AU2 with the highest votes 

For each user U in AU3 

 Find all resources AR2 accessed by user U 

  For each resource R in AR2 

 Page 91 



 

   Add a vote to R in AR3 

Return the resources from AR3 with the highest votes 

Configuration is similar to the Box component, including the specification of access 
control lists to allow access from only a pre-specified group of machines.  The following 
parameters must be specified to restrict the number of iterations of the recommendation 
algorithms: 

• The maximum number of recent entries for a user to use as an indication of that user’s 
interests. 

• The maximum number of votes the most popular item ought to receive before the 
algorithm stops iterating. 

• The maximum number of items recommended before the algorithm stops generating 
new items. 

5.2.3.8 DBRate 
DBRate implements the ODL-Rate protocol to specify ratings and return average ratings 
for resources.  The ratings are stored in a database where each entry contains a resource 
identifier, a user identifier, and a rating value.  User identifiers are considered to be 
unique keys, thus avoiding a single user submitting multiple ratings for a single item – 
this also allows users to submit new ratings which automatically overwrite the previous 
values. 

DBRate was sub-classed from the Box component and thus stores all ratings as simple 
XML records.  Requests for average ratings result in retrieval and processing of all 
relevant records to dynamically determine the average value.  This method is not the 
most efficient in terms of space and time, but allowed for faster development based on 
prior modules. 

Configuration requires just the specification of a database, and database connection 
details. 

5.2.3.9 DBReview 
DBReview manages the workflow of a peer-review system and interfaces with the user 
interface via the ODL-Review protocol.  Database tables are used to store entries for 
sections/resources, editors, and draft submissions.  Transactions submitted to the system 
are stored in a Box (from which the component was sub-classed) and then parsed and 
stored in the appropriate tables. 

Wherever necessary, operations are preceded by checks to ensure that the user has the 
relevant editor status to perform the operation.  Resources and sections are stored in 
reverse order of insertion, using the same threading approach devised for the Thread 
component.  

 Page 92 



 

All requests for reports are then satisfied by interrogating the database tables and 
generating appropriate XML records. 

An earlier version of the component stored workflow management information in an 
XML file instead of a database.  This file was parsed prior to each operation and DOM 
was used to extract information, insert new entries, and prune the tree as necessary to 
satisfy queries about the workflow.  This approach, while elegant from a coding 
perspective, was abandoned because parsing of the entire XML file was not scalable for 
non-trivial numbers of transactions. 

DBReview was designed to be used in conjunction with other supporting components.  In 
testing the component for the JERIC project, multiple instances of the Box component 
were used to store metadata, reviews, and user information.  This is discussed in section 
5.3.4. 

5.2.4 OAI Component Details 

5.2.4.1 ETD-db Extensions 
To support participation in the ETD Union Catalog, an extension to the ETD-db ETD 
management software (Atkins, 2001) was created.  This extension is a drop-in module to 
retrospectively add OAI-PMH v1.1 support to an archive that uses any version of the 
ETD-db software; the current version of ETD-db comes prepackaged with it.  The ETD-
db extensions are used by 7 of the 13 sites participating in the Union Catalog. 

The software is written in Perl and has the same system requirements as ETD-db.  Thus, 
there are no additional system requirements for an existing site running ETD-db to 
become an OAI data provider.  The software need only be copied and configured, where 
the configuration script confirms that the databases are accessible and allows the installer 
to enter OAI-specific parameters such as the “repository name” and “administrator’s 
email”.  Once all parameters are specified, the ETD collection is accessible as an OAI 
data provider through the web server’s CGI mechanism. 

The OAI extension to ETD-db will export metadata in four different formats: Dublin 
Core (DCMI, 1997), ETDMS (Atkins, et al., 2001), MARC (Library of Congress, 
2002b), and RFC1807 (Lasher and Cohen, 1995).  For each record, the Dublin Core 
version is equivalent to the ETDMS version, with additional tags removed.  The MARC 
version of the record follows the crosswalk recommended by the ETDMS specification, 
while the RFC1807 version is simply a best-effort mapping since no official crosswalk 
exists. 

5.2.4.2 XMLFile 
XMLFile is a module that makes a collection of files – usually in XML format and where 
each corresponds to a single record – into an OAI-PMH v2.0 data provider.  It is meant to 
require a minimum of effort while retaining all the flexibility of the OAI protocol. 

 Page 93 



 

The component file layout and configuration follow the pattern established by the ODL 
components, with a clean separation between the data provider engine, configuration 
data, and the data being served. 

Support is provided for hierarchical sets, which are mapped to the directory structure of a 
specified file system.  Symbolic links within the file system also are taken into account 
and files that are symlinked are considered to be items that exist in multiple sets, as per 
the OAI protocol. 

While source files are usually in XML format, this does not have to be the case.  Source 
files can be in any format as long as a transformation program exists to map the source 
file to each of the desired metadata formats in XML.  In addition, source files can be 
selected from a file system if they match particular regular expressions – this way 
metadata files embedded within a heterogeneous collection need not be separated. 

5.2.4.3 Filter 
Filter obtains data from one archive and transforms the requests and/or results in order to 
make the archive appear more conformant with the recommendations and requirements 
of the OAI protocol.  In particular, two archives participating in the ETD Union Archive 
(MIT and Technical University of Dresden) do not produce correctly encoded XML 
and/or use a system of identifiers that is not globally unique.  The Filter component is 
used to overcome these issues by pre-processing and post-processing all OAI requests 
and responses, respectively. 

Unlike most other components, the Filter does not store any data locally.  Thus there is no 
need for separate data storage facilities for different instances – the only difference is in 
configuration so this is done through parameters in the interface script.  An example of 
this interface script is shown in Figure 5.8. 

use Filter;

sub main
{
   new Filter (
               'http://theses.mit.edu/Dienst/Index/2.0/OAI-1.0',
               {
                  prependid   => 'oai:MIT:',
                  shortendate => 'yes',
                  cleanxml    => 'yes',
                  ignorefrom  => 'yes',
                  ignoreuntil => 'yes',
               }
              );
}

 

Figure 5.8 Sample configuration script for Filter 

The configurable parameters, their syntax, and their semantics are explained in Table 5.5. 

 Page 94 



 

Parameter Syntax Semantics 

prependid String of characters Append the specified string of characters to every identifier.  Conversely, 
remove it from identifiers that are passed in as parameters. 

shortendate yes or no If the archive uses a more complete variant of the ISO8601 date format, 
truncate the additional parts. 

cleanxml yes or no If the archive uses characters that are illegal in XML, escape or remove 
them. 

ignorefrom yes or no Ignore all “from” date parameters and use entire collection. 

ignoreuntil yes or no Ignore all “until” date parameters and use entire collection. 

Table 5.5 Parameters for Filter 

5.2.5 User Interfaces 

5.2.5.1 XSL  
It was decided from the outset that user interface design was not a priority in proving the 
feasibility of the ODL approach.  However, simple user interfaces were needed for the 
experimental systems to demonstrate communication with the component layer.  These 
user interfaces were created using direct parsing of the XML data in some instances but 
more often than not by transforming the XML using XSL stylesheets (Clark, 1999). 

A typical user interface script contains a number of subroutines to react to different user 
input conditions.  Each of these subroutines performs the following actions: 

1. Prepare input variables for a component. 

2. Submit a request to the appropriate component. 

3. Check the response and transform it using an XSL stylesheet. 

4. Perform cleanup and then iterate steps 2-3 as necessary for other components. 

In some cases, the submission of a request is handled by the XSL stylesheet itself.  XSL 
provides a “document” command to retrieve HTTP documents.  An example of such a 
command in XSL is: 

<xsl:variable name="index" select="document (concat 
(suggestURL, '?verb=ListIdentifiers&amp;set=RR/', start, 
'/', stop, '/', resource))/xoaili:ListIdentifiers"/> 

This corresponds to the ODL command: 

…verb=ListIdentifiers&set=RR/start/stop/resource 

In the XSL example, the variable “index” is set to point to the root node of the XML 
response to ListIdentifiers that is sent to the Suggest component identified by the 
suggestURL parameter.  In this manner, a stylesheet applied to one document can 

 Page 95 



 

internally formulate HTTP requests and retrieve additional documents.  After retrieving a 
list of identifiers, as shown above, a stylesheet can iterate over the identifiers and retrieve 
individual records using GetRecord without leaving the stylesheet.  

Another technique to make the stylesheet submit service requests is to format one or 
more baseURLs into an XML fragment, together with supporting parameters, and submit 
this to the stylesheet.  The stylesheet then can combine these baseURLs and parameters 
into HTTP requests, obtain the associated responses, and format the XML fragments for 
display.  As an example of this, the new CSTC system uses the following Perl statement 
to submit parameters to a stylesheet to generate the feedback display for an item based on 
responses from a Thread component: 

$xslt2->Transform ("<forum>". 
"<baseURL>$ODLCSTCFeedback</baseURL>". 
"<identifier>$identifier</identifier>". 
"<start>$start</start>". 
"<size>$size</size>". 
"<fidentifier>$fidentifier</fidentifier>". 
"</forum>"); 

The baseURL of the Thread component is indicated by the $ODLCSTCFeedback 
variable.  $identifier is the identifier of the resource that is displayed.  $fidentifier is the 
identifier of the currently displayed annotation.  $start and $size indicate the range of 
replies to the current annotation to be displayed. 

The stylesheet that processes this XML fragment submits multiple ODL-Annotate 
requests for the following: 

• The metadata record for the annotation being displayed. 

• The list of metadata records for replies to the currently displayed annotation. 

• The parent record of the currently display annotation. 

These three responses are then transformed into a single fragment of HTML to resemble 
a discussion forum associated with each resource. 

5.2.5.2 MDEdit: Schema-based Metadata Editor 
Editing of metadata is traditionally a non-trivial task when performed over the Web 
because HTML user interfaces are fixed while metadata editing requires a greater degree 
of flexibility.  A typical problem occurs when a metadata field is repeatable – there is no 
simple way to duplicate a single field in a static HTML form. 

Some preliminary work was done on creating input forms dynamically based on XML 
Schema specifications to better support the editing of metadata.  This approach gracefully 
deals with problems such as the repeatability of individual fields, as well as the arbitrary 
levels of nesting that are allowed in XML-encoded metadata.  

 Page 96 



 

MDEdit, the Perl module implementation resulting from this work, interprets XML 
Schema files and CGI variables and produces an HTML input form that may be further 
manipulated.  Its features include: 

• Generalized support for nested metadata fields. 

• Multiplicity of fields at all levels of the metadata (where the metadata is 
hierarchically organized). 

• Automatic checks for minimum occurrences of fields. 

• Supports features of HTML input forms using XSD <appinfo> extensions. 

• File uploading to associate files with URLs in metadata. 

MDEdit understands a subset of the W3C's XML Schema language. Thus, while every 
schema supported by MDEdit is a valid XSD, the reverse does not hold true. The 
following sections describe the special features of schemata used by MDEdit. 

 Types 
The supported type constructs are: 

• string 

• complexType, containing a sequence 

• simpleType, containing a restriction with enumerations 

The following are therefore valid type definitions: 

<element name="test" type="string"/> 

 

<element name="test"> 

   <complexType> 

      <sequence> 

         <element name="test1" type="string"/> 

         <element name="test2" type="string"/> 

      </sequence> 

   </complexType> 

</element> 

 

 Page 97 



 

<element name="test"> 

   <simpleType> 

      <restriction base="string"> 

         <enumeration value="test1"/> 

         <enumeration value="test2"/> 

      </restriction> 

   </simpleType> 

</element> 

 Type Propagation 
Named types may be defined globally and used for elements and within other types.  
However, <ref>s are not supported.  This should not affect the declarative power of the 
schema, just the way in which it is written. Only one globally-scoped element should 
exist (others will be ignored), that being the root element of the metadata record. 

An example of using a named type is: 

<element name="test" type="testType"/> 

<complexType name="testType"> 

   <sequence> 

      <element name="test1" type="string"/> 

      <element name="test2" type="string"/> 

   </sequence> 

</complexType> 

 Extensions 
According to the XML Schema standard, every element may have an annotation tag with 
an <appinfo> containing tags specific to the application.  Table 5.6 lists the tags defined 
by MDEdit as application-specific extensions to the XML Schema specification. 

 Page 98 



 

Tag Description 

<caption>  an alternate caption to use instead of the tag name 

<description>  a description of what the field is 

<fixeddescription>  a description that must always be displayed 

<rows>  number of rows to use for the field display 

<columns>  number of columns to use for the field display 

<inputtype>  ‘password’ – password entry box; displays ‘*’ instead of characters 

‘file’ – file upload box 

‘radio’ – use radio buttons for list instead of <select> 

<externallist>  name of a list that is populated at run-time by the script that generates 
the form 

Table 5.6 List of additional MDEdit schema tags to define appearance of HTML forms 

An example of an annotation to a schema is: 

<element name=”test” type=”string”> 

   <annotation> 

      <appinfo> 

         <caption>Test Input Field</caption> 

         <rows>40</rows> 

      </appinfo> 

   </annotation> 

</element> 

This results is an input field in the HTML form with the text label “Test Input Field” and 
a text box 40 characters wide for data entry/editing. 

 Creating and using the MDEdit object 
In order to use the MDEdit module, the MDEdit object must be created, passing in the 
name of the annotated schema file as a parameter.  Then, the form is created based on the 
combination of this object and either CGI parameters or an existing XML record.  When 
the user eventually submits the form, validation checks are performed on the metadata 
and if all the constraints are satisfied, an XML record can be generated.  If all constraints 
are not satisfied, the form can be regenerated with an error message and highlighting of 
invalid or incomplete fields.  In-between the initial form and the final XML record the 
user may click on “+” buttons alongside the fields to add more fields (or collections of 
fields). 

 Rendering based on schema and extensions 

The HTML rendering rules are as follows: 

 Page 99 



 

1. All string fields are simple text fields if no parameters are given. 

2. <simpleType> enumerations are lists – either <select> lists or radio buttons based 
on the <inputtype> field. 

3. <columns> specifies the width of text fields and <select> lists. 

4. <rows> specifies the number of rows in <select> lists and radio buttons. 

5. If <rows> > 1 for a string, then a multi-line <textarea> is created. 

6. If maxOccurs > 1 for a list, then multiple options may be selected in a <select> 
list.  For a string, this indicates that the field may be duplicated maxOccurs times 
and if there are not already maxOccurs fields, a “+” button is added next to the 
field to allow creation of additional fields. 

7. If minOccurs > 1 for a string, at least minOccurs copies of the field are created. 

Figure 5.9 shows a typical HTML rendering of a simple annotated schema from the new 
CSTC system.  The schema used to generate this interface is listed in Appendix A. 

 

Figure 5.9 HTML rendering of metadata editor 

5.2.5.3 Content Negotiation 
For the JERIC and CSTC systems, multiple data formats are used and this requires 
different interfaces for entry, editing, and display for each of the formats.  Entry and 
editing of metadata in both cases uses the MDEdit module, specialized by a schema file 
for the required metadata format. 

Displaying different types of metadata can be accomplished using different XML 
namespaces for the different formats, while sharing a single metadataPrefix at the OAI 

 Page 100 



 

and ODL levels.  For example, in the new CSTC system, a record can be obtained from 
the metadata repository by specifying an identifier and a metadataPrefix of “resource”.  
The resulting record can be in many different formats, each distinguishable only by its 
XML namespace.  The XSL stylesheet that renders the record then invokes the 
appropriate template based on the namespace. 

5.3 CASE STUDIES 

5.3.1 Case study: ETD Union Catalog 

5.3.1.1 Requirements 
NDLTD is an organization comprised of multiple member universities and institutions, 
many maintaining collections of electronic theses and dissertations (Fox, 2002; Fox, et 
al., 1996; Fox, et al., 1997; Suleman, et al., 2001).  These individual collections are 
maintained at each institution, completely separate from other efforts.  One of the current 
projects of NDLTD involves integrating the collections from various sites so that, 
ultimately, researchers can access any publicly available ETD from one or more mirrored 
central sites.  The requirements for this include the ability to find particular ETDs (e.g., 
search, browse) but it does not include a submission mechanism since that is already 
handled at the remote sites.  In addition, the merged collection of metadata needs to be 
accessible separately from the rest of the user interface so that other user portals may be 
built to access the data. 

5.3.1.2 Architecture 
Figure 5.10 shows the architecture of ODL components that was devised in order to 
provide the required services using a network of components rather than a monolithic 
system.  Each remote site operates as an OAI data provider and the data from these sites 
is collected periodically using a DBUnion component.  This, in turn, serves as a source of 
data for the higher-level IRDB, DBBrowse and WhatsNew components, which are then 
used by the user interface to facilitate access to the underlying distributed collection. 

 Page 101 



 

 

 

DBBrowse

DBUnion

IRDB WhatsNew

User InterfaceVirginia Tech

PhysNet
...

Duisburg

CalTech

Dresden

MIT FilterMIT

User Interface
OAI/ODL component
OAI/ODL protocol

Dresden Filter

 

Figure 5.10 Architecture of NDLTD ODL system 

5.3.1.3 Interface 
The user interface uses a handful of Perl scripts to bind HTML forms to ODL component 
usage.  XSL stylesheets are used to transform the output from various ODL components 
into suitable human-readable versions and links are inserted where appropriate by these 
stylesheets.  Figure 5.11 shows the main index page for the experimental system, and 
Figure 5.12 shows the output from a typical browse operation. 

 

Figure 5.11 Index page for NDLTD user interface 

 Page 102 



 

 

Figure 5.12 Output from typical browse operation 

5.3.2 Case study: CSTC 

5.3.2.1 Requirements 
The Computer Science Teaching Center (Fox, et al., 2002b) is an existing production DL 
with the following services provided to patrons: submission, retrieval, search, browse, 
and peer review.  Originally, all services were provided by performing SQL queries on a 
single mSQL database but this is not most efficient for all types of services.  Specifically, 
the search and browse functions were served by this single database, which did not allow 
the viewing of subsets of results.  As CSTC became more popular this resulted in scaling 
problems so the browsing and searching functions needed to be updated or replaced. 

5.3.2.2 Architecture 
Since the metadata is already accessible through an OAI interface, this was used to link 
the DBBrowse ODL component into CSTC.  This change is only for the purpose of 
demonstration so just the DBBrowse component was incorporated into the CSTC system.  
Figure 5.13 shows the architecture of the CSTC ODL and OAI components in relation to 
the rest of the system. 

 Page 103 



 

 

OAI
Interface

DBBrowse

User Interface

Existing
CSTC

System

User Interface
OAI/ODL component
OAI/ODL protocol

 

Figure 5.13 Architecture of CSTC, showing ODL components 

5.3.2.3 Interface 
As before, a set of Perl scripts serves as the “glue” between the user interface and the 
component.  XSL stylesheets are used to transform the lists of records, but these are then 
integrated with the standard user interface elements of the existing system.  Figure 5.14 
shows a screen snapshot of the user interface for browsing. 

 

Figure 5.14 CSTC interface for browsing, using DBBrowse component 

 Page 104 



 

5.3.3 Case study: husseinsspace.com 

5.3.3.1 Requirements 
husseinsspace.com is a personal website, with a comparatively large content base, that is 
regularly visited by several people who are no longer in touch with one another.  To 
encourage more communication among visitors, a guestbook – in the form of a threaded 
discussion forum – was installed, using an instance of the Thread component.  Visitors to 
the website may view previous comments, reply to one of them, or add new comments.  
This use of the Thread component can be applied to any website where a simple feedback 
or discussion mechanism is desired. 

5.3.3.2 Architecture 
The Thread component operates independently of the rest of the site, so there is no 
interaction (see Figure 5.15) as in previous instances and since the entire site is the 
resource being annotated, there is only one set of annotations.  This approach is well 
suited to a system where additional features are added at a later date. 

Thread

User Interface

Legacy system

User Interface
OAI/ODL component
OAI/ODL protocol

 

Figure 5.15 Architecture of the guestbook addition to husseinsspace.com 

5.3.3.3 Interface 
The look and feel of the interface is carried into the XSL stylesheets, so, while the 
component functions independently of the rest of the site, users perceive a cohesive 
system, as depicted in Figure 5.16. 

 Page 105 



 

 

Figure 5.16 User interface for the guestbook on husseinsspace.com 

5.3.4 Case study: JERIC 

5.3.4.1 Introduction 

 Background 
The Computer Science Teaching Center (CSTC), as discussed previously, is a digital 
library of educational resources for computer science and related disciplines.  From its 
inception, one of its major distinguishing features has been the peer reviewing of such 
resources, enabled by the system.  This also has had the disadvantage of raising the entry 
requirements without providing a tangible benefit to submitters, negatively impacting the 
rate of submission in the early years of the project. 

The Journal for Educational Resources in Computing (JERIC) (Fox and Cassel, 2002) 
was launched in response to a perceived need for recognition of creators of educational 
resources.  Just like CSTC, JERIC solicits submission of educational material and 
subjects such submissions to a peer review process.  The prime difference is that JERIC 
material is earmarked for publication in an ACM journal while CSTC material is 
available online through a free-access web interface.  Further, CSTC and JERIC are inter-
related: 

• CSTC serves as a type of pre-print service for JERIC. 

• CSTC metadata-only entries are allowed for resources published in JERIC, with the 
former pointing to the latter. 

Since CSTC already has a web interface that allows peer review of its resources, this 
interface was adapted to cater to the needs of JERIC as well.  Unfortunately, the 
transition was not smooth and it rapidly became obvious that a new and specialized 
reviewing system will need to be employed. 

While the ACM is pursuing the acquisition of a web-based reviewing system (to be used 
by JERIC and other journals) for the long term, it was felt that a short term solution may 

 Page 106 



 

be feasible and can have the side-effects of providing an updated reviewing system for 
CSTC and related projects. 

 Evaluation of CSTC/JERIC review system 
Positives: 

• CSTC separates resources from reviews, storing each as a first-class metadata object; 
this maintains the integrity of the original resource in perpetuity. 

• Reviews are split into sections for confidential and non-confidential comments (as far 
as the author is concerned). 

• Reviews are assigned based on interests and reviewing history. 

Negatives: 

• CSTC uses a concept of universal roles – a user is a reviewer, an editor, or just a plain 
user.  This does not cater for situations where a single user can be editor of an issue of 
the journal but a reviewer for a single submission in a different issue.  In small closed 
systems, such as in the Wiki collaborative hypertext systems (Leuf and Cunningham, 
2001), users may be able to police themselves but in CSTC this has not happened. 

• CSTC has only three roles for users.  In practice, journals are known to have at least 
“managing editors”, “assistant editors”, “guest editors”, “reviewers”, and users.  
Conferences have “conference chairs”, “program chairs”, “workshop chairs”, etc.  
The simple 3-role model does not work well in these situations. 

• Users are confused by the CSTC and JERIC submissions being channeled through the 
same system.  Also, there is no way to distinguish among CSTC and JERIC editors 
and reviewers, or reviewing interests related to CSTC and JERIC. 

• Many queries cannot be answered by the CSTC system since there is no 
comprehensive system history outlining, for example, exactly which user assigned 
which resource to which reviewer. 

• CSTC uses some older technology (e.g., login system and database access) and this 
does not fully support new de facto standards for accessing online information.  Many 
users of CSTC have complained that the system does not function as they expect it to.  
The investment in older technology makes it more difficult to satisfy the demands 
that CSTC keep up with the latest and greatest ways of doing things on the Internet. 

• Reviewers cannot easily decline – this is currently only possible by reviewers 
notifying the editor through email.  This action may be problematic as well, since the 
editor is not easily identified. 

• Only those users currently registered may be selected for reviewing or editorial 
duties.  In practice, editors quite often prefer to recruit reviewers from outside of the 
existing circle, but currently, such persons need to register through the online 

 Page 107 



 

interface, apply to be reviewers, and only then can resources be assigned to them.  
This is a complicated process that has confused many editors and reviewers. 

• CSTC sends out some email notification (e.g., when resources are submitted) but 
there can be more feedback (e.g., reminders about reviewing assignments), given that 
email is currently the best way to communicate with users online. 

• There is only one set of criteria that apply to all resources.  In practice, different types 
of resources are best reviewed according to different criteria, e.g., resources can have 
different reviewing requirements from papers. 

5.3.4.2 Requirements 
The basic charter was to design and build a system for online submission and reviewing 
of resources (papers, software, etc.). 

Specifically, 

• The reviewing system must be specific to individual projects – possibly using a 
class/instance model. 

• The reviewing system must be able to produce a listing of all reviewing and editing 
tasks pertinent to a single user. 

• The reviewing system must be able to produce on demand a history based on a log of 
all activity related to a resource. 

• The system must assign permissions on a need-to-do basis.  If a user is not an editor 
for a particular resource then that user should not have editorial privileges. 

• User roles must be flexible to cater to different system models. 

• Users involved in the reviewing process must be able to accept/decline invitations for 
roles and the hierarchy of higher-level editors must be transparent to them. 

• It must be possible to invite new reviewers and editors and directly associate 
resources with them (i.e., as soon as they log in, their assignments are visible).  This 
will greatly reduce the number of steps in the current workflow. 

• Email messages must be sent out for reminders, confirmations, notifications, and, in 
general, to alert users when they need to interact with the online interface.  Such 
email messages must contain direct links into relevant parts of the system. 

• Reviews must not be constrained to a single type – the system must allow for editors 
to attach, for example, an “approved by editor” note or a “pending agreement of 
author” note (where resources are nominated for inclusion). 

• Annotations must be accessible, depending on the role of the user (editor, reviewer, 
etc.). 

 Page 108 



 

• The system must be built of components that can easily be replaced as technology 
changes in the future. 

• The system must use current standards in the DL community, e.g., XML, XSL, OAI-
PMH, etc. 

• Reviews and resources must be specified by schema that can be changed later and/or 
adapted to different projects or uses within the same project. 

• The system must be easy to maintain. 

5.3.4.3 Architecture 
The reviewing system was designed to make use of multiple ODL components: an 
XReview component (following a prototype version of the ODL-Review protocol) and 
multiple Box components to store metadata for resources, reviews, and users.  

Review
Engine

Review
Archive

Reviewing

Rejected
Resources

Archive

Resources
under Review

Archive

Accepted
Resources

Archive
User Interface
OAI/ODL component
OAI/ODL protocolU

se
r A

cc
es

s
Su

bm
is

si
on

 

Figure 5.17 Architecture of JERIC peer review system 

Figure 5.17 illustrates the flow of information in the reviewing system.  Submissions are 
first made to the “resources under review” archive.  To initiate the review process, the 
“review engine” is informed of the need to review the specified resource.   

The review engine contacts the appropriate editors, who then coordinate the process of 
reviewing, with continuing access to the resource, reviews, and workflow information 
(from the review engine).  Workflow information is updated as new tasks are assigned or 
completed during the process of reviewing the resource.  Ultimately, the resource is 
either accepted or rejected and is then transferred to the respective final archive. 

Revisions are created as new submissions.  Whenever the XReview component receives a 
metadata object with an existing identifier, it assumes it is a revision and links it into the 
database appropriately. 

 Page 109 



 

5.3.4.4 Interface 
After a user logs into the system, he or she is presented with a list of recently submitted 
and reviewed items.  In addition, all the reviewing and editorial assignments for the user 
are listed.  Figure 5.18 displays this opening page. 

 

Figure 5.18 User interface of JERIC peer review system 

Only those resources that are pertinent to a user are displayed as active (this is 
determined by the stylesheet). The parent nodes are displayed to provide contextual 
information.  Links associated with the sections and resources direct the user to pages 
where more information is presented. Also afforded is the ability to edit 
metadata/submissions/reviews where applicable. 

If the user is an editor for a section or resource, then clicking on the name of the section 
or resource brings up a page with more information as well as the ability to view reviews, 
change the status of the section/resource, or view a transaction history. Figure 5.19 shows 
this summary view of a resource or section. 

 Page 110 



 

 

Figure 5.19 Full details for a single resource or section 

Reviewers are presented with an interface to enter their reviews but not to assign any 
editorial staff.  Users are presented with an even more restrictive interface with only the 
ability to view metadata and reviews (if the resource was already completely reviewed). 

5.3.5 Case study: New CSTC 

5.3.5.1 Requirements 
The Computer Science Teaching Center was developed, starting in 1998, to collect and 
disseminate high quality resources for teaching and learning in computing-related topics.  
As a digital library system, it provides services to search and browse through resources, 
as well as manage the submission and reviewing of resources.  While the DBBrowse 
component has long since been integrated into the CSTC system (see earlier section), it is 
hypothesized that the system as a whole can be rebuilt using ODL components to enable 
further modularity in the future and to support newer standards and techniques in the 
construction of digital libraries, such as the archival policies encouraged by the OAI.  

The aim of rebuilding the CSTC is to demonstrate how multiple ODL components can be 
integrated seamlessly into a single online information management system. 

5.3.5.2 Architecture 
The design of the new CSTC is a natural extension of the JERIC system since they share 
a similar approach to reviewing of resources. Figure 5.20 provides an overview of this 
design.  With the introduction of the IRDB and DBBrowse components, discovery 
services are provided.  Using an intermediate DBUnion component enables easy 
importing of metadata from external sources such as the existing CSTC system.  DBRate, 
Suggest, and Thread provide additional services that are not present in the original 
version: rating, recommendation, and annotation of resources. 

 Page 111 



 

DBReviewBox:
Reviews

USER INTERFACE

Box:
Resources

under Review

DBUnion:
Metadata

Union
User Interface
OAI/ODL component
OAI/ODL protocol

Box:
Accepted

Resources

IRDB

Box:
Users

DBUnion:
Legacy

Metadata

Thread

DBRate

Suggest

DBBrowse

 

Figure 5.20 Architecture of new CSTC system 

5.3.5.3 Interface 
The initial welcome screen in Figure 5.21 is designed to look as similar to the existing 
system as possible, while incorporating the ability to register and log in at the very outset 
– a feature that is commonplace in many existing websites. 

 

Figure 5.21 New CSTC initial welcome screen 

After logging in a user is presented with the list of editing, reviewing, and submission 
tasks relevant to that user, as shown in Figure 5.22.  New submissions can be made and 
previous submissions can be checked for status and availability of reviews. 

 Page 112 



 

 

Figure 5.22 New CSTC list of editing, reviewing, and submission tasks 

After resources have been reviewed, they are accessible to the search and browse 
functions, as shown in Figure 5.23.  The user may page through the search results and 
select any items that they are interested in. 

 

Figure 5.23 New CSTC resource browsing 

Figure 5.24 shows a typical metadata display for a single resource.  The top of the screen 
displays the basic metadata that was submitted along with the resource.  This is followed 
by a display of the current rating of the resource and an interface to submit a rating.  Then 
there are recommendations for resources that were viewed by users who had viewed this 
resource.  Lastly, there is a threaded discussion forum specific to this resource for 
ongoing discussion. 

 Page 113 



 

 

Figure 5.24 New CSTC full metadata and associated information 

5.4 SUMMARY 
Various components were created as reference implementations of the protocols 
discussed in the previous chapter, and to assist in setting up OAI data providers.   

These were then configured and integrated in different ways to both extend existing 
systems and form the basis for complete digital library systems. 

 Page 114 



 

Chapter 6   

CCOOMMPPOONNEENNTT  TTEESSTTIINNGG  

6.1 INTRODUCTION 
Component testing can be carried out at different levels. For example, glass-box testing 
verifies the internal logic of a component while black-box testing verifies correct 
operation (when accessed through well-defined interfaces).  In the case of ODL, the 
former corresponds to testing of the component logic code while the latter corresponds to 
testing of the ODL/XOAI interface.  In addition, the correct operation of the component 
when accessed over the Web through HTTP can be tested at a slightly higher layer.  
These different approaches to testing are depicted in Figure 6.1 and discussed in detail in 
this chapter. 

 

HTTP 

XOAI 

Component Logic 

Testing  
Points 

 

Figure 6.1 Layers at which component testing can be performed 

6.2 DIRECT COMPONENT LOGIC 
Some components have separable component logic and interface modules, thus allowing 
the component logic to be invoked by mechanisms other than the appropriate ODL 
interface layer.  This also supports testing of the component logic without going through 
the ODL layer and can assist in resolving the reasons for failure during component 
installation and configuration.  Some of the components that have such interfaces 
available are IRDB and DBBrowse. 

6.2.1 IRDB 
IRDB contains a testsearch utility that allows a user to submit search queries directly to 
the information retrieval (IR) engine from the operating system command-line and get 
back a set of identifiers corresponding to the matches.  The ODL-Search protocol is 

 Page 115 



 

completely bypassed and the IR engine is instead loaded directly by the testsearch script.  
A sample invocation of this looks like: 

./testsearch.pl ‘computer science testing’ 1 10 

In this example, the query string is “computer science testing” and a result set beginning 
at match with rank 1 and ending at match with rank 10 (at the most) is requested.  The 
following are the results of this operation, including a list of the identifiers for each match 
and an estimate of the total number of matches for the query (i.e., 90). 

Test Search 

List of identifiers in result set: 
  oai:VTETD:etd-052499-165749 
  oai:VTETD:etd-05142001-144644 
  oai:UUdiva:1198 
  oai:UUdiva:46 
  oai:VTETD:etd-31598-144937 
  oai:VTETD:etd-2698-12129 
  oai:VTETD:etd-1598-132027 
  oai:VTETD:etd-06252002-173958 
  oai:VTETD:etd-05082001-010142 
  oai:UUdiva:233 

Total hits : 90 

6.2.2 DBBrowse 
DBBrowse contains a testbrowse utility that submits browse queries to the engine and 
lists the results.  An example of such a command-line request is: 

./testbrowse.pl ‘sort(title)’ 1 10 

The results for such an operation, as displayed below, are similar to those generated for 
the IRDB component. 

 Page 116 



 

Test Browse 

List of identifiers in result set: 
  oai:CSTC:157 
  oai:CSTC:139 
  oai:CSTC:108 
  oai:CSTC:46 
  oai:CSTC:47 
  oai:CSTC:141 
  oai:CSTC:261 
  oai:CSTC:113 
  oai:CSTC:125 
  oai:CSTC:264 

Total hits : 79 

6.3 XOAI INTERFACE 
After confirming that the component logic is correct, the next step is to verify that the 
ODL layer works as expected.  This entails connecting to the component through the 
ODL layer, but without involving the Web server. 

Since all ODL components are Web applications, there must exist a mechanism to 
communicate between the Web server and the component for the purposes of application 
invocation and data transfer.  In the reference implementations discussed in the previous 
chapter, components were created using the CGI specification (Gundavaram, 1996).  The 
Web server spawns CGI applications whenever a corresponding URL is requested.  Data 
is transferred between the Web server and the CGI application using a combination of 
standard input and setting of environment variables.  In the reverse direction, data is 
transferred from the CGI application to the Web server using standard output.  Thus, if 
the input conditions can be simulated, a CGI application can be run from the command-
line without the need for the Web server layer.  Output from the CGI application will 
then be sent to the standard output device – usually the controlling terminal. 

ODL components use a common CGI library that accepts parameters from either standard 
input or environment variables.  For testing purposes either can be used to simulate the 
operation of a Web server, but preference is given to the latter because temporary 
environment variables can be specified on the command-line when using shells such as 
bash. 

An example of conducting such a test from the command-line is: 

QUERY_STRING='verb=ListIdentifiers&set=odlsearch1/computer%
20science%20testing/1/10' ./search.pl 

In this request, the search terms are structured according to the ODL-Search protocol and 
embedded within an XOAI-PMH request.  Spaces are escaped according to the CGI 
specification; if an HTTP client is being used, this might occur automatically.  
QUERY_STRING is the name/value pair expected by search.pl, which is the actual ODL 
interface program that is run from the command-line.  The results from such a request 
look like: 

 Page 117 



 

Content-type: text/xml 

<?xml version="1.0" encoding="UTF-8"?> 

<xoai:ListIdentifiers> 

<responseDate>2002-10-17T16:36:56-04:00</responseDate> 

<requestURL>http://server.name:80/scriptname?verb=ListIdent
ifiers&amp;set=odlsearch1/computer%20science%20testin
g/1/10</requestURL> 

<identifier>oai:VTETD:etd-052499-165749</identifier> 

<identifier>oai:VTETD:etd-05142001-144644</identifier> 

<identifier>oai:UUdiva:1198</identifier> 

<identifier>oai:UUdiva:46</identifier> 

<identifier>oai:VTETD:etd-31598-144937</identifier> 

<identifier>oai:VTETD:etd-2698-12129</identifier> 

<identifier>oai:VTETD:etd-1598-132027</identifier> 

<identifier>oai:VTETD:etd-06252002-173958</identifier> 

<identifier>oai:VTETD:etd-05082001-010142</identifier> 

<identifier>oai:UUdiva:233</identifier> 

<xoai:responseContainer> 

   <hits>90</hits> 

</xoai:responseContainer> 

</xoai:ListIdentifiers> 

(XML namespace and schema information has been removed for clarity.) 

The structure of the response follows the ODL-Search protocol (and, so, the OAI 
protocol).  As expected, the sequence of identifiers as well as the value of hits matches 
the output of the previous direct component logic test. 

The first line of the response contains a command that is normally sent to the Web server 
to indicate the MIME type of the response.  This is crucial for most Web servers and is 
usually interpreted by the Web server and then used in formatting the headers of the 
response, but it does not appear in the responses for higher level tests. 

6.4 WEB CLIENT TEST 
At the highest layer of testing, an HTTP client can be used to submit requests and obtain 
results.  This involves sending a request through the client to the Web server and getting 
a response from the Web server.  Two popular clients for such tests are: 

lynx: a text-mode Web browser, with the ability to simply download responses and also 
to report on HTTP status errors that occur.  The latter is useful as ODL errors are reported 
through the HTTP status code mechanism used by OAI-PMH v1.1.  An example of 
submitting a request using lynx is: 

 Page 118 



 

lynx -source "http://spare06.dlib.vt.edu/~hussein/cgi-
bin/ODL-IRDB-1.1/IRDB/irdb/search.pl?verb=ListIdentifiers 
&set=odlsearch1/computer%20science%20testing/1/10" 

wget: a file downloading utility which is not as complex as lynx and has a smaller 
memory footprint and faster execution time (see next chapter).  An example of a request 
submitted through wget is: 

wget -O - "http://spare06.dlib.vt.edu/~hussein/cgi-bin/ODL-
IRDB-1.1/IRDB/irdb/search.pl?verb=ListIdentifiers&set= 
odlsearch1/computer%20science%20testing/1/10" 

In both cases, since the request is channeled through the Web server, the request also 
must include the full baseURL that is used as the general ODL interface to the 
component.  Carrying out this test ensures that the Web server is properly configured to 
execute CGI applications, with the correct permissions to perform the relevant tasks and 
generate the expected output.  This avoids problems, such as with some older Web 
servers which defaulted to executing CGI applications in a very restrictive environment, 
so while output was generated it was not always sensible. 

6.5 PARSING TEST 
While the previous test obtains responses successfully from a Web server, it does not 
check if the responses are formatted correctly.  Since all ODL responses are in the XML 
format, an XML parser can be used to check if the responses are well formed and can be 
parsed.  Also, after parsing, responses can be displayed in a more structured manner, thus 
making it simpler to visually inspect the data. 

Common Web browsers such as Internet Explorer (v5.0 and above) and Netscape 
Navigator (v6.0 and above) support XML as a file format that can be downloaded and 
displayed.  Internet Explorer has a particularly useful interface where nested tags can be 
hidden or exposed by clicking on a “+” or “-” sign next to the containing tag.  In both 
browsers, XML is displayed indented, with color-coding to differentiate among tags, 
attributes, and content.  An example of an ODL request and its response in Internet 
Explorer is shown in Figure 6.2. 

 Page 119 



 

 

Figure 6.2 Internet Explorer displaying an ODL request and response 

An additional advantage of using a Web browser is that since most developers do not 
actually work on the server’s console or install server-side software on their desktop 
machines, testing a server using a client-side browser results in distinct separation 
between client and server.  All previous tests were conducted on the server. 

6.6 REPOSITORY EXPLORER 
As the final step in testing, after it has successfully been determined that 

• the component logic is correct, 

• the ODL interface appears to work properly, 

• the Web server correctly communicates with the ODL component, and 

• the response appears correct and is parsable, 

rigorous tests can be run to verify that the communications protocol supported by the 
component is being rigidly adhered to.  These tests were developed initially as the 
Repository Explorer (Suleman, 2001; Suleman, 2002), a general tool for OAI 
repositories, and then generalized for ODL components in the form of the Component 
Explorer.   

6.6.1 Introduction 
From the very outset, proponents of the OAI-PMH realized that the success of such a 
standard requires vigilance in specification of the protocol as well as standardization of 
implementation.  The lack of standardized implementation is a substantial barrier to 
interoperability in many existing client/server protocols.   

 Page 120 



 

After the inaugural meeting of the OAI in 1999, a handful of archivists began to 
implement the agreed-upon interoperability protocol at their distributed sites.  This effort 
was immediately hampered by a varying interpretation of the protocol specification.  This 
was largely due to the difficulty of precisely specifying a protocol that would be both 
general and applicable to multiple domains.  The client/server architecture chosen by the 
OAI led to a classic “chicken-and-egg” problem since client implementations need to 
interface correctly with server implementations.  Subsequently, there was a low degree of 
confidence in the correctness of early implementations in each category.  Coupled with 
this, even when clients and servers subscribed to the same interpretation, there was not 
high confidence that other client/server pairs would interoperate successfully. 

As one approach to address these concerns, a protocol tester was developed to allow a 
user to perform low-level protocol tests on a data provider (server) implementation 
without the need for a corresponding service provider (client) implementation.  This now 
widely used software, the Repository Explorer, aids in standardizing the protocol 
understood by various different archives subscribing to the OAI model of 
interoperability.  This tool has a significant impact on simplifying development of 
interoperability interfaces and increasing the level of confidence of early adopters of the 
technology, thus exemplifying the positive impact of exhaustive testing and quality 
assurance on interoperability ventures. 

6.6.2 Design of the Repository Explorer 
The Repository Explorer is implemented as a web-based application (see Figure 6.3) to 
take advantage of the ubiquitous nature of WWW clients, and to alleviate the need to 
install multiple packages on client machines to support all the software used during 
testing. 

 

Figure 6.3 Repository Explorer basic interface 

 Page 121 



 

The software supports both manual and automatic testing, but with an emphasis on the 
former.  In automatic testing mode, a series of protocol requests, with legal and illegal 
combinations of parameters, are issued to the archive being tested, and the responses are 
checked for compliance with the expected range of responses.  In manual mode, the 
software allows a user to browse through the contents of the archive using only the well-
defined interface provided by the protocol.  The user has full control over all parameters 
and can test individual features of the protocol and/or implementation.  

In the manual mode of operation, users may specify a list of parameters and then select a 
verb from the list provided (see Figure 6.4).  The request is formatted and sent to the 
server. The associated XML response is then validated, parsed, and displayed in a more 
human-readable form.  Additionally, obvious choices for further browsing are converted 
into hyperlinks, e.g., after ListSets is issued, each set name from the response is 
converted into a link that results in ListIdentifiers being submitted.  This is depicted in 
Figure 6.5. 

 

Figure 6.4 Repository Explorer verb and parameter entry 

 

Figure 6.5 Hyperlinked response from ListSets 

 Page 122 



 

6.6.3 Validation Procedure 
The OAI protocol is a request/response protocol that works as a layer over HTTP, with 
responses in XML.  The Repository Explorer performs validation at multiple levels in an 
attempt to detect the widest range of possible errors.  Figure 6.6 depicts the flow of 
response data received from a server during the validation process.  

 
XML 

Schema 
Processor 

XML 
Parser HTTP 

Protocol 
Checker 

 

Figure 6.6 Flow of data during validation/testing process 

Each step of this validation procedure performs incremental checking as described below: 

1. When submitting an HTTP request, HTTP errors need to be detected and handled.  
The OAI protocol requires that explicitly illegal requests generate errors as HTTP 
status codes, and these are checked for. 

2. Once the request is issued and the response is successful, the returned XML needs to 
be checked for validity.  Since all XML responses are specified in the protocol 
specification using the XML Schema Language (Fallside, 2001), this part of the 
validation is accomplished using an XML Schema processor, which attempts to 
match the schema with the generated XML data stream.  Many structural and 
encoding errors in the XML are detected in this phase of testing. 

3. Unfortunately, schema processing does not always work flawlessly because of its 
many external dependencies, e.g., schemata are downloaded from the WWW as 
required.  As a redundant mechanism, XML errors also are detected during the 
parsing and tree generation phase. 

4. Lastly, the tree representation is checked for semantic correctness.  For example, 
where controlled vocabularies are used but not encoded into the XML Schema, these 
are checked at this stage (e.g., the standard list of metadata formats used by the OAI). 

Once checks are performed, if the software is being used in manual mode, a new 
interface is generated to display the data received from the server and present the user 
with additional options to perform further operations.  

Validation may be performed using either the reference XML Schema validation toolkit 
available from the W3C or the Xerces XML parser (Apache Software Foundation, 2002).  
Local copies of both are installed to avoid further communication delays and 
dependencies on remote resources.  In addition, the schema files for each version of the 
OAI protocol are installed locally to avoid the validation process being dependent on the 
stability of the OAI’s central website.  This requires that all XML responses are pre-
processed to substitute OAI namespace-to-schema mappings so that they point to the 
local versions of the schema files. 

 Page 123 



 

All versions of the OAI protocol are supported by the Repository Explorer (v1.0, v1.1, 
and v2.0).  In order to determine which version to test for, the Repository Explorer issues 
a transparent Identify request before any other requests.  The protocol version is then 
fixed to what Identify reports in its protocolVersion field. 

6.6.4 Options 
The user interface provides options to change the basic appearance in terms of color 
scheme and language.  Color schemes may be specified as CGI parameters on the 
command-line.  The following are the default values for the color scheme, but these can 
be changed to improve the contrast if necessary: 

bgcolor=aaffaa&headercolor=00cc00&blockcolor=ffcccc  

In terms of language, there is currently user interface support for English, Chinese, 
Spanish, German, Korean, French, and Portuguese.  Except for French and Portuguese, 
which were the result of machine translation, colleagues at Virginia Tech created 
translation tables for the other languages by hand.  The language can be changed easily 
from the main user interface by choosing an option from the drop-down box on every 
page, as illustrated in Figure 6.7. 

 

 

Figure 6.7 Language selection in Repository Explorer 

Language selection also requires the use of an appropriate character encoding in the Web 
browser.  Use of the Chinese interface requires installation of additional fonts while use 
of the Korean interface requires the specification of a Unicode encoding.  All other 
languages work with the default “Western” encoding used in Netscape Navigator and 
Internet Explorer. 

6.6.5 Automatic Testing 
While the Repository Explorer is primarily used to help with OAI interface development, 
it also is used to browse through repositories for demonstrations of the OAI protocol and 
to show off particular collections.  To make this simpler, a list of approved archives is 
maintained and provided as suggested starting points on the front page of the Repository 
Explorer.  In order to maintain this list automatically, the Repository Explorer can accept 

 Page 124 



 

a baseURL, perform a few tests on it, and then add it to the front-page list if it passes all 
the tests. 

For OAI-PMH v2.0 repositories, the tests submitted to the baseURL include: 

• Tests for all verbs with the least number of parameters specified. 

• Tests for date ranges for ListIdentifiers and ListRecords. 

• Tests for correct handling of illegal verbs, parameters, parameter values, and 
parameter combinations. 

• Tests for handling of resumptionTokens for ListSets, ListIdentifiers, and 
ListRecords. 

• Tests for the ability to respond to parameters from previous responses, e.g., 
responding to ListMetadataFormats parameterized with an identifier chosen 
from a prior ListIdentifiers response. 

• Tests for correlation between the setSpec reported in an arbitrary record header 
and the contents of that set, as reported by ListIdentifiers parameterized by 
set=setSpec. 

• Tests for handling of all datestamp granularities that the archive reports support 
for in its Identify response. 

These tests are synchronized with tests carried out at the OAI website (OAI, 2002) so that 
if a repository passes the Repository Explorer tests, it ought to be able to successfully 
register as an official OAI data provider. 

6.6.6 Component Explorer 
In order to generalize the Repository Explorer to handle ODL requests and responses, the 
Component Explorer was built as a specialized instance of the Repository Explorer.  The 
prime difference is its ability to correctly identify and validate responses from ODL 
components.  In order to determine the protocol supported, the Component Explorer 
looks at both the protocolVersion and XOAI description in the Identify response.  If the 
component is an OAI archive, the Component Explorer behaves just like the Repository 
Explorer.  Otherwise, a different set of schemata is used for XOAI validation. 

Automatic testing was modified to support the inclusion of components that understand 
both OAI-PMH and XOAI-PMH.  Thus, users may submit baseURLS for components 
that conform to OAI-PMH v1.1, OAI-PMH v2.0, or XOAI-PMH v1.0.  When listing the 
components on the front page of the Component Explorer, the protocol information is 
automatically extracted and prepended to the component names.  This is shown in Figure 
6.8. 

 Page 125 



 

 

Figure 6.8 Front page listing of components in Component Explorer 

Automatic testing of ODL components is not as exhaustive as is the case for OAI 
repositories.  Basic tests are performed to ensure that the interface works, and the 
responses validate according to the XOAI schemata, for the administrative service 
requests: Identify, ListSets and ListMetadataFormats.  However, the semantics of data 
transfer requests such as GetRecord and ListRecords differ greatly from one ODL 
protocol to another so the correctness of these cannot easily be tested with a test suite 
common to multiple ODL protocols.  Future work may investigate solutions to this 
problem (as discussed later). 

6.6.7 Feedback 
Over the course of implementing different versions of the OAI protocol, most if not all 
implementers used the Repository Explorer to test their implementations.  Their positive 
feedback supported the original motivation that a compliance test can greatly ease the 
process of implementation. 

In addition, the design and implementation of the test software influenced the 
development of the OAI protocol in the following ways: 

• protocolVersion was incorporated into the Identify response from an early stage 
in order to differentiate among different versions of the protocol. 

• The transparent schema validation performed by the Repository Explorer resulted 
in many errors in the schemata being discovered and fixed at an early stage in the 
protocol development process. 

• Flow control mechanisms were incorporated into an early version of the OAI 
protocol largely to avoid overloading of data providers, but also to ensure smaller 
responses that may easily be tested by tools like the Repository Explorer. 

 

 Page 126 



 

Chapter 7   

AANNAALLYYSSIISS  AANNDD  EEVVAALLUUAATTIIOONN  

7.1 INTRODUCTION 
From the previously discussed case studies it is evident that information systems can be 
built using ODL components and by following the approach of building systems as 
networks of interconnected extended-OAI nodes.  Measurements, analysis, and tests were 
carried out under controlled circumstances and in collaboration with internal and external 
partners in order to illustrate that the ODL approach is simple, effective, and efficient.  
These are discussed in this chapter. 

7.2 UNDERSTANDABILITY AND SIMPLICITY 
A study was performed with a group of students to gauge their level of understanding of 
OAI and ODL components and their ability to complete a component composition 
exercise satisfactorily. 

The objective was to install the following components and link them together to form a 
simple digital library: 

• XMLFile: a simple file-based OAI archive 

• Harvester: an OAI/ODL harvester 

• IRDB: an ODL search engine 

• IRDB-ui: a simple user interface for IRDB 

Figure 7.1 illustrates the architecture of the system that was built. 
 

XML-File 
Data 

Provider 

HTML 
User 

Interface 

IRDB Search 
Engine 

(with built-in Harvester) 

 

Figure 7.1 Architecture of simple componentized digital library 

7.2.1 Methodology 
Two sections of students enrolled in the CS5604 class (Information Storage and 
Retrieval) at Virginia Tech in Fall 2002 were given presentations on OAI and ODL, 

 Page 127 



 

lasting approximately 1 hour and 15 minutes for each class.  Thereafter, during a lab 
section also lasting 1 hour and 15 minutes for each class, each student completed an 
exercise to install, configure, test, and connect together the above ODL/OAI components. 

Students did the exercise on a Unix system where a CGI-capable Web server was already 
installed and properly configured.  A variety of text editors were made available to 
accommodate different preferences among students. 

Students performed the following tasks, in order, for the listed components: 

• XMLFile 

o Install XMLFile file-based Open Archive. 

o Test the XMLFile component using different testing approaches (as discussed 
in the previous chapter). 

o Add more data to the component and test for correct dissemination of updates. 

• Harvester 

o Install a harvester. 

o Configure it to harvest data from the XMLFile archive. 

o Perform a preliminary harvest of the data to test it. 

• IRDB 

o Install the IRDB search engine. 

o Configure it to harvest data from the XMLFile archive. 

o Harvest the data and perform a series of tests with various queries. 

• IRDB User Interface 

o Install the IRDB user interface. 

o Configure it to use the IRDB component already installed. 

o Test the interface using a web browser and various queries. 

Students then were asked to fill out a questionnaire to evaluate the experience of building 
this system from components.  56 students completed the survey completely. Two 
completed only one page of the questionnaire and so were excluded from the analysis. 

7.2.2 Results 
Table 7.1 provides a summary of the responses for the background information section of 
the questionnaire. 

 Page 128 



 

Question Responses 

Major/Department CS : 56 

Program level and year Undergrad – 3rd year  : 1 

Masters – 1st year  : 19 

Masters – 2nd year  : 28 

Masters – 3rd year  : 1 

PhD – 1st year  : 5 

Visiting Professors  : 2 

Have you used Unix or a Unix-like operating system before (e.g., FreeBSD, 
Solaris, Linux) – at least to the extent of logging in and editing text files? 

Yes : 52 

No : 4 

Have you used a component-based development environment before (e.g., 
Delphi, C++/JBuilder, Visual C++/J++, JavaBeans)? 

Yes : 50 

No : 6 

Have you installed a CGI web-server script/application before (e.g., website 
guestbook, website counter)? 

Yes : 25 

No : 31 

Have you developed a CGI web-server script/application before? Yes : 22 

No : 34 

Do you know how Web Services works (e.g., involving SOAP, WSDL, UDDI)? Yes : 27 

No : 29 

Have you done any Web Services development? Yes : 22 

No : 34 

Table 7.1 Results to background information questions on survey 

Thereafter the survey contained a number of questions related to the exercise to assess the 
students’ reactions to the exercise and the underlying tools and techniques.  Most 
questions in this section were framed using a 5-point Likert scale. The last question asked 
for freeform “comments, concerns or suggestions”.  Table 7.2 summarizes the responses 
to all but the last question. 

 Page 129 



 

Response Question 

Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

I understand the basic concepts of the OAI 
Protocol for Metadata Harvesting. 

9 38 9   

I understand the basic concepts of ODL 
components. 

6 36 14   

The instructions for the exercise were 
understandable. 

35 20 1   

Installing the components was simple. 36 18 2   

Configuring the components was simple. 33 21 2   

Connecting together the Harvester and 
XMLFile components was simple. 

28 25 3   

Connecting together the IRDB and XMLFile 
components was simple. 

26 25 5   

Carrying out this exercise has improved my 
understanding of the concepts underlying 
OAI and ODL. 

13 25 12 6  

I would consider using ODL and OAI 
components if I need to build a system with 
requirements similar to the exercise. 

12 33 10 1  

Table 7.2 Responses to questions on exercise 

Responses to the last question were varied and some are discussed in the following 
section. 

7.2.3 Discussion 
The different backgrounds of participants evident from the responses to demographic 
questions makes it difficult to analyze these results without taking into account all of the 
interaction effects that result from past experience.  Since OAI and ODL utilize various 
different Web technologies, it is non-trivial to enumerate all of the pre-requisites and 
determine their independent effects.  It may be possible to construct an experimental 
model to minimize the interaction effects, but this will require finding unique 
participants, each with a very particular background and training.  This may prove 
difficult because of the cutting-edge nature of technology used by OAI and ODL.  Taking 
these difficulties into account, any analysis of such an experiment cannot easily 
determine general trends. 

Nine respondents who indicated that they did not know how Web Services worked 
answered affirmative when asked if they had done Web Services-related development.  
This may be because they interpreted the question as referring to Web-related services 
other than SOAP (Box, et al., 2000), WSDL (Ogbuji, 2000), and UDDI (Ariba Inc., 
2000), or because they had done development work without understanding the underlying 

 Page 130 



 

standards and information model of Web Services.  Either of these is consistent with the 
vague understanding that many people have of Web Services. 

Judging from the responses to the first two questions in Table 7.2, most participants 
appear to have grasped the basic concepts related to OAI and ODL.  The fact that some 
participants were unsure indicates that an hour and 15 minutes may not be enough for a 
person building a digital library to learn enough about OAI and ODL.  This raises the 
question of just how much training a person needs before being able to effectively use 
OAI and ODL technology.  Also, more of the participants were able to understand OAI 
than ODL; this is expected since ODL builds on OAI.  Further, in a separate discussion 
reported to the experimenter, one student explained to the course instructor that his 
learning style was not hands-on, and more oral explanation along the way when doing the 
experiment would have made it clearer what was going on. 

Most participants agreed (or strongly agreed) that the instructions were understandable.  
The instructions were very detailed so that even if participants did not understand one 
section of the exercise, they were still able to complete the rest of the steps.  

Installation and configuration of individual components as well as interconnecting 
different components was deemed to be simple.  As these are two basic concepts 
underlying ODL (that all services can be independent components and that systems are 
built by interconnecting service components), it supports the hypothesis of this 
experiment that ODL is simple to understand and adopt. 

There was not much agreement about the ability of the exercise to improve the 
participants’ understanding of OAI and ODL.  This can be attributed to the sheer volume 
of new concepts covered during the presentation and exercise.  Given that approximately 
half of the participants had never created a CGI-based web application before, the 
learning curve was quite steep.  In practice, those who adopt OAI and ODL technology 
are usually digital library practitioners who already have experience with the construction 
of dynamic Web-based information systems. 

In spite of all these factors, two-thirds of the participants indicated an interest in using 
similar components if they have a need for such services.  Thus, even without a thorough 
understanding of the technology and other available options, the simple and reusable 
nature of the components seemed to appeal to participants. 

Thirteen participants provided optional feedback in the last question, and these ranged 
from positive to somewhat skeptical.  Eight of the reactions were positive, including the 
following comments: 

- “I think the idea is very good and the approaches to build digital libraries is easy.” 

- “They provide a way to get up and running very quickly with a Web application.” 

Some participants were not sure about the workflow as indicated by the comment: 

- “We have high level idea but detailed explanation will be great.” 

 Page 131 



 

One comment in reference to the questions on simplicity of installation and configuration 
included: 

- “I don’t know; custom config might not be simple.” 

This summarizes the notion that components should be simple enough to bootstrap a 
development process but still powerful enough to support a wide range of functionality.  
In particular, the above comment refers to the XMLFile component that is simple to 
install and use in its default configuration, but can be non-trivial to configure if the 
records are not already OAI-compatible.  In such a situation, XSL transformations can be 
used to translate the records into acceptable formats.  However, irrespective of the 
complexity of configuration for a particular instance, the OAI/ODL interface to such 
components always is the same. 

Some questions raised during the lab sessions revealed very important issues that need to 
be addressed in future development of ODL or related standards: 

- Confusion over baseURLs 

o Some participants were confused regarding which baseURL to use in 
which instance.  Since all URLs were similar, it was not obvious – this 
will happen in practice with any system built on OAI, ODL, or Web 
Services technology. 

o Entering URLs by hand resulted in many typographical errors.  Ideally, 
such links must be made using a high-level user interface that masks 
complex details like URLs from the developers. 

o The user interface was sometimes connected to the wrong component.  
While it is possible for a user interface to Identify the service component 
before using it, this will be inefficient.  As an alternative, user interfaces 
can themselves be components, with associated sanity tests applied during 
configuration. 

- Failures during harvesting 

o Harvesting will fail if the baseURL is incorrect, but there are no obvious 
graceful recovery techniques.  The components used in the experiment 
assume a catastrophic error and stop harvesting from the questionable 
archive pending user intervention.  Better algorithms can be devised to 
implement exponential back-off and/or to trigger notification of the 
appropriate systems administrator. 

7.2.4 Conclusions 
This exercise has demonstrated that: 

- It is possible for people with little experience to quickly learn the basic concepts 
related to OAI and ODL. 

 Page 132 



 

- OAI/ODL component installation and configuration and the composition of 
components are relatively simple and understandable processes. 

7.3 REUSABILITY 
To demonstrate reusability of ODL components and protocols, collaborators at Virginia 
Tech and other institutions were encouraged to use the components in their projects.  
Some of these efforts are discussed below. 

7.3.1 Case study: AmericanSouth.org 
AmericanSouth.org (Halbert, 2002) is a collaborative project led by Emory University to 
build a central portal for scholarly resources related to the history and culture of the 
American South.  The project was initiated as a proof-of-concept test of the metadata 
harvesting methodology promoted by the OAI.  Thus, in order to obtain data from remote 
data sources, the project relies mainly on the OAI-PMH.   

The requirements for a central user portal include common services such as searching and 
browsing.  AmericanSouth.org used ODL components to assist in building a prototype of 
such a system.  The DBUnion, IRDB, and DBBrowse components were used in addition 
to XMLFile and other custom-written OAI data provider interfaces.  Many questions 
about protocol syntax and component logic were raised and answered during the 
prototyping phase, suggesting that more documentation is needed.  Alternatively, pre-
configured networks of components can be assembled to avoid configuration of 
individual components.  Both of these approaches are being investigated in the DL-in-a-
Box project (Luo, 2002). 

The production system for AmericanSouth.org still uses multiple instantiations of 
XMLFile but the ODL components have been replaced with the ARC search engine (Liu, 
et al., 2001) largely because of concerns over execution speed of the IRDB search engine 
component.   

7.3.2 Case study: CITIDEL 
CITIDEL – the Computing and Information Technology Interactive Digital Education 
Library (Fox, et al., 2002a) – is the computing segment of NSF’s NSDL – the National 
Science, Technology, Engineering and Mathematics Digital Library (Lagoze, et al., 
2002a).  CITIDEL aims to build a user portal to provide access to computing-related 
resources garnered from various sources using metadata harvesting wherever possible.  
This user portal is intended to support typical resource discovery services, such as 
searching and category-based browsing, as well as tools specific to composing 
educational resources, such as lesson plan editors.  

From the initial stages, CITIDEL was envisioned as a componentized system, with an 
architecture that evolves as the requirements are refined.  The initial system was designed 
to include multiple sources of disparate metadata and multiple services that operate over 
this data, where each data source and service is independent.  This is depicted in Figure 
7.2. 

 Page 133 



 

Annotations  

OAI  
Data  

Harvester 

EDUCATORS ADMINISTRATORS LEARNERS 

Multilingual 
Searching 

Revising Annotating Filtering Browsing Administering 

Filtering Profiles User Profiles Union Metadata 

OAI  
Data  

Provider 

Remote and Peer Digital Libraries (eg. NSDL-CIS) 

PORTALS 

SERVICES 

REPOSITORIES 

 

Figure 7.2 Original architecture of CITIDEL, showing metadata layer distinct from service layer 

CITIDEL uses components from various sources.  In terms of ODL, this includes the 
IRDB and Thread components to implement simple searching and threaded annotations, 
respectively.  The IRDB component was modified to make more efficient use of the 
underlying database. 

CITIDEL is closely related to the JERIC and CSTC projects discussed in the previous 
chapter – both provide avenues for submission of resources, the metadata for which is 
ultimately harvested by CITIDEL and exposed to users through its user interface. 

7.3.3 Case study: BICTEL/e 
The BICTEL/e project, led by the Universite Catholique de Louvain, is building a 
distributed digital library of dissertations and e-prints within the nine French-speaking 
universities in Belgium. 

The project adopted use of the following OAI and ODL components: 

• ETD-db OAI extension 

• DBUnion archive merger component 

• DBBrowse collection indexer and browser 

Each university will maintain independent collections for dissertations and e-prints, 
merged together with the DBUnion component.  User-level services will be provided via 
the DBBrowse component and other non-ODL service components (such as a search 
engine).  The central site has a similar system in place, differing only in that metadata is 
harvested from remote sites rather than from local collections. 

 Page 134 



 

This project is still in the developmental stages – the first participating site and the central 
site have been set up.  Additional sites are in the testing phase. 

7.4 EXTENSIBILITY 

7.4.1 Sub-classing 
Some component implementations were created by sub-classing existing components.  
All of the component modules were written in object-oriented Perl, which allows for 
single inheritance, so this was exploited when possible.  Since the DBRate and 
DBReview components also store the original transaction records submitted to them, they 
were derived from the Box component.  In each case, some of the methods were 
overridden to provide the necessary additional functionality. 

7.4.2 Layering 

7.4.2.1 VIDI 
The VIDI project (Wang, 2002) developed a standard interface, as an extension of the 
OAI protocol, to connect visualization systems to digital libraries.  A prototype of the 
VIDI reference implementation links into the search engine of the ETD Union Catalog to 
obtain search results.  The search engine used in the ETD Union Catalog understands the 
ODL-Search protocol, which also is based on the OAI protocol.  Thus, additional services 
are provided as a layer over an ODL component, without any reciprocal awareness 
necessary in the ODL system. 

7.4.2.2 MAIDL 
MAIDL, Mobile Agents In Digital Libraries (Nava Muñoz, 2002), is a federated search 
system connecting together heterogeneous web-accessible digital libraries.  The project 
uses the “odlsearch1” syntax, as specified in the ODL-Search protocol, in order to submit 
queries to its search system.  Further communication among the mobile agents and data 
providers transparently utilize the XOAI-PMH protocol. 

7.4.2.3 VTLS Union Catalog 
VTLS operates a production version of the ETD Union Catalog for NDLTD using an 
instance of their Virtua library management software (VTLS, 2002).  Thesis and 
dissertation metadata is gathered from various institutions in multiple formats.  VTLS 
also harvests metadata directly from the DBUnion component of the ODL-based Union 
Catalog (discussed as a case study in Chapter 5).  Thus, Virtua works as a service 
provider layer over the ODL component. 

 

 Page 135 



 

7.5 PERFORMANCE 
Performance evaluation was done in terms of the following aspects: 

• Communications and protocol overhead incurred by OAI/XOAI protocols 

• Execution speed of nested components 

• Execution speed optimizations 

• Load analysis 

• User interface response 

• Storage required for components and the effects of duplication 

• Consistency among various copies of data stored on different nodes 

• Harvesting algorithms and their efficiencies in terms of speed and network utilization 

7.5.1 Communications and Protocol Overhead 
Measurements of response times were taken at various layers within a single ODL 
component in order to determine the execution time overhead associated with network 
communications and the ODL protocols.   

7.5.1.1 Methodology 
The IRDB search engine component was used for this test because search operations take 
a non-trivial (and therefore measurable) amount of time and the pre-packaged component 
includes a direct interface to the search engine that allows bypassing of the ODL protocol 
layer. 

The tests were conducted on a dedicated 2Ghz Pentium 4 PC with 1GB of RAM running 
the pre-installed version of Red Hat Linux v7.3.  The Web server used was Apache 
v1.3.23 with the default configuration, supplemented only by changes to allow for 
execution of CGI scripts.  Data for all components was stored in a mySQL v3.23.49 
database. 

For test data, a mirror of the ETD Union Archive was created and this then was harvested 
and indexed by an instance of the IRDB component.  7163 items were contained in this 
collection, each with metadata in the Dublin Core format. 

The test was to execute a search for a given query.  Three queries were used: “computer 
science testing”, “machine learning”, and “experiments”.  At most the first 1000 results 
were requested in each case.  Each query was executed 100 times by a script to minimize 
the effect of the script on the overall performance.  The first run of each experiment was 
discarded to minimize disk access penalties, and an average of the next 5 runs was taken 
in each case. 

 Page 136 



 

For this experiment, only the identifiers were requested.  Obtaining the full records would 
have required communication with the source archive – this was measured in a later 
experiment. 

Six runs were made for each query: 

1. Executing lynx to submit a ListIdentifiers query through the Web server interface. 

2. Executing wget to submit a ListIdentifiers query through the Web server interface. 

3. Using custom-written HTTP socket code to submit a ListIdentifiers query through 
the Web server interface. 

4. Executing the search script directly from the command-line, thereby bypassing the 
Web server. 

5. Executing testsearch.pl to bypass both the Web server and the ODL layer. 

6. Using direct API calls to the IR engine, without spawning a copy of testsearch.pl in 
each iteration. 

Figure 7.3 is a pictorial representation of the layers at which the tests were conducted.  
The numbers correspond to the tests listed above.  Tests 1, 2 and 3 used communication 
with the component indirectly through the Web server.  Test 4 used communication with 
the ODL-Search interface.  Test 5 used communication with the information retrieval 
engine used by IRDB.  Test 6 is indicated as being within the component since it used a 
modified version of component’s interface script for measurement. 

 

HTTP 

ODL 

IR Engine 

1 
 
4 
 
5 6   

3   2   

 

Figure 7.3 Testable interfaces for IRDB component 

The time was measured as the “wall-clock time” reported by the bash utility program 
time from the time a run started to the time it ended.  The script that ran the experiment 
controlled the number of iterations (100, in this case) and executed the appropriate code 
in each of the 6 cases above.  In each case, the output was completely collected and then 
immediately discarded – thus, each iteration contributed the complete time between 
submitting a request and obtaining the last byte of the associated response, hereafter 
referred to as the execution time. 

7.5.1.2 Results 
The average times (in seconds) obtained for each test are listed below in Table 5.5. 

 Page 137 



 

Query Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 

a. “computer science testing” 54.82 50.30 49.26 48.59 48.26 39.70 

b. “machine learning” 31.57 27.85 27.22 26.64 26.43 15.81 

c. “experiments” 47.52 43.26 42.32 41.97 41.31 32.78 

Table 7.3 Execution times for request submitted to different layers of ODL-IRDB 

In order to understand the reasons for differing times, additional runs were conducted 
without discarding the output in order to determine the number of matches for each 
query.  These are indicated in Table 7.4. 

Query Matches 

a. “computer science testing” 2478 

b. “machine learning” 463 

c. “experiments” 1020 

Table 7.4 Number of matches for each query 

7.5.1.3 Discussion 
From Table 7.3 we notice that the execution time increases as more layers are introduced 
into the component.  This increase is not always a large proportion of the total time, but 
the difference between Test-1 and Test-6 is significant.  The time differences between 
pairs of consecutive tests is indicated in Table 7.5. 

Query Test1-2 Test2-3 Test3-4 Test4-5 Test5-6 

a. “computer science testing” 4.52 1.04 0.67 0.33 8.57 

b. “machine learning” 3.72 0.63 0.58 0.22 10.62 

c. “experiments” 4.26 0.94 0.35 0.66 8.53 

Table 7.5 Time differences between pairs of consecutive tests 

Test-1, Test-2, and Test-3 illustrate the differences in times due to the use of different 
HTTP clients.  In Test-1, the fully-featured text-mode Web browser lynx was used.  In 
Test-2, wget was used instead, and the performance improved because wget is a smaller 
application that just downloads files.  Test-3 avoided the overhead of spawning an 
external client application altogether by using custom-written network socket routines to 
connect to the server and retrieve responses to requests.  The differences are only slight 
but there is a consistent decrease for all queries.  

The difference between Test-3 and Test-4 is due to the effect of requests and responses 
passing through the HTTP client and the Web server.  While no processes were spawned 
at the client side in Test-3, a process was still spawned by the Web server to handle each 
request at the back-end.  This script was run directly in Test-4, so the difference in time is 

 Page 138 



 

due solely to the request being routed through the Web server.  This difference is small, 
so it suggests that the Web server does not itself contribute much to the total execution 
time. 

The difference between Test-4 and Test-5 is due to the ODL-Search software layer that 
handles the marshalling and unmarshalling of CGI parameters and the generation of 
XML responses from the raw list of identifiers returned by the IR engine.  This difference 
is also small, indicating that the additional work done by the ODL layer does not 
contribute much to the total time of execution. 

The difference between Test-5 and Test-6 is due to the spawning of a new process each 
time the IRDB component is used.  This difference is substantial and indicates that 
process startup is a major component of the total execution time. 

The number of matches for each query, as shown in Table 7.4, indicate that the execution 
times for the chosen queries are not determined solely by the number of terms but also by 
the popularity of the terms.  In this experiment and others where the maximum number of 
results requested was 1000, Query-b had understandably faster execution times because 
fewer results were obtained from the inverted files and subsequently formatted and 
returned to the client.  In experiments where the number of results requested was less 
than 463 (the total number of matches for Query-b), the number of terms can play a more 
significant role in execution time differences. 

7.5.1.4 Conclusions 
The execution times for the IRDB component (as representative of ODL components in 
general) were much higher than the execution times for direct API calls.  However, this 
difference in execution time is due largely to the spawning of new processes for each 
request.  The ODL layer and the Web server contribute only a small amount to the total 
increase in execution time. 

7.5.2 Execution Speed: Nested Components 
In order to avoid duplication of metadata entries, some of the ODL components (such as 
IRDB and DBBrowse) do not store redundant copies – instead, every time a record is 
needed, it is fetched from the source archive.  This procedure is hereafter referred to as a 
nested request. 

The following test measured the comparative execution times for ListIdentifiers (single) 
and ListRecords (nested) requests for the IRDB component.  

7.5.2.1 Methodology 
The IRDB search engine component was used for this test.  The test was performed in the 
same experimental environment as for the Communications and Protocol Overhead 
experiment. 

The test was to execute a search for a given query.  Three queries were used: “computer 
science testing”, “machine learning”, and “experiments”.  At most the first 10 results 

 Page 139 



 

were requested in each case.  Each query was executed 10 times by a script.  The first run 
of each experiment was discarded and an average of the next 5 runs was taken in each 
case. 

The ODL interface was invoked by direct execution, thus bypassing the Web server (i.e., 
the “Test-4” procedure in the previous experiment was employed here). 

Two runs were made for each query: 

1. Submitting ListIdentifiers to get a list of matching identifiers. 

2. Submitting ListRecords to get a list of matching records. 

7.5.2.2 Results 
The average times (in seconds) obtained for each test are listed below in Table 7.6. 

Query 1. ListIdentifiers 2. ListRecords (ListRecords-ListIdentifiers) 

a. “computer science testing” 1.57 16.36 14.79 

b. “machine learning” 1.47 16.22 14.75 

c. “experiments” 1.44 16.21 14.77 

Table 7.6 Response times for ListIdentifiers vs. ListRecords 

7.5.2.3 Discussion 
A ListRecords query issued to the ODL-Search component requires a single 
ListRecords request as well as one GetRecord request, issued to the source archive, for 
each record in the result set.  The records returned from these GetRecord requests are 
merged to form the response to ListRecords.  Thus, in general,  

Let the number of records in the result set = n = 10 

Let the execution time = e 

Let the time taken for component startup and processing = s 

Let the process spawning time = p 

Now, ListIdentifiers needs 1 request (process is spawned by the test script), but 

ListRecords needs 1 + n requests. 

Then, for ListIdentifiers: e(li) = s + p 

And for ListRecords: e(lr) = s + p + n p 

Since s and p are approximately equal for both requests, we can simplify this to: 

p = ( e(li) – e(lr)  ) / 10 

 Page 140 



 

Substituting values from Table 7.6, we find that p=1.479, p=1.475, and p=1.477 for 
queries a, b, and c respectively.  This confirms that startup time is approximately constant 
and that the model for requests and responses is accurate, where ListRecords takes an 
additional amount of time that is proportional to the number of records in the result set. 

Resubstituting into the equation for e(li), we find s=0.09, s=0.01, and s=0.04 for queries 
a, b, and c respectively.  The slight differences in time are due to the differing numbers of 
matching records, as indicated in Table 7.4. 

7.5.2.4 Conclusions 
This experiment confirmed that: 

• The time taken for process startup is a large portion of the execution time. 

• The time taken for nested requests depends on the number of items in the result 
set. 

Various techniques were subsequently investigated to optimize components to minimize 
the effect of each of these factors. These are discussed in the next section. 

7.5.3 Execution Speed Optimizations 
There is an obvious performance penalty due to layering and use of a Web server with 
back-end scripts.  Various tools have been developed to address this.  As a representative 
of these tools and techniques, the SpeedyCGI package (SpeedyCGI, 2002) was tested and 
compared against the case where no optimizations are used.  SpeedyCGI is a tool that 
speeds up access to Perl scripts without modification of the script or the Web server.  
Instead of running Perl with each invokation of a script, the script is run by a relatively 
small SpeedCGI front-end program that connects to a memory-resident Perl back-end, 
creating the back-end process if necessary.  Thus, the process startup time is determined 
by the execution speed of the front-end script rather than the Perl interpreter. 

The objectives of this study were: 

• To calculate the response times for single and nested requests, both with and without 
using SpeedyCGI. 

• To compare SpeedyCGI usage with the fastest approach thus far, that of directly 
utilizing a programming API. 

7.5.3.1 Methodology 
The IRDB search engine component was used for this test.  The test was performed in the 
same experimental environment as for the Communications and Protocol Overhead 
experiment. 

The test was to execute a search for a given query.  Three queries were used: “computer 
science testing”, “machine learning”, and “experiments”.  The first run of each 
experiment was discarded and an average of the next 5 runs was taken in each case. 

 Page 141 



 

For the first part of the experiment, all requests were submitted by executing wget, thus 
involving the Web server and the ODL interface in generation of the response.  At most 
the first 10 results were requested in each case.  Each query was executed 10 times by a 
script.  Four runs were made for each query as follows: 

1. By submitting ListIdentifiers (LI). 

2. By submitting ListRecords (LR). 

3. By submitting ListIdentifiers, where the components use SpeedyCGI (LIS). 

4. By submitting ListRecords, where the components use SpeedyCGI (LRS). 

For the second part of the experiment, at most 1000 results were requested and each 
query was executed 100 times.  The requests were submitted by executing wget, thus 
involving the Web server and the ODL interface in generation of the response.  A single 
ListIdentifiers run was conducted for each query, and this was contrasted with the data 
obtained during the direct API measurements taken in the Communications and Protocol 
Overhead experiment. 

7.5.3.2 Results 
Table 7.7 displays the comparisons from the first part of the experiment – using 
SpeedyCGI and not, for both ListIdentifiers and ListRecords requests submitted to 
IRDB. 

Regular CGI SpeedyCGI Query 

1. LI 2. LR 3. LIS 4. LRS 

a. “computer science testing” 1.67 16.50 0.44 2.22 

b. “machine learning” 1.57 16.34 0.33 2.04 

c. “experiments” 1.55 16.35 0.31 2.06 

Table 7.7 Regular CGI vs. SpeedyCGI speed comparisons 

Table 7.8 displays the comparisons from the second part of the experiment – using 
SpeedyCGI and comparing this to the previous measurements for the case with direct 
API use. 

Query SpeedyCGI API 

a. “computer science testing” 40.27 39.70 

b. “machine learning” 16.61 15.81 

c. “experiments” 32.39 32.78 

Table 7.8 SpeedyCGI vs. direct API speed comparisons 

 Page 142 



 

7.5.3.3 Discussion 
Results from the first part of the experiment indicate that there is a significant 
improvement in execution speeds for both ListIdentifiers (single requests) and 
ListRecords (nested requests) when SpeedyCGI is used.  This is largely due to the 
elimination of the need to spawn new processes to handle each request to the Web server. 

The second set of results indicate that there is very little difference in execution times 
between using direct API calls and using a fully layered IRDB component when 
SpeedyCGI is used.  

7.5.3.4 Alternative Optimizations 
In addition to SpeedyCGI, many other alternatives were considered to optimize the 
operation of ODL components.  Some of these are discussed below. 

 Direct Database Access 
If two components such as IRDB and DBUnion are collocated on the same machine, it 
may be possible for one to access the database of the other directly.  This was tested in 
the initial prototypes.  However, since it is not portable and does not conform to the 
design goals of componentized systems in general, it was not pursued further. 

 Union Catalog Specialization 
Since the most common request from IRDB is GetRecord issued to the DBUnion 
component (or CSTC OAI interface), its communication can be optimized.  Without 
deviating from the model of the ODL network, the DBUnion was reimplemented in C++ 
with only a GetRecord service request handler.  Then, all other components used this 
special interface to get lists of records.  This implementation was noticably faster, and 
demonstrated that the programming language of choice can influence the speed of 
component interaction. 

 GetRecords 
Requesting multiple records together in a batch can drastically reduce the number of 
network requests.  This can be achieved by extensions to the OAI protocols using sets to 
indicate lists of elements or by using a new service request.  Before investigating these 
approaches from an ODL perspective, this issue was forwarded to the OAI Technical 
Committee for possible incorporation into version 2.0 of the OAI-PMH.  There was much 
discussion but the consensus was that it would not assist in batch metadata harvesting 
operations.  A “GetRecords” batching feature can still be incorporated into a future 
version of XOAI-PMH or, more specifically, the ODL-Union protocol. 

 mod_perl 
A popular technique among Perl programmers who desire faster speeds is to use the 
mod_perl Apache module, which embeds a Perl interpreter into the server itself.  This 
usually works well but is limited to Perl and creates a much larger memory footprint for 

 Page 143 



 

the server.  There is a similar module for PHP, but it has the same drawbacks.  This 
solution was not tested because of the inherent language limitations, coupled with the 
necessary changes to the Web server. 

 Direct Code Access 

With collocation of components, it may be possible for one component to call the 
functions and procedures of the other directly.  This requires some innovative planning in 
laying out the components and linking them together so that they invoke local copies if 
possible but otherwise default to HTTP.  This was tested and the performance improved; 
it was similar to the “Test-4” case of the Component and Protocol Overhead experiment.  
However, this technique results in a high degree of coupling, which violates the 
independence criterion for component systems. 

 Non-forking Web Server 

Besides the popular Apache, there are various other Web servers available commercially 
and a handful of non-commercial experimental ones, e.g., Boa (Philips, et al., 2002) and 
thttpd (ACME Labs, 2002).  Among other, Boa and thttpd claim to be faster because they 
are lightweight and non-forking (some servers use threads but others poll network 
connections within a single thread for maximum speed).  Since process creation takes a 
significant amount of time, this claim sounds tempting.  However, upon investigation, 
none of these servers offer nearly the same suite of features supported by Apache so they 
will not make good general-purpose servers.  Also, none of them will speed up spawning 
of CGI-type applications.  All things considered, this may not significantly improve the 
performance of ODL components. 

 Special-purpose Servers 
Some projects for which speed is absolutely essential will embed a Web server into a 
script.  This means that the script is persistent and there is no switching from Web server 
to script and vice versa.  The problem with this approach is that it is very specific and 
means that every component has to have a persistent server in memory.  With many 
components in a typical ODL network, this is not likely to be feasible, especially for 
small DLs.  Also, it significantly raises the bar on programming requirements.  It was not 
pursued. 

 Persistent Components 
Even if a component does not include a Web server, it may be possible for the component 
to stay in memory and be glued into the Web server whenever necessary by a much 
smaller script.  This has the same disadvantages as the above approach and requires the 
design of a special protocol for communication between the Web server and the 
component.  Instead of custom-building such a solution for each component, the 
SpeedyCGI toolkit provides comparable services without requiring any code or Web 
server modification. 

 Page 144 



 

 FastCGI 

FastCGI (Brown, 1996) is an add-on kit that provides persistent script capabilities to a 
Web server, independently of the programming language.  Scripts need to be modified 
slightly by encapsulating them in a simple loop but this is relatively minor and for some 
components it was possible to create both regular and FastCGI versions without much 
change.  FastCGI provides an add-on server module that loads a script on demand and 
keeps it persistent, with support for dynamic reloading and dynamic load balancing.  This 
was tested informally and had performance characteristics comparable to SpeedyCGI.  
There are additional security problems that need to be resolved since FastCGI enforces a 
higher level of security than regular scripts, but better programming discipline and 
security is good for component development, so this can be seen as another advantage.   

 JAVA Servlets 
JAVA is a programming language of choice for many programmers on the Web, so there 
are just as many tools available as there are for languages such as Perl.  JAVA servlets 
(Zeiger, 1999) are pieces of JAVA code that stay persistent in the Web server and thus 
achieve much better performance.  While this is widely used, it requires the use of a 
JAVA byte-code interpreter and therefore does not result in substantially better 
performance that persistent Perl scripts. 

 Caching 
Using caching at various levels within the experimental systems resulted in significant 
speed improvements.  For example, in the ODL-based ETD Union Catalog, the 
DBBrowse component caches the results from DBUnion, thus minimizing the number of 
recurring requests.  Secondly, the user interface caches the responses to most requests; 
thus speeding up the process of browsing through a list of returned items.  Together, 
these have a noticeable effect on execution speed.  One problem that manifests itself was 
that of stale data in a cache.  It is still being investigated – there are ways to force a 
refresh from the Web browser to propagate to the server’s scripts, but this apparently 
only works for Netscape browsers and works differently in each version.  For more 
systems that are more dynamic (such as CSTC), caching is not used because changes 
have to propagate through the system immediately. 

7.5.3.5 Conclusions 
SpeedyCGI is a very simple Web server optimization module that is easily installed on 
Linux and other Unix and Unix-like systems.  By using this module to avoid the time 
penalties incurred from making intermediate Web server requests, it was shown that ODL 
components can have comparable execution times to direct API calls. 

In addition to the use of SpeedyCGI and similar Web application persistence tools 
(FastCGI, JAVA servlets, mod_perl, etc.), caching and the ability to request multiple 
records in a single request show promise to improve the performance of ODL 
components.  Further investigation is needed. 

 Page 145 



 

7.5.4 Load Analysis 
Under real-world conditions, response times can be drastically different as situations 
vary.  The aim of this experiment was to assess the ability of a component to perform 
acceptably under high loads.  To assess this, a server was artificially loaded and then the 
response times of typical requests were measured under different load conditions. 

7.5.4.1 Methodology 
The Box component was used for this test because it has very little component logic and 
therefores provide lower bounds for execution speed that are indicative of the ODL 
component architecture and not the component logic. 

The component was installed in the same server environment used in the 
Communications and Protocol Overhead experiment.  A second identical machine was 
used to simulate client machines by running multiple processes, each of which submitted 
ListRecords requests to the server in a continuous loop.  The server was primed with 100 
dummy records for this purpose. 

The test was to submit GetRecord and PutRecord requests to the local server.  The first 
run of each experiment was discarded and an average of the next 5 runs was taken in each 
case.  The experiment was then repeated using SpeedyCGI for the Box component. 

7.5.4.2 Results 
Table 7.9 lists the average execution times for GetRecord and PutRecord operations 
under load conditions generated by 5, 10, and 50 simultaneous processes. 

 5 clients 10 clients 50 clients 

PutRecord 1.04 2.39 9.31 

GetRecord 1.39 2.06 11.27 

Table 7.9 Average execution times under different load conditions 

Table 7.10 lists the average execution times for GetRecord and PutRecord operations 
under load conditions generated by 5, 10, and 50 simultaneous processes, when the Box 
component uses SpeedyCGI. 

 5 clients 10 clients 50 clients 

PutRecord 0.691 0.702 2.146 

GetRecord 0.449 0.316 1.801 

Table 7.10 Average execution times when using SpeedyCGI 

 Page 146 



 

7.5.4.3 Discussion 
There is variability in execution time because of the non-deterministic nature of client-
server synchronization and process startup.  It is apparent, however, that the time taken to 
respond to a request increases as the load on the server increases. 

Using the persistent script mechanism of SpeedyCGI results in a reduction of the 
execution time as compared to the no SpeedyCGI case, but there is still an increase with 
increasing load, as expected.  Figure 7.4 shows these relationships graphically. 

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60

Number of simulated clients

Ex
ec

ut
io

n 
tim

e 
fo

r a
 s

in
gl

e 
Pu

tR
ec

or
d 

re
qu

es
t (

se
c)

without
SpeedyCGI
with SpeedyCGI

 

Figure 7.4 Load conditions with SpeedyCGI and without 

7.5.4.4 Conclusions 
A high load on the server causes an increase in execution time for component interaction.  
The SpeedyCGI module, as representative of persistent script tools, helps to minimize 
this effect.  Ultimately, however, ODL components are Web applications and the only 
way to get better performance for a heavily loaded Web server is to use more and/or 
faster servers. 

7.5.5 User Interface Response 
While inter-component communications speeds are important to system designers, it is 
the speed of the user interface that matters the most to users.  To test this, requests were 
submitted to the new CSTC interface to determine its effectiveness. 

The objective was to submit requests to the new CSTC interface, simulating typical user 
behavior, and then measure the response time. 

 Page 147 



 

7.5.5.1 Methodology 
The client machine was a 2Ghz Pentium 4 PC with 1GB of RAM running a pre-installed 
version of Red Hat Linux v7.3. 

The server used was a non-dedicated 600MHz Pentium 3 with 256MB RAM running Red 
Hat v6.2.  The Web server was Apache v1.3.12 and data for all components was stored in 
a mySQL v3.23.39 database.  All components used the SpeedyCGI tool to remain 
persistent in memory. 

The first test involved simulating a browse operation.  The second test involved 
simulating the viewing of metadata for a single resource.  In both instances, the test was 
repeated 10 times per invocation of the test script.  The test script was executed 5 times 
and the average of these was computed. 

7.5.5.2 Results 
Table 7.11 displays the user interface execution times for the operations tested. 

Action t (Time taken for 10 requests) t / 10 

Browse first screen of items 9.28 0.93 

Display metadata for first item 9.81 0.98 

Table 7.11 Execution times for user interface actions 

7.5.5.3 Discussion 
The browsing operation required 1 request that was submitted to the DBBrowse 
component, as well as 5 nested requests sent to the DBUnion component in order to fetch 
the metadata, resulting in a total of 6 requests.  The display operation required 1 request 
for the metadata, 1 for the rating, 4 for the recommendation, and 3 for the feedback 
mechanism – resulting in a total of 9 requests. 

The time taken is not simply proportional to these request counts because different 
components contribute varying amounts to the total execution time.  However, as 
indicated in Table 7.11, the total response time in both instances is <1 second for data 
transfer. 

7.5.5.4 Conclusions 
The time taken to generate user interface pages is reasonably small for the new CSTC 
system, running on a production server. 

7.5.6 Storage 
Many components store data in a database, and these databases need indices in order to 
be accessed efficiently.  Store-and-retrieve OAI archives do not incur many penalties 
since there is little redundancy within a single archive.  However, some ODL components 

 Page 148 



 

create duplicates of some or all of the data.  DBBrowse and WhatsNew create indices 
while IRDB creates inverted files.  The first two components have minimal storage 
requirements and do not pose any serious problems.   

The search engine, on the other hand, requires space for the inverted files because the 
larger indices tend to support faster retrieval.  This has been highly optimized to support 
reasonable speed of execution for the prototype, but at the expense of greater storage 
requirements.  A more sophisticated search engine can be used to avoid these problems.  
Alternatively or in addition, better database technology can be used.  The MG system 
used in the Greenstone project used inverted file compression to achieve compression of 
up to 96% compared to the source text (Witten, et al., 1999).  

The duplication of actual metadata can make componentization prohibitively costly. 
However, all metadata can be stored in a central repository or union repository and 
accessed when needed.  This is the approach that is taken in most of the experimental 
systems, including the new CSTC system and the ODL-based ETD Union Catalog. 

Components that do not harvest data – such as DBRate and DBReview – do not incur 
additional storage penalties. 

7.5.7 Duplication of Data 
Suppose that the minimum difference between two datestamps (granularity) is g (in 
days).  Then, the maximum difference between the datestamp and the actual time of 
modification of a record is g.  This implies that in order to ensure data consistency, a 
harvester has to overlap harvesting operations by at least g.  (When archives operate in 
different timezones, the interpretation of a datestamp differs by at most a day, 
necessitating an overlap of (1+g) days.) 

When component A harvests data from a source archive, it has to update all datestamps 
so that changes will propagate to any downstream components.  Thus, component B that 
harvests from component A will deal with a new system of dates, necessitating an 
additional overlap of g.  Compared to the source archive, there will now be a time 
interval overlap of 2g in the records being harvested.  Table 7.12 illustrates this 
incremental duplication when 2 components are connected in a chain to a source archive 
and there is an overlap of 1 day.  In the illustration items are added at the source, 
Component A harvests daily from the source, and Component B harvests daily from 
Component A.  

 Page 149 



 

 Source 

Item (Date) 

Component A 

Item (Date) 

Component B 

Item (Date) 

Mon Item 1 (Mon) Item 1 (Mon) Item 1 (Mon) 

Tues Item 2 (Tues) Item 1 (Tues) 

Item 2 (Tues) 

Item 1 (Tues) 

Item 2 (Tues) 

Wed Item 3 (Wed) Item 2 (Wed) 

Item 3 (Wed) 

Item 1 (Wed) 

Item 2 (Wed) 

Item 3 (Wed) 

Thu Item 4 (Thu) Item 3 (Thu) 

Item 4 (Thu) 

Item 2 (Thu) 

Item 3 (Thu) 

Item 4 (Thu) 

Table 7.12 Illustration of duplication due to overlapping 

Each component in a chain similarly contributes to the overlap in the datestamp range 
during harvesting.  With frequent harvesting and/or frequent updates at the source, this 
will result in greater duplication of data.  Selecting a harvesting granularity that is as 
small as possible (minimizing g) will minimize the duplication due to chaining of 
components.  Fortunately, in going from version 1.1 to 2.0 of OAI-PMH, granularity can 
be as little as a second, instead of a day. 

In all experimental systems, a granularity of seconds was used wherever possible. 

7.5.8 Consistency 
Suppose that t(A) is the time, in seconds, between harvesting operations performed by 
component A.  This implies that component A is at most t(A) seconds out of 
synchronization with the source from which it is harvesting data.  Now, suppose that 
component B harvests the same data from component A, at an interval of t(B) seconds.  
Then component B is at most t(B) seconds out of synchronization with component A, and 
transitively, t(A)+t(B) seconds out of synchronization with the original source archive. 

Similarly, each archive in a chain contributes its harvesting interval to the delay in 
propagating changes.  Where changes have to propagate more quickly within a DL, it is 
desirable to use smaller harvesting intervals.  However, since smaller harvesting intervals 
cause more network requests, when network bandwidth is a limiting factor, delays in 
propagation are a necessary compromise. 

In the new CSTC system, consistency is maintained by explicit and controlled harvesting 
when changes need to be propagated.  Thus, if a new item is submitted, the DBUnion is 
asked to harvest from its source.  When the operation completes, both IRDB and 
DBBrowse are triggered to harvest from DBUnion.  This ensures immediate updating and 
prevents consistency problems. 

 Page 150 



 

7.5.9 Network Bandwidth 
Network bandwidth is not a serious problem if components are collocated on a machine 
or are in near proximity to one another.  However, if some components are used remotely 
(this was tested with CSTC initially using a remote DBBrowse component), this can 
easily become a bottleneck. 

In general, since component interactions need to be minimized and all component 
interactions happen over high-level network protocols, minimizing network bandwidth is 
already an issue that needs to be addressed.  The contents of packets as well as the 
structure of communication can be optimized. 

Thus far, no work has been done on compressing individual packets of data.  However, 
the new OAI-PMH v2.0 supports HTTP-level compression and this can be exploited in 
future versions of ODL protocols. 

In terms of minimizing communications, caching has the most benefit by eliminating 
duplication of the same requests in a given time period.  Other factors considered include 
the algorithms for harvesting.  By harvesting n records with m metadata formats as 
separate operations, the harvester can use m ListRecords requests; on the other hand, 
harvesting n records with m metadata formats using ListIdentifiers and GetRecords will 
require (1 + n m) requests.  These are representative of the two harvesting algorithms 
used by ODL components, as discussed below. 

7.5.9.1 Complexity of Harvesting 
The first algorithm uses ListRecords to maximize speed, and the second uses a 
combination of ListIdentifiers and multiple GetRecords requests to maximize 
consistency for archives with multiple metadata formats per identifier.  The following 
analysis calculates the difference in numbers of network requests and amount of data 
transferred for each algorithm. 

Let the time (in days) between harvesting operations = t 

Let the average number of records harvested in one operation = n 

Define a batch as the group of records or identifiers sent in a response before a 
resumptionToken is issued.  Let the maximum size of a batch = k 

Then, the average number of batches in a harvest operation, b =  n / k  

Let the average size (in bytes) of an OAI response header (XML namespace information, 
responseDate, requestURL, and containers) = h 

Let the average size (in bytes) of a record = R 

Let the average size (in bytes) of an identifier = I 

 Page 151 



 

 Harvesting Algorithm A 

If we choose a harvesting algorithm that uses a single ListRecords request to transfer 
records, then 

the number of network requests  
= number of batches  
=  b  
=  n / k  

and the quantity of data transferred 
= size of header + (size of record * number of records) 
= h + nR 

 Harvesting Algorithm B 

If we choose a harvesting algorithm that first issues ListIdentifiers and then issues 
GetRecord for each record, 

the number of network requests 
= number of batches for ListIdentifiers + number of GetRecord requests 
=   n / k  + n 

and the quantity of data transferred 
= size of ListIdentifiers header + (size of identifier * number of records) + number 
of records * (size of GetRecords header + size of record) 
= h + nI + n ( h + R ) 
= ( h + nR ) + n ( I + h ) 

Thus, the number of network requests as well as the quantity of data transferred will be 
higher for the second algorithm.  The simpler first algorithm is selected for most 
harvesting operations to avoid this performance penalty. 

7.6 SUMMARY 
It was shown in this chapter that the ODL component composition approach to building 
DLs is understandable and simple from the perspective of most novice users with only a 
basic understanding of OAI and ODL. 

Then it was demonstrated that the use of ODL components does not lead to intrinsic 
execution speed penalties – any penalties observed are due to specific tools used in the 
experimental systems.  Some optimizations for the underlying technology and the ODL 
protocol design were tested and discussed. 

Various projects have successfully adopted and used the ODL approach and, in 
particular, early ODL components.  In some cases these were extended or layered for 
more functionality.  

Lastly, some issues in storage and network bandwidth conservation were presented along 
with the effect these have had on the construction of recent ODL-based systems. 

 Page 152 



 

Chapter 8   

FFUUTTUURREE  WWOORRKK  

8.1 INTRODUCTION 
This chapter discusses a number of outstanding issues that were raised during the design, 
testing, and implementation phases.  In many instances where temporary solutions were 
adopted, there are more effective and efficient alternatives.  Following is a list of the 
issues, why they were considered problematic, how they were worked around, and what 
improvements can be made in the future. 

8.2 HARVESTING 

8.2.1 Issues with Multiple Sources 
Harvesting of metadata depends on the constant network availability of the data provider, 
or at least availability each time harvesting is performed.  Experience with the ETD 
Union Catalog has shown that there are sometimes failures due to network outages and 
hardware and software issues with servers.  At the OAI central registry there were 115 
registered data providers as of 23 October 2002 – of these, 20 failed to respond to an 
Identify request that day.  In many cases running an OAI data provider is an auxiliary 
task that is not as important as the primary mission of the organization.  Thus, failures are 
not quickly attended to and service providers have to deal with this problem. 

The harvester module currently in use in many ODL components will attempt to detect 
errors and will terminate harvesting if necessary.  Since the harvesting schedule is only 
updated after the operation completes, a lock file is maintained to prevent two different 
processes from harvesting the same archive simultaneously.  This lock file is removed 
when there is a critical error so that harvesting of a particular archive is retried the next 
time the harvester is run.  The problem with this approach is that server failures that are 
not attended to for a long period of time will result in repeated harvesting failures.  As a 
possible solution, the harvesting algorithm can keep track of the number of recent failures 
and employ an exponential back-off algorithm to gradually increase the time between 
harvesting attempts so as not to flood a server that is not responding correctly.  Another 
useful feature that can be added is automatic email to the administrator of the server if the 
harvesting operation has failed for a specified amount of time. 

Currently, a log of all harvesting operations is either stored locally or sent to the 
administrator of the component by email.  This includes reporting of error conditions.  
For the ETD Union Catalog, this has resulted in a significant quantity of email everyday 
– on the order of 1 message each time a component harvested from another component.  
For the CSTC system(s), email notification is not used but the data is logged to local files 

 Page 153 



 

instead.  To streamline this process, a summary email can be sent to the administrator, 
listing all recent activity.  As a further step, this information can be made available on a 
website which both keeps track of the history of harvesting by one or more components 
and allows manual interaction with components to trigger immediate harvesting, 
temporarily turn off harvesting for specific archives, etc. 

8.2.2 Issues with Single Sources 
ODL components sometimes use harvesting to transfer a stream of data from one 
component to another.  For some projects, a high degree of data consistency is required.  
In the production CSTC system, this was one of the first user complaints – that items that 
were accepted in the reviewing system were not immediately visible in the “search and 
browse” user interface.  This happened because the data was not being harvested 
immediately by the DBBrowse component.  As a temporary solution, harvesting is set to 
occur every 15 minutes.  This does, however, result in much unnecessary harvesting of 
the source archive.  As an alternative, the new CSTC system uses explicit harvesting, 
where the user interface “glue” initiates harvesting whenever an update is made.  First, 
the DBUnion component harvests from the source; then the DBBrowse and IRDB 
components are made to harvest from the DBUnion.  This is still far from ideal.  A 
machine interface can be used to control the harvesting operation.  A simple component 
can have two external interfaces: one to access the data through XOAI and a second to 
control the harvesting operation.  Then a component will define not just which nodes it 
gets data from but also the nodes it sends data to.  These two-way links will allow a 
component to trigger harvesting from its dependent nodes without any necessary 
interaction at the user interface layer. 

An alternative approach is to factor out harvesting from all ODL components.  Instead of 
bundling a component with a harvester, the harvester can be installed externally.  Then, 
the harvester can obtain a stream of records from the source component and submit them 
to the destination component using PutRecord requests.  This will result in a cleaner 
separation of functionality so that harvesting can be performed between any two arbitrary 
components.  Also, it will enable easy replacement of the harvester. 

8.3 USER INTERFACES 

8.3.1 User Interaction API 
Rather than hand-coding the different sets of user interface interactions, as explained 
previously, it may be possible to create general-purpose user interaction procedures.  For 
example, portions of an HTML interface can be generated by submitting GetRecord 
requests to components and then transforming their responses using XSL stylesheets.  
These operations can be simplified to procedures such as: 

 Page 154 



 

$ODL_Rating->Display_GetRecord ($identifier, 
$metadataPrefix, $xsl) 

In this command, $ODL_Rating refers to the object corresponding to an instance of the 
DBRate component, $identifier and $metadataPrefix uniquely identify the record 
requested, and $xsl is the stylesheet used to transform the response. 

Similar procedures can be defined for ListRecords, ListSets, and ListIdentifiers.   

However, for submission of records to a component (e.g., submission of a rating) via 
PutRecord, an XML fragment must be created.  This can be handled by a specific client-
side API to interface with an ODL component.  The libraries that implement these APIs 
can then handle encoding and XML namespace/schema issues.  For example, a rating 
might be submitted from the client programming language using a command of the form: 

$ODL_Rating->Submit ($subject, $object, $rating) 

In the above example, $ODL_Rating refers to the object corresponding to an instance of 
the DBRate component, $subject is the identifier of the user submitting the rating, 
$object is the identifier of the resource being rated, and $rating is the numerical value of 
the rating. 

If the parameters are themselves fragments of XML or XPath specifications, it may be 
possible to eliminate the procedural portions of the client program.  Then, user interface 
interaction can be controlled by a declarative specification, driven by a user interface 
engine. 

8.3.2 MDEdit Generalization 
The MDEdit module discussed previously is used to dynamically generate HTML forms 
for metadata entry and editing.  The appearance of the HTML forms is fixed in the 
MDEdit module but this can be made customizable through parameters to the module.  
Alternatively, the form display can be generated in UIML – User Interface Markup 
Language (Phanouriou, 2000) – and then transformed into appropriate displays for 
different projects and even different devices. 

While extensions have been devised to support some of the common input types used in 
forms, this can be further generalized to encompass all options available within HTML.  
In addition, optional HTML attributes, such as CSS styles, can be specified in the 
schema. 

Currently there is only support for a subset of the XML Schema language, but additional 
types and structures can be added to allow for more general XML structures with stricter 
type validation.  Examples of types which can be added and that are popular in schema 
files are “anyURI” and “dateTime” – these can be used for type-validation, with 
additional restrictions placed through extensions if necessary.  An example of such a 
restriction is that only dateTime values expressed in GMT are acceptable in the OAI-
PMH. 

 Page 155 



 

While the prototype module was created in Perl, the XML Schema extensions are 
sufficiently general to support the creation of engines in other languages.  Thus, a given 
schema file can produce the same interface on the same device irrespective of the engine 
and programming language used to create the interface.  In addition, an alternative engine 
can be created to enter metadata one field at a time through a command-line interface.  
This will be useful to support configuration of the components based on an XML schema. 

8.3.3 Component Composition GUI 
As discussed previously, an observed trend during the component composition user study 
was that many participants were confused by the myriad of baseURLs used to connect 
components together.  It may be possible to eliminate having to type those in by using a 
visual component composition interface similar to that used in the Microsoft Visual and 
Borland Builder product suites or the experimental D2K component composition tool 
developed at NCSA (Auvil and Clutter, 2002). 

To exploit the familiarity users have with popular visual programming interfaces, it may 
be possible to use the existing environments to compose ODL components.  Components 
can be mapped to applications such that either the application configures the component 
when run or the act of manipulating the component in the visual environment triggers a 
side-effect of configuring the component.  Parameters can be set as property lists and 
sanity checks can be mapped to procedures associated with individual properties.  To link 
the GUI and the Web server, the developer can work on the server by remotely mounting 
its filesystem or a client-server protocol can be developed to support remote component 
instantiation and configuration. 

Alternative interfaces may be built from scratch, using GUI toolkits, JavaBeans container 
technology, or even HTML websites.  The last option will allow configuration of a digital 
library through a Web interface, thus supporting online component configuration and 
composition and eliminating the need to use shell-level manipulation.  Such an approach 
will still require installation of the component, but this can be automated if the 
component configuration interface also includes the ability to download components 
from remote sites and install them in the background. 

8.3.4 Portals 
Projects such as uPortal (JASIG, 2002) are developing portal technology to integrate a 
suite of services into a single Web user interface in a componentized fashion.  ODL 
components are a prime example of services that can be integrated with uPortal, where 
each ODL service can be constructed as a uPortal channel.  Thus, the portal channel will 
form the user interface analogue to the service-level ODL component. 

There are many other portal projects – integration should be possible with any that 
support the construction and submission of HTTP requests and the translation of XML 
responses into sections of the user interface. 

 Page 156 



 

8.4 LOGGING 
Logging of transactions occurs at multiple levels with the ODL components.  Firstly, 
since all requests are submitted through the Web server, the server log files contain 
information about the components being accessed, the time of access, the source of the 
access, and the parameters if the request is sent using HTTP GET.  If the request is sent 
using HTTP POST, the parameters may be logged separately if the Web server is 
configured to do this. 

Component operations that do not involve the ODL interface will not be logged through 
this mechanism.  One typical such operation is harvesting of metadata from source 
archives, performed by components such as IRDB and DBBrowse.  These operations are 
logged independently with general information about the harvesting operation and a list 
of the records processed by the component.  A fragment of the DBBrowse log file is 
displayed in Figure 8.1. 

 Tue Oct  1 11:07 : Harvesting: 
Tue Oct  1 11:07 :   archive         = cstcdbbrowse 
Tue Oct  1 11:07 :   url             = 
http://oai.dlib.vt.edu/~hussein/cgi-
bin/cstc/DBUnion/cstcdbunion/union.pl 
Tue Oct  1 11:07 :   interval        = 86400 days 
Tue Oct  1 11:07 :   metadataPrefix  = resource 
Tue Oct  1 11:07 :   set             = 
Tue Oct  1 11:07 :   daysoverlap     = 1 
Tue Oct  1 11:07 :   interrequestgap = 10 
Tue Oct  1 11:07 : 
Tue Oct  1 11:07 : [1] Processing : oai:rmetadata:2 
Tue Oct  1 11:07 : [1] Indexing: oai:rmetadata:2, resource 
Tue Oct  1 11:07 : [1] Done with : oai:rmetadata:2 
Tue Oct  1 11:07 : [2] Processing : oai:rmetadata:3 
Tue Oct  1 11:07 : [2] Indexing: oai:rmetadata:3, resource 
Tue Oct  1 11:07 : [2] Done with : oai:rmetadata:3 
Tue Oct  1 11:07 : Done harvesting.  

Figure 8.1 Fragment of DBBrowse log file 

First, the parameters for the harvesting operation are listed.  Then, for each record 
encountered, entries are created when the record is obtained, when it is submitted for 
processing by the component (in the case of DBBrowse this involves indexing by specific 
fields), and when processing is completed.  Finally, an entry is created to indicate that 
harvesting has completed. 

While the non-standard log file format assists in detecting errors and confirming correct 
operation of the component, log file analysis tools will not operate on the data without 
pre-processing to transform it into a standard format, such as Extended Common Log 
Format (ECLF).  Future component implementations will benefit from using a 
standardized log format, as well as logging all activity independently of the Web server. 

ECLF logs basic information about each transaction since it is aimed towards Web 
access.  A more general log format will allow the logging of client sessions and 
operations specific to individual components.  The recently proposed XML Log File 

 Page 157 



 

Standard (Gonçalves, et al., 2002) may be a framework that can be applied to ODL 
components to capture this vital information.  While the new standard is geared towards 
discovery services such as searching and browsing, it can be generalized to include 
support for inter-component interaction. 

8.5 SECURITY 
Network security concerns are compounded when a Web-based system is built in a 
componentized fashion since each component is a potential point of attack.  A component 
may be compromised in at least two ways: by sending an abnormal request to the 
component, e.g., causing remote buffer overflow, or by sending a legally formatted 
request to a remote component that should not be accessible. 

The former case is best avoided by vigilance.  Remote buffer overflows and similar hacks 
constantly plague server administrators and require regular patching of server software 
and reconfiguration of servers to exclude unwanted access (Hsiao, 2001).  Individual 
languages also have mechanisms in place to help thwart hacking attempts.  Perl supports 
optional taint-checking (Siever, et al., 1999), where parameter values passed to any 
program may not be used in risky operations, like process spawning, without first being 
checked and transformed.  This prevents the abuse of HTML forms to execute arbitrary 
code on Web servers. 

Legally formatted requests pose a different form of threat altogether.  It is conceivable 
that, with open standards and protocols, a malicious user might send a request to an 
unprotected component to delete or modify records.  Using access control lists can 
prevent this, as was done with the Box and DBReview components, while even stronger 
measures like passwords may be needed to protect against breakins to trusted systems.  
Other components need similar mechanisms to screen out unauthorized transactions.  
More sophisticated rights management can be employed to finely control the interactions 
among components.  The XrML language (ContentGuard, 2001) and the emerging Open 
Digital Rights Language (Ianella, 2002) can be used with Web services and data 
transferred over Web services and thus may be good candidates for controlling access to 
ODL components. 

A combination of both of these approaches is necessary to minimize security risks.  For 
the existing ODL components, some thought has been given to security but a thorough 
audit and integration of preventative security features is desirable before widespread 
production use of the components occurs.   

8.6 NEW PROTOCOLS AND COMPONENTS 
The protocols that were designed and the corresponding reference implementations that 
were built during this study are representative of the kinds of digital library services that 
are needed in production systems.  However other services may be needed. 

New protocols can be designed for the following services: 

 Page 158 



 

• Summarization of search results – where a categorical summary of the search results 
is presented alongside the search results, as is done in the ARC system (Liu, et al., 
2001), or in sequence with the search results, as is done in the Amazon.com system. 

• Storage and retrieval of activity history. 

• Further generalization of the ODL-Rate and ODL-Review protocols to support 
different workflow models, e.g., an open review system where anyone may submit 
reviews. 

Further components can be designed and built to perform the following services using 
existing protocols (the protocol/s that the component will support is/are indicated in 
parentheses): 

• Automatically categorize records and insert the categories into specific fields – a 
metadata record mutator (OAI-PMH). 

• Dynamically or statically convert metadata from one format to another (OAI-PMH). 

• Support different search and browse query languages (ODL-Search, ODL-Browse). 

• Implement a high performance search engine using commodity open source or 
commercial tools (ODL-Search).  Student groups working on class projects have 
already done some work to illustrate the feasibility of this with the Lucene (Goetz, 
2000) and Swish-E (Tennant, 2002) search engines. 

Components also may be built to support multiple ODL protocols.  For example, a single 
component can harvest and index records for the purposes of searching and browsing.  
This will lead to improvements in network bandwidth usage and can result in storage 
savings from internal sharing of data structures. 

8.7 TESTING 
Testing of components is done at various different layers within the internal component 
architecture, but always using hand-coded tests – this was discussed in the prior chapter 
on testing. 

Further standardization of the software libraries used in development can lead to a tool 
suite that will not only be adaptable to future versions of the OAI and ODL protocols, but 
also possibly to other client/server protocols.  While XML tools are still not widely 
deployed and are notorious for high degrees of complexity, future combinations of XSD 
(Schema), XSLT (Transformation), and XPath (Path Specifications) can make protocol 
testing a fully automated process for emerging client/server protocols using XML as the 
underlying technology.  The Repository Explorer and Component Explorer both already 
use XML Schema for validation of response formats.  Further checking can be done 
using other tools such as Schematron (Dodds, 2001), which can test for internal 
relationships among tags in the XML document.  Finally, instead of manually parsing the 
responses, the user interface can be constructed by transforming the response into HTML 
using an XSL stylesheet.  Responses to single service requests thus can be processed 
completely using XML tools driven by declarative specifications, independently of the 
protocol being tested. 

 Page 159 



 

For automatic testing, it is necessary to specify a sequence of service requests, where 
some are parameterized by data from earlier responses.  As an example of this, the 
Repository Explorer tests for a correct response to ListMetadataFormats using an 
identifier obtained from an earlier response to ListIdentifiers.  This can be generalized 
using a declarative specification language to indicate the sequence of service requests and 
their parameters.  The following is a simple example of such a specification: 

<request label=”1” xsd=”OAI-PMH.xsd”> 

   <parameter name=”verb”>ListIdentifiers</parameter> 

</request> 

<request label=”2” xsd=”OAI-PMH.xsd”> 

   <parameter name=”verb”>ListMetadataFormats</parameter> 

   <parameter name=”identifier” type=”xpath” source=”1”> 

      OAI-PMH/ListIdentifiers/header/identifier 

   </parameter> 

</request> 

In this example, the first request submitted is ListIdentifiers.  The second request is 
ListMetadataFormats, which uses an XPath expression to extract a parameter from the 
first response.  Both responses will be validated against the “OAI-PMH.xsd” schema. 

Using such a declarative specification as input to a “protocol-testing engine”, it will be 
possible to perform tests analogous to the Repository Explorer’s automatic tests.  The 
advantages of this approach are that different OAI and ODL protocols can be tested using 
a single program driven by specialized declarations for each protocol.  Such scripting will 
facilitate performance testing as well. 

These techniques also can be generalized to support other XML-based protocols, 
including those related to Web Services. 

8.8 INSTALLATION AND REGISTRATION 
As discussed previously, system designers do not want to remember a multitude of 
baseURLs corresponding to each service component within a system.  To make the task 
of component composition simpler, these baseURLs can be hidden behind a graphical 
user interface, which tracks the names of components and associates baseURLs with 
them automatically when needed. 

As a step further, any environment for composing components can keep a central – at 
least for a project or server – registry of all installed components.  When each new 
component is installed and configured, it is registered and whenever a component is 
being connected to another component, the registry can be queried for a list of 
components to connect to. 

Registries can be built at both the template and instance level.  With support for both, 
each template can be registered at the point of installation.  Then, whenever an instance is 

 Page 160 



 

configured, that can be registered as well.  Composition of components then will have 
access to the list of configured instances, with the option to configure a new instance if 
necessary. 

A central registry of templates can be maintained so that each remote registry updates its 
list of available templates at regular intervals.  It may be possible to download and install 
component templates automatically if platform-independent bytecode is used such as in 
the Java and Jython languages or if the language is purely scripted such as in the case of 
Perl.  Such a delivery mechanism also can be used to distribute module updates.   

Further thought needs to go into how best to design such a system to be as independent of 
platform and language as possible.  Also, additional security and accounting concerns 
will need to be addressed as the registration system becomes more complex and 
interactive.  The UDDI project (Ariba, Inc., et al., 2000) is attempting to build registries 
of Web Services for cross-organization collaboration.  Some of their formal definitions of 
services also may be applicable to the fine-grained ODL inter-component interaction. 

8.9 PERFORMANCE 
Any interaction with a Web server will have upper bounds on performance – at some 
point the load can only be lessened by using more server resources.  This includes the 
possibilities of faster servers, servers with more memory, and faster internal bus speeds. 

Another option is to distribute the load across multiple servers.  Since a typical 
interaction with an ODL-based system involves internal communication among 
components, these components can be distributed among multiple machines, thereby 
decreasing the load and specializing the function of each machine.  When using a site-
wide registry, as discussed above, there will be no difference in operation except the 
possible penalty incurred from network communication.  High-speed special-purpose 
networks can reduce these delays.  Partitioning of the components into sets using a 
minimum-flow algorithm also will lessen the effect. 

As digital library systems become even more popular, components can be duplicated on 
multiple systems with transparent round-robin DNS resolution to distribute the load 
among the different instances – forming a “component farm” analogue to the “server 
farm” used for many large websites.  For more sophisticated solutions, a load balancing 
algorithm can be deployed to distribute components across institutions or sites using the 
framework of the Internet2 Distributed Storage Initiative (Beck and Moore, 1998). 

Thoroughly analyzing the protocol specifications and removing redundancy and 
irrelevant information can result in additional low-level performance improvements.  For 
example, while the datestamp within each OAI record is indispensable for harvesting, it 
is not used by most components when creating user-directed displays.  In addition, every 
response has the requestURL embedded and it is never used except for debugging 
purposes.  A complete profiling of the use of other features can expose which features are 
really useful for the base XOAI protocol, which can be relegated to higher levels, and 
which can be eliminated altogether from the ODL protocols. 

 Page 161 



 

8.10 NEW STANDARDS 

8.10.1 OAI-PMH v2.0 
Since work began on the ODL component framework, the OAI has released version 2.0 
of the OAI-PMH.  Some of the new features in the protocol influenced by early ODL 
work and other projects are: 

• Finer datestamp granularities to support times in addition to dates. 

• The addition of optional attributes to indicate the cursor and completeListSize for a 
response. 

• Association of datestamp with individual metadata records and not with items, thus 
giving more independence to metadata records. 

• A well-defined mechanism to return errors and exceptions in XML format, thus 
separating the OAI protocol from HTTP. 

• The elimination of timezones altogether – all datestamps now have to be in 
Greenwich Mean Time.  This removes the need to handle both differences in 
timezones and differences in daylight savings policies. 

Some XOAI-PMH features were proposed to the OAI Technical Committee but they 
were not pursued because they did not have general appeal.  Specifically, the PutRecord 
service request did not appeal to members who wanted to avoid the security concerns 
inherent with 2-way data transfer; and the idea of a response-level container did not get 
much support because the protocol was not being designed for extensibility.  

A few of the new features of OAI-PMH v2.0 are problematic for ODL.  The requirement 
that each record lists the sets it is a member of in its header will not work for ODL 
protocols where the set parameter is used to encode complex expressions.  For example, 
ODL-Search cannot list every search query that a record will satisfy.  Also, the 
idempotence of requests, which is now explicitly required, cannot be satisfied if the 
protocol is not read-only. 

Ultimately, if a new version of the XOAI protocol is derived from OAI-PMH v2.0, there 
will be a different set of changes necessary from those that were applied to OAI-PMH 
v1.1. 

8.10.2 SOAP-OAI and SOAP-ODL 
During the process of designing and experimenting with OAI-PMH v2.0, there emerged 
the possibility of using SOAP (Box, et al., 2000) instead of HTTP as the underlying 
layer.  The primary advantage of SOAP to OAI is that it provides an XML-based 
parameter passing convention that is now widely supported.  This will eliminate the need 
for CGI and the different encodings of CGI and XML data, as well as provide the facility 
for Schema-based validation of service request parameters. 

While SOAP was not adopted by the OAI because of time constraints and because the 
standard is not yet stable, some changes have been made to eventually support a move 

 Page 162 



 

towards SOAP.  The schemata for OAI-PMH responses were unified and errors are now 
handled through XML responses.  The former was suggested by experiences from 
preliminary work in porting OAI-PMH to SOAP.  From this preliminary work, an 
example SOAP service request body that can correspond to GetRecord is shown in 
Figure 8.2. 

 <?xml version="1.0"?> 
 
<GetRecordRequest  
   xmlns="http://oai.dlib.vt.edu/OAI/1.1/SOAP/1.1/OAI_GetRecord_Request" 
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
   xsi:schemaLocation=" 
     http://oai.dlib.vt.edu/OAI/1.1/SOAP/1.1/OAI_GetRecord_Request 
     http://oai.dlib.vt.edu/OAI/1.1/SOAP/1.1/OAI_GetRecord_Request.xsd" 
> 
 
   <identifier>test</identifier> 
   <metadataPrefix>oai_dc</metadataPrefix> 
 
</GetRecordRequest> 

 

Figure 8.2 Example of SOAP GetRecord service request body 

If OAI opts to go the SOAP route, newer versions of ODL can build on it and inherit the 
advantages of simpler parameter passing.  In addition, each ODL protocol can have its 
own schema for parameter passing instead of overloading the standard OAI-PMH 
parameters. 

8.10.3 ODL v2.0 
In previous chapters it has been demonstrated that systems can be built using ODL 
components and that these systems can be both effective and efficient.  The premise of 
ODL has always been simplicity, and this drove the approach of building on the OAI 
protocol rather than designing a new protocol from scratch. 

In many cases this has meant overloading the meaning of OAI-PMH service requests and 
ignoring service requests which made no sense, for example, ListSets for ODL-Search.  
The base XOAI protocol thus contains some features which are not necessary in some of 
the higher-level ODL protocols. 

Another experience from designing and implementing the ODL protocols has been that 
many of the protocols share common requirements, like the number of hits encoded in the 
responseContainer and the start and stop parameters encoded in set when requesting a 
list of records. 

These experiences suggest that a newer protocol can be designed to revert to the Kahn-
Wilensky model of data access as an operation distinct from metadata harvesting.  Instead 
of building a data access model over the OAI protocol, it may be possible to create an 
abstract data access protocol as a lower layer beneath the OAI protocol.  Metadata 
harvesting will then be a higher-level operation on the same level as the rest of the ODL 
protocols.  This will have the net effect of: 

 Page 163 



 

• Removing the unnecessary harvesting-specific information from ODL protocols. 

• Eliminating the need to define service requests where they are not applicable. 

• Creating a more general model to support future digital library services, independent 
of changes to the OAI-PMH. 

• Separating ODL from OAI to decrease confusion about their differences, while still 
exploiting their similarities. 

Figure 8.3 illustrates the differences between the current ODL approach and the one 
being proposed. 

 
Proposed Model 

OAI-PMH 
XOAI-PMH DL Access Protocol 

OAI-PMH ODL protocols ODL protocols 

Current Model 

 

Figure 8.3 Current and proposed models for OAI/ODL relationship 

The proposed DL access protocol can have optional primitive operations to  

• Identify the component.  

• Retrieve a single item. 

• Retrieve multiple items based on starting and stopping positions. 

• Submit a single item. 

Extensibility can be built into the protocol to support the addition of service requests and 
parameters for higher-level ODL and OAI protocols. 

 Page 164 



 

Chapter 9   

CCOONNCCLLUUSSIIOONNSS  

Building digital libraries is not a simple process – or so say those who build them.   

This work has attempted to dispel that myth by proposing and testing a component 
framework to support the construction of digital libraries in a simple and repeatable 
fashion. 

The Open Archives Initiative set the stage for large-scale interoperability of DL systems 
by specifying and supporting the Protocol for Metadata Harvesting.  Open Digital 
Libraries generalize the notions of the PMH to support fine-grained access to 
components, using an extension of the protocol (XOAI-PMH) from which specific 
service-directed ODL protocols are derived. 

Protocols have been specified for many popular DL services.  Reference implementations 
of each were created.  These were then integrated into multiple existing and built-from-
scratch systems to demonstrate their ability to integrate with other components and 
legacy systems with differing requirements and architectures. 

The experimental systems have shown that: 

1. ODL components can be created as self-contained configurable entities. 

2. It is possible to construct DL interfaces using a network of ODL components to 
provide the back-end processing. 

3. The DL interfaces created are not distinguishable from monolithic systems.   

4. ODL components are extensible and reusable.  Some portability and 
independence of components can be achieved. 

5. Performance is very important but there are workable solutions to address these 
issues without sacrificing generality. 

A user study was conducted and performance measurements were taken.  These 
supported the assertions that: 

1. ODL is relatively simple and understandable. 

2. ODL layering does not negatively impact the performance of systems. 

3. Component composition does not negatively impact the performance of user 
interfaces. 

These experiments have shown that there is promise for ODL and similar approaches to 
replace the traditional monolithic digital library systems.  The results from this work 

 Page 165 



 

vindicate the Web Services approach to building systems by confirming the efficacy and 
efficiency of such systems.  Also, by investigating particular services and the semantics 
of service-level protocols, this work has demonstrated the applicability of Web Services 
to digital libraries.  As the Web Services technology stabilizes, it will play a vital role in 
the future of distributed digital libraries.  

It is hoped that the results of this work will change the way people build Digital 
Libraries.  The evaluations and feedback received from users and colleagues has 
strengthened the case for building DL access protocols to support high-level services, and 
composing of those services into complete Digital Library systems.  

Building upon a foundation of extensibility, it then will be possible for DL researchers 
and practitioners to work on providing more interesting services to users, thus bridging 
the wide gap between current research and production systems, and ultimately making 
information more accessible to people. 

 

 Page 166 



 

RREEFFEERREENNCCEESS  

ACME Labs (2002), thttpd - tiny/turbo/throttling HTTP server. Website 

http://www.acme.com/software/thttpd/  

Amazon.com (2002), Internet Movie Database. Website http://us.imdb.com 

ANSI/NISO (1995), Information Retrieval (Z39.50): Application Service Definition and 

Protocol Specification (ANSI/NISO Z39.50-1995), Bethesda, MD: NISO Press. 

Apache Software Foundation, The (2002), Xerces Java Parser. Website 

http://xml.apache.org/xerces-j/index.html  

Apparao, Vidur, Steve Byrne, Mike Champion, Scott Isaacs, Ian Jacobs, Arnaud Le Hors, 

Gavin Nicol, Jonathan Robie, Robert Sutor, Chris Wilson, and Lauren Wood 

(editors) (1998), Document Object Model (DOM) Level 1 Specification, W3C, 1 

October 1998. Available http://www.w3.org/TR/1998/REC-DOM-Level-1-

19981001/ 

Ariba, Inc., IBM and Microsoft (2000), UDDI Technical White Paper, 6 September 2000. 

Available http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf    

Atkins, Anthony (2002), Resources for Developers of ETD databases. Website 

http://scholar.lib.vt.edu/ETD-db/developer/  

Atkins, Anthony, Edward A. Fox, Robert K. France, and Hussein Suleman (2001), ETD-

ms: an Interoperability Metadata Standard for Electronic Theses and Dissertations 

version 1.00, NDLTD. Available http://www.ndltd.org/standards/metadata/  

 Page 167 

http://www.acme.com/software/thttpd/
http://us.imdb.com/
http://xml.apache.org/xerces-j/index.html
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://scholar.lib.vt.edu/ETD-db/developer/
http://www.ndltd.org/standards/metadata/


 

Auvil, Loretta, and David Clutter (2002), Data to Knowledge (D2K) Tutorial, UIUC, 18 

March 2002. Available http://www.ncsa.uiuc.edu/Divisions/DMV/ALG/D2K-

tutorial.htm  

Baldonado, M., C. K. Chang, L. Gravano, and A. Paepcke (1997), “The Stanford Digital 

Library Metadata Architecture”, in International Journal on Digital Libraries, Vol. 

1, No. 2, pp. 108-121. Available http://www-diglib.stanford.edu/cgi-bin/get/SIDL-

WP-1996-0051  

Beck, M., and T. Moore (1998), “The I-2 DSI Project: An Architecture for Internet 

Content Channels”, in Computer Networking and ISDN Systems, Vol. 30, No. 22-

23, pp. 2141-2148. 

Berners-Lee, Tim (1996), The World Wide Web: Past, Present and Future, W3C. August 

1996. Available http://www.w3.org/People/Berners-Lee/1996/ppf.html  

Berners-Lee, Tim and Mark Fischetti (1999), Weaving the Web, Harper, San Francisco. 

Berners-Lee, Tim, James Hendler, and Ora Lassila (2001), “The Semantic Web”, in 

Scientific American, May 2001. Available 

http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html 

Berry, Michael W., and Murray Browne (1999), Understanding Search Engines: 

Mathematical Modeling and Text Retrieval, SIAM, Philadelphia. 

Bertocco, Sara (2001), “Torii, an Open Portal over Open Archives”, in High Energy 

Physics Libraries Webzine, Issue 4, 25 June 2001. Available 

http://library.cern.ch/HEPLW/4/papers/4/  

 Page 168 

http://www.ncsa.uiuc.edu/Divisions/DMV/ALG/D2K-tutorial.htm
http://www.ncsa.uiuc.edu/Divisions/DMV/ALG/D2K-tutorial.htm
http://www-diglib.stanford.edu/cgi-bin/get/SIDL-WP-1996-0051
http://www-diglib.stanford.edu/cgi-bin/get/SIDL-WP-1996-0051
http://www.w3.org/People/Berners-Lee/1996/ppf.html
http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html
http://library.cern.ch/HEPLW/4/papers/4/


 

Bird, Steven, and Gary Simons (2001), “The OLAC Metadata Set and Controlled 

Vocabularies”, in Proceedings of the ACL/EACL Workshop on Sharing Tools and 

Resources for Research and Education, Toulouse, July 2001, Association for 

Computational Linguistics. Preprint http://arXiv.org/abs/cs/0105030  

Birmingham, W. P. (1995), “An Agent-Based Architecture for Digital Libraries”, in D-

Lib Magazine, Vol. 1, No. 1, July 1995. Available 

http://www.dlib.org/dlib/July95/07birmingham.html  

Bowman, C. M., P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz (1995), 

“The Harvest Information Discovery and Access System”, in Computer Networks 

and ISDN Systems, Vol. 28, pp. 119-125. 

Box, Don, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, 

Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer (2000), Simple Object 

Access Protocol (SOAP) v1.1, W3C, 8 May 2000. Available 

http://www.w3.org/TR/SOAP/ 

Brain, Marshall (2002), How Stuff Works. Website http://www.howstuffworks.com 

Bray, T., J. Paoli, C. M. Sperberg-McQueen, and Eve Maler (editors) (2000), Extensible 

Markup Language (XML) 1.0 (Second Edition), W3C. Available 

http://www.w3.org/TR/2000/REC-xml-20001006. 

Brewer, Eric A. (2001), “When Everything is Searchable”, in Communications of the 

ACM, Vol. 44, No. 3, March 2001, pp. 53-54. 

Brown, M. R. (1996), “FastCGI – A High-Performance Gateway Interface”, position 

paper at Programming the Web - a search for APIs workshop, Fifth International 

 Page 169 

http://arxiv.org/abs/cs/0105030
http://www.dlib.org/dlib/July95/07birmingham.html
http://www.w3.org/TR/SOAP/
http://www.howstuffworks.com/
http://www.w3.org/TR/2000/REC-xml-20001006


 

World Wide Web Conference, Paris, France, 6 May 1996. Available 

http://www.fastcgi.com/devkit/doc/www5-api-workshop.html  

Castelli, Donatella, and Pasquale Pagano (2002), “OpenDLib: A Digital Library Service 

System”, in Research and Advanced Technology for Digital Libraries, Proceedings 

of the 6th European Conference, ECDL 2002, Rome, Italy, September 2002, pp. 

292-308. 

Clark, James (1999), XSL Transformations Version 1.0, W3C, 16 November 1999. 

Available http://www.w3.org/TR/xslt  

Clark, James, and Steve DeRose (editors) (1999), XML Path Language (XPath) Version 

1.0, W3C, 16 November 1999. Available http://www.w3.org/TR/xpath  

CLIR (1998), CPA Annual Report: 1997-1998, Council on Library and Information 

Resources. Available http://www.clir.org/pubs/annual/annrpt97/libraries.html 

ContentGuard (2001), XrML 2.0 Technical Overview. Available 

http://www.xrml.org/reference/XrMLTechnicalOverviewV1.pdf  

Cooper, Clark (1999), “Using Expat”, on O’Reilly’s xml.com, 1 September 1999. 

Available http://www.xml.com/pub/a/1999/09/expat/index.html 

Crispin, M. (1996), RFC2060: Internet Mail Access Protocol – version 4rev1, Network 

Working Group, December 1996. Available ftp://ftp.isi.edu/in-notes/rfc2060.txt  

Davis, James R., and Carl Lagoze (2000), “NCSTRL: Design and Deployment of a 

Globally Distributed Digital Library”, in JASIS, Vol. 51, No. 3, pp. 273-280. 

DCMI (1997), Dublin Core Metadata Element Set Version 1.1: Reference Description. 

Available http://www.dublincore.org/documents/dces/  

 Page 170 

http://www.fastcgi.com/devkit/doc/www5-api-workshop.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.clir.org/pubs/annual/annrpt97/libraries.html
http://www.xrml.org/reference/XrMLTechnicalOverviewV1.pdf
http://www.xml.com/pub/a/1999/09/expat/index.html
ftp://ftp.isi.edu/in-notes/rfc2060.txt
http://www.dublincore.org/documents/dces/


 

DCMI (2000), Dublin Core Qualifiers, Dublin Core Metadata Initiative, 11 July 2000. 

Available http://www.dublincore.org/documents/dcmes-qualifiers/ 

Dijkstra, Edsger (2001), “The End of Computing Science”, in Communications of the 

ACM, ACM, Vol. 44, No. 3, March 2001, p. 92. 

Dodds, Leigh (2001), Schematron: validating XML using XSLT, XSLT-UK Conference, 

Oxford, England, 8 April 2001. Available 

http://www.ldodds.com/papers/schematron_xsltuk.html  

Fallside, David C. (editor) (2001), XML Schema Part 1: Structures and Part 2: 

Datatypes, W3C, 2 May 2001. Available http://www.w3.org/TR/xmlschema-1/  

and http://www.w3.org/TR/xmlschema-2/  

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee 

(1999), RFC2616: Hypertext Transfer Protocol – HTTP 1.1, Network Working 

Group, June 1999. Available ftp://ftp.isi.edu/in-notes/rfc2616.txt. 

Finin, Tim, Yannis Labrou, and James Mayfield (1997), “KQML as an agent 

communication language”, in Software Agents, AAAI Press/The MIT Press. 

Available http://www.cs.umbc.edu/agents/introduction/kqmlacl.ps  

Fox, Edward A. (1999), “Networked Digital Library of Theses and Dissertations”, in 

Proceedings of DLW15, July 1999. Nara, Japan: ULIS. Available 

http://www.ndltd.org/pubs/dlw15.doc. 

Fox, Edward A. (2002), Networked Digital Library of Theses and Dissertations. Website 

http://www.ndltd.org 

 Page 171 

http://www.dublincore.org/documents/dcmes-qualifiers/
http://www.ldodds.com/papers/schematron_xsltuk.html
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-2/
ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.cs.umbc.edu/agents/introduction/kqmlacl.ps
http://www.ndltd.org/pubs/dlw15.doc
http://www.ndltd.org/


 

Fox, Edward A., and Lillian Cassel (editors) (2002), Journal of Educational Resources in 

Computing, ACM.  Available http://www.acm.org/pubs/jeric/  

Fox, E. A., B. DeVane, J. L. Eaton, N. A. Kipp, P. Mather, T. McGonigle, G. McMillan, 

and W. Schweiker (1997), “Networked Digital Library of Theses and Dissertations: 

An International Effort Unlocking University Resources”, in D-Lib Magazine, Vol. 

3, No. 9, September 1997. Available 

http://www.dlib.org/dlib/september97/theses/09fox.html  

Fox, E. A., J. L. Eaton, G. McMillan, N. A. Kipp, L. Weiss, E. Arce, and S. Guyer 

(1996), “National Digital Library of Theses and Dissertations: A Scalable and 

Sustainable Approach to Unlock University Resources”, in D-Lib Magazine, Vol. 

2, No. 8, September 1996. Available 

http://www.dlib.org/dlib/september96/theses/09fox.html  

Fox, Edward A., Deborah Knox, Lillian Cassel, John A. N. Lee, Manuel Pérez-Quiñones, 

John Impagliazzo, and C. Lee Giles (2002), CITIDEL: Computing and Information 

Technology Interactive Digital Educational Library. Website 

http://www.citidel.org  

Fox, Edward A, Deborah Knox, Scott Grissom, and Rachelle Heller (2002), Computer 

Science Teaching Center. Website http://www.cstc.org 

France, Robert K. (2001), MARIAN Digital Library Information System. Website 

http://www.dlib.vt.edu/products/marian.html 

France, Robert K. (2001), Effective, Efficient Retrieval in a Network of Digital 

Information Objects, Ph.D. dissertation, Virginia Polytechnic Institute and State 

 Page 172 

http://www.acm.org/pubs/jeric/
http://www.dlib.org/dlib/september97/theses/09fox.html
http://www.dlib.org/dlib/september96/theses/09fox.html
http://www.citidel.org/
http://www.cstc.org/
http://www.dlib.vt.edu/products/marian.html


 

University.  Available http://scholar.lib.vt.edu/theses/available/etd-11272001-

124212/  

Freier, Alan O., Philip Karlton, and Paul C. Kocher (1996), The SSL Protocol Version 

3.0, Transport Layer Security Working Group, 18 November 1996. Available 

http://www.netscape.com/eng/ssl3/draft302.txt  

Gladney, H., Z. Ahmed, R. Ashany, N. J. Belkin, E. A. Fox, and M. Zemankova (1994), 

Digital Library: Gross Structure and Requirements, Workshop on On-line Access 

to Digital Libraries, June 1994. 

Goetz, Brian (2000), The Lucene search engine: Powerful, flexible and free, JavaWorld. 

Available http://www.javaworld.com/javaworld/jw-09-2000/jw-0915-lucene.html  

Goldberg, David, David Nichols, Brian M. Oki, and Douglas Terry (1992), “Using 

collaborative filtering to weave an information tapestry” in Communications of the 

ACM – Special Issue on Information Filtering, Vol. 35, No. 12, December 1992, 

pp. 61-70. 

Gonçalves, Marcos André, Ming Luo, Rao Shen, Mir Farooq Ali, and Edward A. Fox 

(2002), “An XML Log Standard and Tool for Digital Library Logging Analysis”, 

in Research and Advanced Technology for Digital Libraries, Proceedings of the 6th 

European Conference, ECDL 2002, Rome, Italy, September 2002, pp. 129-143. 

Grangard, Anders (2001), ebXML Technical Architecture Specification v1.0.4, ebXML, 

16 February 2001. Available http://www.ebxml.org/specs/ebTA.pdf  

 Page 173 

http://scholar.lib.vt.edu/theses/available/etd-11272001-124212/
http://scholar.lib.vt.edu/theses/available/etd-11272001-124212/
http://www.netscape.com/eng/ssl3/draft302.txt
http://www.javaworld.com/javaworld/jw-09-2000/jw-0915-lucene.html
http://www.ebxml.org/specs/ebTA.pdf


 

Gravano, L., K. Chang, H. Garcia-Molina, C. Lagoze, and A. Paepcke (1997), STARTS: 

Stanford Protocol Proposal for Internet Retrieval and Search. Available 

http://www-db.stanford.edu/~gravano/starts.html. 

Gray, Terry (1995), Comparing Two Approaches to Remote Mailbox Access: IMAP vs. 

POP, The IMAP Connection, 18 September 1995. Available 

http://www.imap.org/papers/imap.vs.pop.brief.html  

Greef, Arthur (1998), Partner Interface Process Technical Architecture, RosettaNet. 

Available http://www.rosettanet.org   

Green, Noah, Panagiotis G. Ipeirotis, and Luis Gravano (2001), 

“SDLIP+STARTS=SDARTS: A Protocol and Toolkit for Metasearching”, in 

Proceedings of First ACM/IEEE-CS Joint Conference on Digital Libraries, 

Roanoke, VA, USA, 24-28 June 2001, pp. 207-214. 

Gundavaram, Shishir (1996), CGI Programming on the World Wide Web, O’Reilly and 

Associates, 1 March 1996. Available http://www.oreilly.com/openbook/cgi/ 

Halbert, M. (2002), AmericanSouth.org. Website http://www.americansouth.org    

Harnad, S. (1999), “Free at Last: The Future of Peer-Reviewed Journals”, in D-Lib 

Magazine, Vol. 5, No. 12, December 1999. Available 

http://www.dlib.org/dlib/december99/12harnad.html 

Hsiao, Aron (2001), Sams Teach Yourself Linux Security Basic in 24 Hours, Sams 

Publishing, Indiana. 

Ianella, Renato (2002), Open Digital Rights Language (ODRL) Version 1.1, W3C, 19 

September 2002. Available http://www.w3.org/TR/odrl/  

 Page 174 

http://www-db.stanford.edu/~gravano/starts.html
http://www.imap.org/papers/imap.vs.pop.brief.html
http://www.rosettanet.org/
http://www.oreilly.com/openbook/cgi/
http://www.americansouth.org/
http://www.dlib.org/dlib/december99/12harnad.html
http://www.w3.org/TR/odrl/


 

IMS Global Learning Consortium, Inc. (1999), IMS Learning Resource Meta-data 

Information Model, IMS. Available 

http://www.imsproject.org/metadata/mdinfov1p1.html 

InfoSpace (2002), MetaCrawler Search Engine. Website 

http://www.metacrawler.com/index.html 

ISO (1994), ISO/IEC 7498-1:1994, Open Systems Interconnection Basic Reference 

Model: The Basic Model, International Organization for Standardization. 

JASIG (2002), uPortal 2.0 Architecture Overview. Available 

http://mis105.mis.udel.edu/ja-

sig/uportal/architecture/uPortal_architecture_overview.pdf  

Kahn, Robert, and Robert Wilensky (1995), A Framework for Distributed Digital Object 

Services. Available http://www.cnri.reston.va.us/k-w.html. 

Lagoze, C., and J. R. Davis (1995), “Dienst - An Architecture for Distributed Document 

Libraries”, in Communications of the ACM, Vol. 38, No. 4, ACM, p. 47. 

Lagoze, Carl, Walter Hoehn, David Millman, William Arms, Stoney Gan, Dianne 

Hillmann, Christopher Ingram, Dean Krafft, Richard Marisa, Jon Phipps, John 

Saylor, Carol Terrizzi, James Allan, Sergio Guzman-Lara, and Tom Kalt (2002), 

“Core Services in the Architecture of the National Science Digital Library 

(NSDL)”, in Proceedings of Second ACM/IEEE-CS Joint Conference on Digital 

Libraries, Portland, OR, USA, 14-18 July 2002, pp. 201-209. 

 Page 175 

http://www.imsproject.org/metadata/mdinfov1p1.html
http://www.metacrawler.com/index.html
http://mis105.mis.udel.edu/ja-sig/uportal/architecture/uPortal_architecture_overview.pdf
http://mis105.mis.udel.edu/ja-sig/uportal/architecture/uPortal_architecture_overview.pdf
http://www.cnri.reston.va.us/k-w.html


 

Lagoze, Carl, and Herbert Van de Sompel (2001), The Open Archives Initiative Protocol 

for Metadata Harvesting – Version 1.1, Open Archives Initiative, January 2001. 

Available http://www.openarchives.org/OAI/1.1/openarchivesprotocol.htm  

Lagoze, Carl, and Herbert Van de Sompel (2001), “The Open Archives Initiative: 

Building a low-barrier interoperability framework”, in Proceedings of the ACM-

IEEE Joint Conference on Digital Libraries, Roanoke, VA, USA, 24-28 June 2001, 

pp. 54-62. 

Lagoze, Carl, Herbert Van de Sompel, Michael Nelson, and Simeon Warner (2002), The 

Open Archives Initiative Protocol for Metadata Harvesting – Version 2.0, Open 

Archives Initiative, June 2002. Available 

http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm 

LANL (2002), arXiv.org. Website http://www.arXiv.org 

Lasher, R., and D. Cohen (1995), A Format for Bibliographic Records (RFC1807). 

Available http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1807.txt. 

Leiner, B. M. (1998), “The NCSTRL Approach to Open Architecture”, in D-Lib 

Magazine, Vol. 4, No. 11, December 1998. Available 

http://www.dlib.org/dlib/december98/leiner/12leiner.html  

Lesk, Michael (1997), Practical Digital Libraries: Books, Bytes, and Bucks, Morgan 

Kaufmann Publishers, San Francisco. 

Leuf, Bo, and Ward Cunningham (2001), The Wiki Way: Collaboration and Sharing on 

the Internet, Addison-Wesley, Longman. 

 Page 176 

http://www.openarchives.org/OAI/1.1/openarchivesprotocol.htm
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm
http://www.arxiv.org/
http://info.internet.isi.edu/in-notes/rfc/files/rfc1807.txt
http://www.dlib.org/dlib/december98/leiner/12leiner.html


 

Levy, D., and C. C. Marshall (1995), “Going Digital: A Look at Assumptions Underlying 

Digital Libraries”, in Communications of the ACM, Vol. 38, No. 4, ACM, pp. 78-

84.  

Library of Congress (2002), American Memory. Website http://memory.loc.gov/ 

Library of Congress (2002), MARC Standards. Website  http://www.loc.gov/marc/ 

Liu, Xiaoming, Kurt Maly, Mohammad Zubair, and Michael L. Nelson (2001), “Arc: an 

OAI service provider for cross-archive searching”, in Proceedings of First 

ACM/IEEE-CS Joint Conference on Digital Libraries, Roanoke, VA, USA, 24-28 

June 2001, pp. 65-66. 

Luo, Ming (2002), Digital Libraries in a Box. Website http://dlbox.nudl.org  

Masinter, L. (1998), RFC2324: Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0), 

Network Working Group, 1 April 1998. Available ftp://ftp.isi.edu/in-

notes/rfc2324.txt  

Merriam-Webster (2002), Merriam-Webster Online. Website http://www.m-w.com/ 

Myers, J., and M. Rose (1996), RFC1939: Post Office Protocol – Version 3, Network 

Working Group, May 1996. Available ftp://ftp.isi.edu/in-notes/rfc1939.txt  

Nava Muñoz, Sandra Edith (2002), Federación de Bibliotecas Digitales utilizando 

Agentes Móviles (Digital Libraries Federation using Mobile Agents), Master’s 

thesis, Universidad de las Américas – Puebla. 

NCSTRL (2002), Networked Computer Science Technical Reference Library. Website 

http://www.ncstrl.org 

 Page 177 

http://memory.loc.gov/
http://memory.loc.gov/
http://dlbox.nudl.org/
ftp://ftp.isi.edu/in-notes/rfc2324.txt
ftp://ftp.isi.edu/in-notes/rfc2324.txt
http://www.m-w.com/
ftp://ftp.isi.edu/in-notes/rfc1939.txt
http://www.ncstrl.org/


 

NHSE (2002), Repository-in-a-Box. Website http://www.nhse.org/RIB/ 

Nielsen, Jakob (2001), Search: Visible and Simple, Jakob Nielsen’s AlertBox, 13 May 

2001. Available http://www.useit.com/alertbox/20010513.html  

Nierstrasz, Oscar, and Laurent Dami (1995), “Component-Oriented Software 

Technology”, in Object-Oriented Software Composition, edited by Oscar Nierstrasz 

and Dennis Tsichritzis, Prentice-Hall. 

Norman, Donald (1990), The Design of Everyday Things, Currency/Doubleday, New 

York. 

NSF (2002), National Science, Mathematics, Engineering and Technology Education 

Digital Library (NSDL). Website http://www.nsdl.nsf.gov/ 

Nwana, Hyacinth S., and Divine T. Ndumu (1999), “A Perspective on Software Agents 

Research”, in The Knowledge Engineering Review, Vol. 14, No. 2, pp. 1-18. 

Available http://agents.umbc.edu/introduction/hn-dn-ker99.html  

OAI (2002), Open Archives Initiative. Website http://www.openarchives.org 

OCLC, Inc. (2002), Online Computer Library Center. Website http://www.oclc.org 

OCLC, Inc. (2002), OCLC WorldCat. Website 

http://www.oclc.com/oclc/menu/colpro.htm 

Ogbuji, Uche (2000), Using WSDL in SOAP applications, IBM developerWorks, 

November 2000. Available http://www-

106.ibm.com/developerworks/webservices/library/ws-soap/index.html  

OpCit (2002), E-Prints. Website http://www.eprints.org/ 

 Page 178 

http://www.nhse.org/RIB/
http://www.useit.com/alertbox/20010513.html
http://www.nsdl.nsf.gov/
http://agents.umbc.edu/introduction/hn-dn-ker99.html
http://www.openarchive2.org/
http://www.oclc.org/
http://www.oclc.com/oclc/menu/colpro.htm
http://www-106.ibm.com/developerworks/webservices/library/ws-soap/index.html
http://www-106.ibm.com/developerworks/webservices/library/ws-soap/index.html
http://www.eprints.org/


 

Paepcke, A., R. Brandriff, G. Janee, R. Larson, B. Ludaescher, S. Melnik, and S. 

Raghavan (2000), “Search Middleware and the Simple Digital Library 

Interoperability Protocol”, in D-Lib Magazine, Vol. 6, No. 3, March 2000. 

Available http://www.dlib.org/dlib/march00/paepcke/03paepcke.html  

Payette, S., and Lagoze, C. (1998), “Flexible and Extensible Digital Object and 

Repository Architecture”, in Proceedings of Second European Conference on 

Research and Advanced Technology for Digital Libraries, Heraklion, Crete, 

Greece, 21-23 September 1998, Springer, (Lecture notes in computer science; Vol. 

1513). 

Phanouriou, Constantinos (2000), UIML: A Device-Independent User Interface Markup 

Language, Ph.D. dissertation, Virginia Polytechnic Institute and State University. 

Phillips, Paul, Larry Doolittle, and Jon Nelson (2002), Boa Webserver. Website 

http://www.boa.org/  

Powell, James, and Edward A. Fox (1998), “Multilingual Federated Searching Across 

Heterogeneous Collections”, in D-Lib Magazine, Vol. 4, No. 8, September 1998. 

Available http://www.dlib.org/dlib/september98/powell/09powell.html 

Raymond, Eric S., and Bob Young (2001), The Cathedral and the Bazaar: Musings on 

Linux and Open Source by an Accidental Revolutionary, O’Reilly and Associates, 

15 January 2001. 

Resnick, Paul, and Hal R. Varian (1997), “Recommender Systems” in Communications 

of the ACM, Vol. 40, No. 3, March 1997, pp. 56-58. 

 Page 179 

http://www.dlib.org/dlib/march00/paepcke/03paepcke.html
http://www.boa.org/
http://www.dlib.org/dlib/september98/powell/09powell.html


 

RFC Editor, et al. (1999), 30 Years of RFCs, Network Working Group, 7 April 1999. 

Available ftp://ftp.rfc-editor.org/in-notes/rfc2555.txt 

Roscheisen, M., M. Baldonado, C. Chang, L. Gravano, S. Ketchpel, and A. Paepcke 

(1998), “The Stanford InfoBus and Its Service Layers: Augmenting the Internet 

with Higher-Level Information Management Protocols”, in Digital Libraries in 

Computer Science: The MeDoc Approach, Lecture Notes in Computer Science, No. 

1392, Springer, 8 August 1998. Available 

http://dbpubs.stanford.edu:8090/pub/1998-25  

Shafer, Keith, Stuart Weibel, Erik Jul, and Jon Fausey (1996), Introduction to Persistent 

Uniform Resource Locators, OCLC. Available http://purl.oclc.org/docs/inet96.html  

Sieve (2002), Sieve. Website http://simon.cs.vt.edu/sieve/ 

Siever, Ellen, Stephen Spainhour, and Nathan Patwardhan (1999), Perl in a Nutshell, 

O’Reilly and Associates, Sebastopol, California. 

Simeonov, Simeon (1998), “WDDX: Distributed Data for the Web”, in Proceedings of 

XML ’98, Chicago, USA, December 1998. Available 

http://www.infoloom.com/gcaconfs/WEB/chicago98/simeonov.htm  

SpeedyCGI (2002). SpeedyCGI. Website http://daemoninc.com/speedycgi/  

Suleman, Hussein (2001), “Enforcing Interoperability with the Open Archives Initiative 

Repository Explorer”, in Proceedings of the ACM-IEEE Joint Conference on 

Digital Libraries, Roanoke, VA, USA, 24-28 June 2001, pp. 63-64. 

Suleman, Hussein (2002), OAI Repository Explorer. Website 

http://purl.org/net/oai_explorer 

 Page 180 

ftp://ftp.rfc-editor.org/in-notes/rfc2555.txt
http://dbpubs.stanford.edu:8090/pub/1998-25
http://purl.oclc.org/docs/inet96.html
http://simon.cs.vt.edu/sieve/
http://www.infoloom.com/gcaconfs/WEB/chicago98/simeonov.htm
http://daemoninc.com/speedycgi/
http://purl.org/net/oai_explorer


 

Suleman, Hussein, Anthony Atkins, Marcos A. Gonçalves, Robert K. France, Edward A. 

Fox, Vinod Chachra, Murray Crowder, and Jeff Young (2001), “Networked Digital 

Library of Theses and Dissertations: Bridging the Gaps for Global Access – Part 1 

and 2”, in D-Lib Magazine, Vol. 7, No. 9, September 2001. Available 

http://www.dlib.org/dlib/september01/suleman/09suleman-pt1.html and 

http://www.dlib.org/dlib/september01/suleman/09suleman-pt2.html 

Suleman, Hussein, and Edward A. Fox (2001), “A Framework for Building Open Digital 

Libraries”, in D-Lib Magazine, Vol. 7, No. 12, December 2001. Available 

http://www.dlib.org/dlib/december01/suleman/12suleman.html 

Sun, Sam X., and Larry Lannum (2002), Handle System Overview, Internet Engineering 

Task Force, September 2002. Available http://www.ietf.org/internet-drafts/draft-

sun-handle-system-10.txt  

Szyperski, Clemens (2000), “Component Software and the Way Ahead”, in Foundations 

of Component-based Systems, edited by Gary T. Leavens and Murali Sitaraman, 

Cambridge University Press, Cambridge. 

Tennant, Roy (2002), Swish-E. Website http://swish-e.org/  

Umar, Amjad (1997), Object-Oriented Client/Server Internet Environments, Prentice 

Hall, New Jersey. 

Van de Sompel, Herbert (2000), Schema for MARC metadata format, Open Archives 

Initiative. Available http://www.openarchives.org/OAI/oai_marc.xsd  

Van de Sompel, Herbert, and Patrick Hochstenbach (1999), “Reference Linking in a 

Hybrid Libary Environment”, in D-Lib Magazine, Vol. 5, No. 4, April 1999. 

 Page 181 

http://www.dlib.org/dlib/september01/suleman/09suleman-pt1.html
http://www.dlib.org/dlib/september01/suleman/09suleman-pt1.html
http://www.dlib.org/dlib/december01/suleman/12suleman.html
http://www.ietf.org/internet-drafts/draft-sun-handle-system-10.txt
http://www.ietf.org/internet-drafts/draft-sun-handle-system-10.txt
http://swish-e.org/
http://www.openarchives.org/OAI/oai_marc.xsd


 

Available http://www.dlib.org/dlib/april99/van_de_sompel/04van_de_sompel-

pt1.html 

Van de Sompel, Herbert, Thomas Krichel, Michael L. Nelson, Patrick Hochstenbach, 

Victor M. Lyapunov, Kurt Maly, Mohammad Zubair, Mohamed Kholief, Xiaoming 

Liu, and Heath O'Connell (2000), “The UPS Prototype: An Experimental End-User 

Service across E-Print Archives”, in  D-Lib Magazine, Vol. 6, No. 2, February 

2000. Available http://www.dlib.org/dlib/february00/vandesompel-

ups/02vandesompel-ups.html 

Van de Sompel, Herbert, and Carl Lagoze (2000), “The Santa Fe Convention of the Open 

Archives Initiative”, in D-Lib Magazine, Vol. 6, No. 2, February 2000. Available 

http://www.dlib.org/dlib/february00/vandesompel-oai/02vandesompel-oai.html 

VTLS (2002), VTLS. Website http://www.vtls.com 

Wang, J. (2002), A Lightweight Protocol Between Visualization Tools and Digital 

Libraries, Master’s Thesis, Virginia Polytechnic Institute and State University. 

Winer, David (1999), XML-RPC Specification, 16 October 1999. 

http://www.xmlrpc.com/spec 

Witten, I. H., R. J. McNab, S. J. Boddie, and D. Bainbridge (2000), “Greenstone: A 

Comprehensive Open-Source Digital Library Software System”, in Proceedings of 

Fifth ACM Conference of Digital Libraries, San Antonio, Texas, USA, 2-7 June 

2000, pp. 113-121. 

 Page 182 

http://www.dlib.org/dlib/april99/van_de_sompel/04van_de_sompel-pt1.html
http://www.dlib.org/dlib/april99/van_de_sompel/04van_de_sompel-pt1.html
http://www.dlib.org/dlib/february00/vandesompel-ups/02vandesompel-ups.html
http://www.dlib.org/dlib/february00/vandesompel-ups/02vandesompel-ups.html
http://www.dlib.org/dlib/february00/vandesompel-oai/02vandesompel-oai.html
http://www.vtls.com/
http://www.xmlrpc.com/spec


 

Witten, Ian H., Alistair Moffat, and Timothy C. Bell (1999), Managing Gigabytes: 

Compressing and Indexing Documents and Images, Morgan Kaufmann, San 

Francisco. 

Zeiger, Stephan (1999), Servlet Essentials. Available 

http://www.novocode.com/doc/servlet-essentials/  

 

 

 Page 183 

http://www.novocode.com/doc/servlet-essentials/


 

AAPPPPEENNDDIIXX  AA  

SSAAMMPPLLEE  XXMMLL  SSCCHHEEMMAA  FFOORR  MMDDEEDDIITT  

<?xml version="1.0" ?> 
<!-- 
   Annotated XML Schema for simple metadata related to an article. 
 
   - Metadata designed for the CSTC demonstration system. 
   - Annotations included for use by the MDEdit module. 
 
   Hussein Suleman 
   17 March 2002 
--> 
 
<schema xmlns="http://www.w3.org/2001/XMLSchema" 
          xmlns:jeric="http://JERICArticle" 
          targetNamespace="http://JERICArticle" 
          elementFormDefault="qualified" 
          attributeFormDefault="unqualified"> 
 
<element name="jeric" minOccurs="1" type="jeric:jericType"> 
   <annotation> 
      <appinfo> 
         <caption></caption> 
      </appinfo> 
   </annotation> 
</element> 
 
<complexType name="authorType"> 
   <sequence> 
 
      <element name="first_name" minOccurs="1" maxOccurs="1" type="string"> 
         <annotation> 
            <appinfo> 
               <caption>First name</caption> 
               <description>First name of author</description> 
            </appinfo> 
         </annotation> 
      </element> 
 
      <element name="last_name" minOccurs="1" maxOccurs="1" type="string"> 
         <annotation> 
            <appinfo> 
               <caption>Last name</caption> 
               <description>Last name of author</description> 
            </appinfo> 
         </annotation> 
      </element> 
 
      <element name="email" minOccurs="1" maxOccurs="1" type="string"> 
         <annotation> 

 Page 184 



 

            <appinfo> 
               <caption>Email</caption> 
               <description>Email address of author</description> 
            </appinfo> 
         </annotation> 
      </element> 
 
      <element name="institution" minOccurs="0" maxOccurs="1" type="string"> 
         <annotation> 
            <appinfo> 
               <caption>Institution/Company</caption> 
               <description>Name of the institution or company of 
affilitation</description> 
            </appinfo> 
         </annotation> 
      </element> 
       
      <element name="department" minOccurs="0" maxOccurs="1" type="string"> 
         <annotation> 
            <appinfo> 
               <caption>Department/Center</caption> 
               <description>Name of the department or center</description> 
            </appinfo> 
         </annotation> 
      </element> 
 
   </sequence> 
</complexType> 
  
<complexType name="jericType"> 
   <sequence> 
 
      <element name="section" minOccurs="1" maxOccurs="1"> 
         <annotation> 
            <appinfo> 
               <caption>Which CSTC section are you submitting to ?</caption> 
               <description>Which part of CSTC are you submitting this resource 
to?</description> 
               <rows>1</rows> 
               <externallist>section</externallist> 
            </appinfo> 
         </annotation> 
         <simpleType> 
            <restriction base="string"> 
            </restriction> 
         </simpleType> 
      </element> 
 
      <element name="title" minOccurs="1" maxOccurs="1" type="string"> 
         <annotation> 
            <appinfo> 
               <caption>Title of Resource</caption> 
               <description>Name of the resource</description> 
               <columns>40</columns> 
            </appinfo> 
         </annotation> 
      </element> 

 Page 185 



 

       
      <element name="author" minOccurs="1" maxOccurs="unbounded" type="jeric:authorType"> 
         <annotation> 
            <appinfo> 
               <caption>Author</caption> 
               <description>Creator of the resource</description> 
            </appinfo> 
         </annotation> 
      </element> 
 
      <element name="description" minOccurs="0" maxOccurs="1" type="string"> 
         <annotation> 
            <appinfo> 
               <caption>Description</caption> 
               <description>Summary of the resource</description> 
               <rows>5</rows> 
               <columns>40</columns> 
            </appinfo> 
         </annotation> 
      </element> 
       
      <element name="file" minOccurs="0" maxOccurs="unbounded"> 
         <annotation> 
            <appinfo> 
               <caption>Upload File(s)</caption> 
               <description>File constituent of the resource</description> 
            </appinfo> 
         </annotation> 
         <complexType> 
            <sequence> 
               <element name="url" minOccurs="1" maxOccurs="1" type="string"> 
                  <annotation> 
                     <appinfo> 
                        <caption>Filename</caption> 
                        <description>Location of the file</description> 
                        <inputtype>file</inputtype> 
                     </appinfo> 
                  </annotation> 
               </element> 
               <element name="description" minOccurs="1" maxOccurs="1" type="string"> 
                  <annotation> 
                     <appinfo> 
                        <caption>Description</caption> 
                        <description>Description of the file</description> 
                     </appinfo> 
                  </annotation> 
               </element> 
            </sequence> 
         </complexType> 
      </element> 
 
   </sequence> 
</complexType> 
 
</schema> 

 Page 186 



 

VVIITTAA  

Hussein Suleman 
 

Education 
Ph.D. in Computer Science 
Date: December 2002 
Topic: Open Digital Libraries 
Advisor: Dr. Edward A. Fox 
Virginia Polytechnic Institute and State University (Blacksburg, Virginia, USA) 
(hereafter referred to as Virginia Tech) 

M.Sc. in Computer Science 
Date: May 1997 
Topic: Genetic Programming in Mathematica 
Supervisor: Dr. Miloslav Hajek 
University of Durban-Westville (Durban, Kwazulu-Natal, South Africa) 

B.Sc. Honours cum laude 
Date: May 1995 
Specialisation: Computer Science 
University of Durban-Westville (Durban, Kwazulu-Natal, South Africa) 

B.Sc. cum laude 
Date: May 1994 
Majors: Computer Science and Mathematics 
University of Durban-Westville (Durban, Kwazulu-Natal, South Africa) 

Selected Awards 
Fulbright Scholarship 
Period: August 1997 - July 1999 
Awarded by US Government for graduate study in the USA 

Senate Silver Medal 
Date: May 1995 
Awarded by University of Durban-Westville in recognition of outstanding performance 
as an Honours degree student 

FRD Honours Programme Scholarship 
Period: January-December 1994 
Awarded by Foundation for Research Development’s (FRD) University Development 
Programme to encourage post-graduate education 

 Page 187 



 

Faculty Bronze Medal (Faculty of Science) 
Date: May 1994 
Awarded by University of Durban-Westville in recognition of outstanding performance 
as an undergraduate student 

Teaching Experience 
Introduction to Data Structures and Software Engineering (CS1704) 
Period: July-August 2000 
Employer: Department of Computer Science at Virginia Tech  

Data Structures and File Processing (CS2604) 
Period: July-August 1999 
Employer: Department of Computer Science at Virginia Tech 

Data Structures (2nd year) 
Period: February-June 1997 
Employer: Department of Computer Science at University of Durban-Westville 

Object Oriented Programming in C++ (3rd year) 
Period: July-November 1996 
Employer: Department of Computer Science at University of Durban-Westville 

Assembly Language (2nd year) 
Period: February-June 1996 
Employer: Department of Computer Science at University of Durban-Westville 

Research Experience 
AmericanSouth.Org 
Period: May-August 2002 
Employer: Digital Library Research Laboratory at Virginia Tech, in collaboration with 
SOLINET and Emory University 
Funding Agency: Mellon Foundation 

A Digital Library of Reusable Science and Math Resources for Undergraduate Education 
Period: August 2000 – May 2002, August 2002 – current 
Employer: Digital Library Research Laboratory at Virginia Tech, in collaboration with 
Eduprise and UNC-Wilmington 
Funding Agency: National Science Foundation (USA) 

Web Characterization Repository 
Period: May-June 1999, August 1999 – June 2000 
Employer: Network Research Group at Virginia Tech, in collaboration with the W3C’s 
Web Characterization Activity working group 
Funding Agency: National Science Foundation (USA) 

 Page 188 



 

Papers and Publications 
H. Suleman and E. A. Fox, Designing Protocols in Support of Digital Library 
Componentization, 6th European Conference on Research and Advanced Technology for 
Digital Libraries (ECDL2002), Rome, Italy, 16-18 September 2002. 

H. Suleman and E. A. Fox, Towards Universal Accessibility of ETDs: Building the 
NDLTD Union Archive, Fifth International Symposium on Electronic Theses and 
Dissertations (ETD2002), Provo, Utah, USA, 30 May-1 June 2002. 

H. Suleman and E. A. Fox, A Framework for Building Open Digital Libraries, in D-Lib 
Magazine 7(12), December 2001. Available 
http://www.dlib.org/dlib/december01/suleman/12suleman.html  

H. Suleman, A. Atkins, M. A. Gonçalves, R. K. France, E. A. Fox, V. Chachra, M. 
Crowder, and J. Young, Networked Digital Library of Theses and Dissertations: Bridging 
the Gaps for Global Access - Part 1: Mission and Progress, in D-Lib Magazine 7(9), 
September 2001. Available http://www.dlib.org/dlib/september01/suleman/09suleman-
pt1.html 

H. Suleman, A. Atkins, M. A. Gonçalves, R. K. France, E. A. Fox, V. Chachra, M. 
Crowder, and J. Young, Networked Digital Library of Theses and Dissertations: Bridging 
the Gaps for Global Access - Part 2: Services and Research, in D-Lib Magazine 7(9), 
September 2001. Available http://www.dlib.org/dlib/september01/suleman/09suleman-
pt2.html 

H. Suleman and E. A. Fox, The Open Archives Initiative: Realizing Simple and Effective 
Digital Library Interoperability, Journal of Library Administration, 35(1/2), pp. 125-145, 
November 2001, Haworth Press Inc, New York. Co-published in Libraries and Electronic 
Resources, edited by Pamela Higgins, Haworth Press Inc, 2001. 

H. Suleman, Enforcing Interoperability with the Open Archives Initiative Repository 
Explorer, Proceedings of the First ACM-IEEE Joint Conference on Digital Libraries, 
Roanoke, Virginia, USA, June 2001, pp. 63-64. 

H. Suleman, E. A. Fox, and M. Abrams, Building Quality into a Digital Library, 
Proceedings of the Fifth ACM Conference on Digital Libraries, San Antonio, Texas, 
USA, June 2000, pp. 228-229. 

Reviewed Conference Demonstrations 
E. A. Fox, R. K. France, M. A. Gonçalves, and H. Suleman, Building Interoperable 
Digital Library Services: MARIAN, Open Archives and NDLTD, in Proceedings of the 
24th Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, New Orleans, Louisiana, USA, September 2001, p. 451. 

H. Suleman, Using the Repository Explorer to Achieve OAI Protocol Compliance, in 
Proceedings of the First ACM-IEEE Joint Conference on Digital Libraries, Roanoke, 
Virginia, USA, June 2001, p. 459. 

 Page 189 



 

 Page 190 

E. A. Fox, R. France, M. A. Gonçalves, H. Suleman, and M. H. Lee, Building a Unified 
Digital Library for Theses and Dissertations, 3rd International Conference of Asian 
Digital Library, Seoul, South Korea, December 2000. 

H. Suleman, E. A. Fox, and M. Abrams, Building Quality into a Digital Library, Fifth 
ACM Conference on Digital Libraries, San Antonio, Texas, USA, June 2000. 

Community Service 
Tutorials 

Building Interoperable Digital Libraries: A Practical Guide to Creating Open Archives, 
half-day tutorial at the Second ACM/IEEE Joint Conference on Digital Libraries, 
Portland, Oregon, USA, 14-18 July 2002. 

Building Interoperable and Accessible ETD Collections: A Practical Guide to Creating 
Open Archives, Fifth International Symposium on Electronic Theses and Dissertations 
(ETD2002), Provo, Utah, USA, 30 May-1 June 2002. 

Building Interoperable Digital Libraries: A Practical Guide to Creating Open Archives, 
half-day tutorial at the First ACM-IEEE Joint Conference on Digital Libraries, Roanoke, 
Virginia, USA, June 2001. 

Workshops 

Co-organised Open Archives: Communities, Interoperability and Services, held in 
conjunction with ACM SIGIR 2001, New Orleans, September 2001. 

Co-chaired Extending Interoperability of Digital Libraries: Building on the Open 
Archives Initiative, held in conjunction with Fourth European Conference on Research 
and Advanced Technology for Digital Libraries, Lisbon, Portugal, September 2000. 

Co-chaired Extending Interoperability of Digital Libraries: Building on the Open 
Archives Initiative, held in conjunction with ACM Hypertext'2000 and ACM Digital 
Libraries'2000, San Antonio, June 2000. 

Standards Body Participation 
Open Archives Initiative (OAI) Technical Committee 
Period: September 2000 – June 2002 
Role: Contributed to developing versions 1.0, 1.1 and 2.0 of the OAI Protocol for 
Metadata Harvesting, a network protocol for transferring metadata between digital 
libraries. Provided community support by implementing and disseminating software tools 
for development and testing. 

Memberships/Affiliations 
The Honor Society of Phi Kappa Phi 

Upsilon Pi Epsilon, International Honor Society for the Computing Sciences 


	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	PREAMBLE
	CONTEXT
	What is a Digital Library?
	What is Interoperability?
	What is an Open Archive?

	MOTIVATION
	OPEN DIGITAL LIBRARY DESIGN
	RESEARCH CONTRIBUTIONS
	OUTLINE OF DISSERTATION

	BACKGROUND: INTEROPERABILITY AND ARCHITECTURE
	INTRODUCTION TO THE OAI
	Historical Background and Context
	Initial Technical Efforts
	Evaluation: Community and Technical Meetings
	Other Interoperability Efforts
	DL Architecture Efforts

	BASIC OA CONCEPTS
	Repositories and Open Archives
	Harvesting and Federation
	Metadata and Data
	Data and Service Providers

	TECHNICAL FRAMEWORK
	Underlying Technology and Standards
	HTTP
	XML
	XSD and Namespaces
	Dublin Core

	Sets
	Records
	OAI Protocol for Metadata Harvesting
	Flow Control
	Registration Services
	Expansion and Customization

	REQUIREMENTS TO BE A PROVIDER
	Data Provider
	Service Provider
	Tools and Support

	OAI SUPPORT FOR TYPICAL SERVICES
	Cross-Archive Searching
	Reference Linking
	Annotations
	Filtering
	Browsing

	DIGITAL LIBRARY POLICIES FROM AN OAI PERSPECTIVE
	Ownership and dissemination control over digital objects and metadata
	Changes and withdrawal
	Preservation
	Uniqueness of objects and collections

	BUILDING OAI SUB-COMMUNITIES
	Metadata formats
	Protocol extensions
	Shared semantics

	CASE STUDY: OAI IN THE NDLTD COMMUNITY
	Context
	Development of OAI MARC format
	MetaLibraries
	Name authority systems
	Search and Classification for ETDs

	FUTURE DIRECTIONS

	ODL DESIGN CONSIDERATIONS
	INTRODUCTION
	ODL VS. THE INTERNET: A PRACTICAL PERSPECTIVE
	Simplicity
	Openness
	Independence of protocols
	Loose coupling
	Layers
	Reuse
	Orthogonality with a Purpose

	OPEN DIGITAL LIBRARY DESIGN
	ODL VS. OOP: A THEORETICAL PERSPECTIVE
	Overview
	Mappings
	Protocol (( Class
	Service (( Instance
	Service Request (( Message
	Service Request Handler (( Method
	Remote Service Request (( Remote Method Invocation
	Service Name Resolution (( Binding
	Service Request Parameters (( Method Parameters
	Semantic Overlays (( Inheritance
	Dumb-Down Principle (( Polymorphism
	Base Protocol (( Base Class

	Implications


	OPEN DIGITAL LIBRARY SERVICE PROTOCOLS
	ODL SERVICES AS EXTENSIONS OF THE OAI-PMH
	PROTOCOL DESIGN CONSIDERATIONS
	OAI Sets as Parameters
	Interface-directed Responses
	Harvesting Granularity
	Response-level Containers
	Submission
	Harvesting vs. Archive Access
	Dublin Core Requirement
	Customization of Components
	Propagation of Information

	EXTENDED OAI-PMH (XOAI-PMH)
	Global Changes
	DC Requirement
	Harvesting Granularity
	Identify Container
	Response-Level Containers

	Service Request Changes
	PutRecord (new service request)
	Semantics:
	Parameters:
	Return Values:
	Exceptions:
	Example Request:
	Example Response:



	PREFACE TO ODL PROTOCOL DESCRIPTIONS
	THE ODL-SUBMIT PROTOCOL V1.0
	Description
	Interface Protocol
	Identify, ListMetadataFormats, ListSets, GetRecord, ListIdentifiers, ListRecords, PutRecord

	Interoperability Issues

	THE ODL-RECENT PROTOCOL V1.0
	Description
	Interface Protocol
	Identify, ListMetadataFormats, GetRecord
	PutRecord
	ListSets
	ODL-Recent Results:

	ListIdentifiers, ListRecords
	Semantics:


	Interoperability Issues

	THE ODL-UNION PROTOCOL V1.0
	Description
	Interface Protocol
	Identify, GetRecord, ListIdentifiers, ListRecords
	PutRecord
	ListMetadataFormats
	ODL-Union Results:

	ListSets
	ODL-Union Results:
	XOAI Response Encoding:


	Interoperability Issues

	THE ODL-SEARCH PROTOCOL V1.0
	Description
	Interface Protocol
	Identify, ListMetadataFormats
	GetRecord, PutRecord
	ListSets
	ODL-Search Results:

	ListIdentifiers, ListRecords
	ODL-Search Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:
	Additional ODL-Search Results:
	XOAI Response Encoding:


	Interoperability Issues
	Query Language: odlsearch1
	Syntax
	Parameters
	Description
	Examples

	Query Language: odlsearch2
	Syntax
	Parameters
	Description
	Examples


	THE ODL-BROWSE PROTOCOL V1.0
	Description
	Interface Protocol
	Identify, ListMetadataFormats
	GetRecord, PutRecord
	ListSets
	ODL-Browse Results:
	XOAI Response Encoding:

	ListIdentifiers, ListRecords
	ODL-Browse Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:
	Additional ODL-Browse Results:
	XOAI Response Encoding:


	Interoperability Issues
	Query Language: odlbrowse1
	Syntax
	Parameters
	Description
	Examples


	THE ODL-RECOMMEND PROTOCOL V1.0
	Description
	Interface Protocol
	Identify, ListMetadataFormats
	GetRecord
	ListSets
	ODL-Recommend Results:

	PutRecord
	Semantics:
	ODL-Recommend Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:

	ListIdentifiers
	ODL-Recommend Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:
	Additional ODL-Recommend Results:
	XOAI Response Encoding:

	ListRecords
	Semantics:


	Interoperability Issues

	THE ODL-RATE PROTOCOL V1.0
	Description
	Interface Protocol
	Identify, ListMetadataFormats
	ListMetadataFormats
	ODL-Rate Results:

	ListSets
	ListIdentifiers, ListRecords
	Semantics:

	PutRecord
	Semantics:
	ODL-Rate Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:

	GetRecord
	ODL-Rate Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:
	ODL-Rate Results:
	XOAI Response Encoding:


	Interoperability Issues

	THE ODL-ANNOTATE PROTOCOL V1.0
	Description
	Interface Protocol
	Identify
	PutRecord
	Semantics:
	ODL-Annotate Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:

	ListMetadataFormats
	ODL-Annotate Results:

	ListSets
	ODL-Annotate Results:

	GetRecord
	ODL-Annotate Parameters:
	XOAI Parameter Encoding:

	ListIdentifiers / ListRecords
	ODL-Annotate Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:
	Additional ODL-Annotate Results:
	XOAI Response Encoding:


	Interoperability Issues
	Annotation Metadata Sub-Format: odlannotate1
	Syntax
	Parameters
	Description
	Examples

	Annotation Metadata Sub-Format: discuss
	Syntax
	Description


	THE ODL-REVIEW PROTOCOL V1.0
	Description
	Transactions
	Resources and Sections
	Users and Permissions

	Interface Protocol
	PutRecord
	ODL-Review Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:

	ListMetadataFormats
	ODL-Review Results:

	ListSets
	ODL-Review Results:

	GetRecord
	ODL-Review Parameters:
	XOAI Parameter Encoding:

	ListIdentifiers
	ListRecords
	ODL-Review Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:
	Additional ODL-Review Results:
	XOAI Response Encoding:


	Transaction Formats
	Assign editor to section or resource
	Parameters:
	Sample XML encoding:

	Decline to be the editor for a resource or section
	Parameters:
	Sample XML encoding:

	Revoke editorial privileges from an editor
	Parameters:
	Sample XML encoding:

	Submit a resource for review
	Parameters:
	Sample XML encoding:

	Create a new section
	Parameters:
	Sample XML encoding:

	Change the status of a section or resource
	Parameters:
	Sample XML encoding:

	Move a resource or section
	Parameters:
	Sample XML encoding:

	Submit a review
	Parameters:
	Sample XML encoding:


	Report Formats
	Resource Summary
	Editing Summary
	Reviewing Summary
	Submitted Summary
	Children Summary
	Open Summary
	NotClosed Summary

	Interoperability Issues

	CASE STUDY: USING AN ODL-SEARCH COMPONENT

	IMPLEMENTATION AND CASE STUDIES
	INTRODUCTION
	IMPLEMENTATION
	Platform
	Customization
	Component Details
	DBUnion
	IRDB
	DBBrowse
	WhatsNew
	Box
	Thread
	Suggest
	DBRate
	DBReview

	OAI Component Details
	ETD-db Extensions
	XMLFile
	Filter

	User Interfaces
	XSL
	MDEdit: Schema-based Metadata Editor
	Types
	Type Propagation
	Extensions
	Creating and using the MDEdit object
	Rendering based on schema and extensions

	Content Negotiation


	CASE STUDIES
	Case study: ETD Union Catalog
	Requirements
	Architecture
	Interface

	Case study: CSTC
	Requirements
	Architecture
	Interface

	Case study: husseinsspace.com
	Requirements
	Architecture
	Interface

	Case study: JERIC
	Introduction
	Background
	Evaluation of CSTC/JERIC review system

	Requirements
	Architecture
	Interface

	Case study: New CSTC
	Requirements
	Architecture
	Interface


	SUMMARY

	COMPONENT TESTING
	INTRODUCTION
	DIRECT COMPONENT LOGIC
	IRDB
	DBBrowse

	XOAI INTERFACE
	WEB CLIENT TEST
	PARSING TEST
	REPOSITORY EXPLORER
	Introduction
	Design of the Repository Explorer
	Validation Procedure
	Options
	Automatic Testing
	Component Explorer
	Feedback


	ANALYSIS AND EVALUATION
	INTRODUCTION
	UNDERSTANDABILITY AND SIMPLICITY
	Methodology
	Results
	Discussion
	Conclusions

	REUSABILITY
	Case study: AmericanSouth.org
	Case study: CITIDEL
	Case study: BICTEL/e

	EXTENSIBILITY
	Sub-classing
	Layering
	VIDI
	MAIDL
	VTLS Union Catalog


	PERFORMANCE
	Communications and Protocol Overhead
	Methodology
	Results
	Discussion
	Conclusions

	Execution Speed: Nested Components
	Methodology
	Results
	Discussion
	Conclusions

	Execution Speed Optimizations
	Methodology
	Results
	Discussion
	Alternative Optimizations
	Direct Database Access
	Union Catalog Specialization
	GetRecords
	mod_perl
	Direct Code Access
	Non-forking Web Server
	Special-purpose Servers
	Persistent Components
	FastCGI
	JAVA Servlets
	Caching

	Conclusions

	Load Analysis
	Methodology
	Results
	Discussion
	Conclusions

	User Interface Response
	Methodology
	Results
	Discussion
	Conclusions

	Storage
	Duplication of Data
	Consistency
	Network Bandwidth
	Complexity of Harvesting
	Harvesting Algorithm A
	Harvesting Algorithm B



	SUMMARY

	FUTURE WORK
	INTRODUCTION
	HARVESTING
	Issues with Multiple Sources
	Issues with Single Sources

	USER INTERFACES
	User Interaction API
	MDEdit Generalization
	Component Composition GUI
	Portals

	LOGGING
	SECURITY
	NEW PROTOCOLS AND COMPONENTS
	TESTING
	INSTALLATION AND REGISTRATION
	PERFORMANCE
	NEW STANDARDS
	OAI-PMH v2.0
	SOAP-OAI and SOAP-ODL
	ODL v2.0


	CONCLUSIONS
	REFERENCES
	APPENDIX A�SAMPLE XML SCHEMA FOR MDEDIT
	VITA

