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1ABSTRACT 

Genetic Programming (GP) is an implementation of evolutionary programming, where 

the problem-solving domain is modelled on computer and the algorithm attempts to 

find a solution by the process of simulated evolution, employing the biological theory 

of genetics and the Darwinian principle of survival of the fittest. GP is distinct from 

other techniques because of its tree representation and manipulation of all solutions. 

GP has traditionally been implemented in LISP but there is a slow migration towards 

faster languages like C++. Any implementation language is dictated not only by the 

speed of the platform but also by the desirability of such an implementation. With a 

large number of scientists migrating to scientifically-biased programming languages 

like Mathematica, such provides an ideal testbed for GP. 

In this study it was attempted to implement GP on a Mathematica platform, exploiting 

the advantages of Mathematica’s unique capabilities. Wherever possible, 

optimizations have been applied to drive the GP algorithm towards realistic goals. At 

an early stage it was noted that the standard GP algorithm could be significantly 

speeded up by parallelisation and the distribution of processing. This was incorporated 

into the algorithm, using known techniques and Mathematica-specific knowledge. 

Benchmark problems were tested on both the serial and parallel algorithms to assess 

the ability of the implementation to effectively solve problems using GP. Mostly 

known problems were used since it was desired to test the implementation and not the 

capabilities of the algorithm itself. 

Mathematica has been found to be suitable for the implementation of GP in cases 

where the problem domain has been modelled already in this environment. Although 

Mathematica is not an optimal environment for the execution of a GP, it is highly 

adaptable to different problem domains, thus promoting the implementation of 

problem-solving techniques like GP. 
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1CHAPTER 1 :  
INTRODUCTION 

The Evolutionary Paradigm of Programming 

Computer Science had its beginnings when scientists built the first computers and 

realised that these machines needed to be constantly tended. This tending took the 

form of writing programs and thereafter maintaining these programs and their data. At 

first it was a rather haphazard process, with programmers writing code on the spur of 

the moment and then changing their programs to suit changes in the environment or 

the requirements. As time passed, this disorderly process caused more problems than 

solutions and Computer Science began to turn its head towards the formal 

specification of programming. 

The programming of computers can be considered as the focus of research in 

Computer Science. In recent years, people have been asking very pertinent questions 

regarding the speed and size of programs. There has been a quest to write programs 

that run faster and use less memory and storage. Also, some programs are sought 

simply for parsimony or the ability to prove correctness mathematically. But, like any 

other scientific field, the thrust of work is not on efficiency but on new developments. 

Problems from all aspects of life are modelled on computer and new solutions are 

being constantly sought. 

People from varied disciplines implement their problem-solving methodologies on 

computer. In many cases an existing sequence of steps is known and this simply needs 

to be converted into a computer program. In other situations, only raw data is 

available and this then needs to be processed to generate useful information. Both 

scenarios require that computer programs be written, whether by the user or an 

external party.  

Programming, by its very creative nature, is an intuitive process that cannot be broken 

down into finite determinate steps. Many people argue for and against this standpoint. 

Software engineers argue quite strongly that software can be created using a pre-

defined series of steps in a determinate manner [Schach, 1992]. But they also agree 
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that innovations in programming cannot follow this same process. Ultimately, a 

program has to be written and that program cannot always be created in a definite 

manner. This implies that a programmer will have to intuitively devise a new 

algorithm, using and incorporating existing algorithms. Being a creative process, it 

takes an unknown amount of time and resources to accomplish. Also, the programmer 

never knows for certain whether the problem will be solved (except for some cases 

where this is proven mathematically in advance) by the program. Some problems do 

not even lend themselves to a program, although most of these are ferreted out by the 

experienced programmer. 

Whatever the case may be, an experienced programmer has to devote an unknown 

amount of time in order to solve any moderately complex problem. This in itself is a 

problem worthy of study. How can this programming task be made easier ? Classical 

computer science has proposed many techniques to ease programming by 

modularising the data and programs e.g. object-orientation. Artificial intelligence 

suggests different approaches which consider computer programs as simply “black 

boxes”  which convert input into the appropriate output.  

Neural networks are a popular strategy for problem solving nowadays. Using this 

approach, a computer model of the human brain is created and this then learns the 

relationship between the input and output. Information is stored internally in the form 

of a matrix of weights, where each weight refers to the relative ability of one neuron to 

fire another one. This “connectionist”  approach is used widely because of its ability to 

simulate the learning and recollection process of human thought. However, it does 

have some disadvantages, namely the requirement that the inter-neuron connections be 

seeded before learning can begin (in back-propagation learning). This initial state has 

to be determined experimentally and this makes it somewhat similar to the classical 

program because an expert needs to set up the neural network. 

The “non-connectionist”  school of artificial intelligence has tried to implement the 

black-box computer component by modelling it on existing systems other than the 

human brain. One of the most popular approaches is to model the computer on nature. 

Nature has succeeded in solving a rather complex problem, that of creating and 

sustaining life. In order to do this, simple living organisms were first introduced into 
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the environment. Then these organisms underwent a transformation process through 

evolution, lasting many millions of years. The current set of organisms that inhabits 

the world is far stronger and better adapted to its environment than its predecessors. 

For example, the ratio of diameters of blood vessels in the human body allows for 

better flow according to modern fluid dynamics [Hietkotter, 1995]. But this was a 

result of evolution and not some individual’s calculations. So if problem-solving is 

modelled on evolution, it may be possible to discover solutions that are optimal or 

better than the analytical ones. 

Evolution was a theory proposed by Darwin [Darwin, 1959] to explain the creation of 

life. He proposed that the nature of living creatures changed over the years to result in 

stronger specimens, better suited to the environment, being formed. The better 

specimens would then dominate and the lesser individuals would eventually cease to 

exist. This is commonly known as “survival of the fittest” . This does not preclude the 

evolutionary process creating individuals that are less fit than their predecessors. In 

such cases, the new generation individuals would simply perish and their ancestors 

would continue to thrive, until they can generate better specimens.  

This does not suggest that evolutionary techniques are the solution to all our 

problems. Evolution itself does not guarantee the creation of fitter individuals. It does 

however, explore many possibilities that may lead to stronger individuals. There is no 

ultimate goal or problem that must be solved by natural evolution. Instead organisms 

are constantly changed to suit the environment, which changes just as rapidly. 

Similarly, in an artificial environment of simulated evolution, solutions can be 

gradually adapted to satisfy the problem specification with greater accuracy. 

According to modern theory of genetics, the fabric of our being is stored as a set of 

attributes in our DNA (genes). An individual’s genes are like a blueprint to create that 

individual, since it is a complete description. When two parents mate to produce 

offspring, the children receive some genetic material from each parent. This crossing 

over of the genetic material allows nature to create individuals different from either 

parent.  
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For example, consider a monkey population where long tails are desired and long 

noses are not. If one parent with a long tail and short nose mates with another with a 

short tail and long nose, the offspring could have any combination of these features. If 

the child has a long nose and short tail, that child would not be very strong since it 

cannot hang from branches and its nose would always get in the way - it would 

probably not reproduce since none of the other monkeys would be attracted to a weak 

individual. On the other hand, a child with a long tail and short nose would be ideally 

suited to the monkey’s environment. This child would be the fitter of the two and 

would propagate its genes in future generations. 

Computer programs modelled on nature, normally associate possible solutions with 

the populations of individuals from nature. Then these solutions undergo a simulated 

evolution to attempt to produce better individuals. Just like nature, this process is 

quasi-random and solutions generated can be either better or worse than their parents. 

However, the probability of producing better solutions in this way is much higher than 

a blind random search through the solution space [Koza, 1992]. There exist many 

different approaches to this modelling, the most common being Genetic Algorithms, 

Evolutionary Programming, Evolution Strategies and Genetic Programming [Kinnear, 

1994]. Collectively these are known as Evolutionary Algorithms. An evolutionary 

algorithm has the following general structure : 

initialise a random generation of individuals 
Pop = initpopulation (G) 
 
evaluate the fitnesses of individuals in the population 
evaluate (G) 
 
while not done do 
// select couples for reproduction 
Pop1 = select (Pop); 
 
// apply genetic operations to genes 
Pop1 = genetic operations (Pop1); 
 
// evaluate fitnesses of new population 
evaluate (Pop1); 
 
// merge new individuals into the existing population 
Pop = merge (Pop1); 
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Genetic Algorithms 

In order to understand Genetic Programming, it is first vital to consider the alternative 

approaches to evolutionary programming that led to its creation. Most discussions  on 

genetic programming begin with an explanation of genetic algorithms, being the direct 

predecessor of genetic programming [Koza, 1992; Andre, 1994]. 

Genetic Algorithms (GAs) are evolutionary programs that manipulate a population of 

individuals represented by fixed-format strings of information. Their acceptance as a 

means to solve real-world optimization problems is readily attributable to the theory 

of artificial adaptation discussed in the ground-breaking work of Holland [Holland, 

1992]. An initial population of individuals (solutions) is generated for the problem 

domain and these then undergo evolution by means of reproduction, crossover and 

mutation of individuals until an acceptable solution is found. 

Genetic algorithms, like most other evolutionary computation techniques, require that 

only the parameters for the problem be specified. Thereafter the algorithm applied to 

search for a solution is mostly problem-independent . 

As an inheritance from its biological counterpart, in genetic algorithms each character 

in the individual’s data string is called a gene. Each possible value that the gene can 

take on is called an allele. These concepts are elaborated upon in numerous texts on 

biological genetics e.g. Hartl [Hartl, 1988]. 

For the purposes of the following discussion of genetic algorithms, the problem being 

solved is finding the square root of 2. 

Representation of Problem 

The representation of the problem domain is one of the most important factors when 

designing a genetic algorithm. Genetic algorithms usually represent all solutions in the 

form of fixed length character strings, analogous to the DNA that is found in living 

organisms. There are a few genetic algorithm implementations that make use of 

variable-length strings and other representations [Michalewicz, 1992] but these are not 

common. The reason for the fixed length character strings is to allow easier 

manipulation, storage, modelling and implementation of the genetic algorithm. 
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Consider the example of finding the square root of two. The first step would be to 

identify a possible range of solutions. Assuming no knowledge of the solution, it 

would be possible to deduce that the solution lies between zero and the number itself 

(in this case 2). Since it is known that the square of 1 is one, all numbers less than one 

can be removed. Also, the square of two will produce 4 so that can be eliminated as 

well. Thus the range is reduced to numbers greater than 1 and less than 2 - no solution 

to this problem can lie outside of this range. Of course, negative numbers can also 

produce the same results but since negative numbers are only different in sign, only 

the positive numbers need be considered. The next step is to represent all numbers 

between 1 and 2 with a fixed length character string. Binary numbers are usually 

utilised for numerical computations such as this. The reasons for this are outlined 

below. Binary numbers also allow for easy conversion to and from the exact solution. 

However, since there are obviously infinitely many real numbers between 1 and 2, 

fixed-length strings pose an additional problem for the programmer. To solve this, the 

real number range must be discretized into a finite number of constituent real number 

segments, corresponding to each binary number used in the character string. Suppose 

that the character strings have a length of n=10. Then the possible values for the 

character string would be from 0000000000 to 1111111111. 

These binary numbers must be mapped onto the range of possible solutions, viz. the 

numbers between 1 and 2. There are 1024 (2n) distinct numbers in the binary range, 

hence the numbers start from 0 and end at 1023 (2n -1). The 1 (solution space) is 

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

...

 

Figure 1.1 Bit-string GA representation 
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mapped onto the 0 (binary) and the 2 (solution space) is mapped onto the 1023 

(binary). All other binary numbers are mapped linearly onto the real solution range. 

One of the reasons for using binary numbers is to disallow incorrectly formatted 

solutions automatically. Every combination of 1’s and 0’s corresponds to a possible 

solution. Decimal numbers can be used but since the solution range is between 1 and 

2, a remapping process would have to be carried out to exclude the numbers greater 

than 2 or less than 1. In binary, it is easier to visualise some characteristics being 

present (by a 1) or absent (by a 0). This is more applicable to non-numeric problem 

domains. In addition, there are only two possible binary values (1 and 0). This means 

that all possible binary values can be generated by these two values. Thus the binary 

individuals 0000000000 and 1111111111 contain all the genetic material possible i.e. 

they span the solution space. With representations of a larger order (e.g. decimal), the 

number of individuals needed to span the solution space is much larger and this has 

repercussions on the speed at which the genetic algorithm finds a solution and the size 

of the parameters needed. 

Population of Solutions 

A collection of possible solutions is kept throughout the life cycle of the genetic 

algorithm. This collection is generally known as the population since it is analogous to 

a population of living organisms. The population can be either of fixed or variable size 

but fixed size populations are used more often so that the exact amount of computer 

...

binary

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1

binary value real equivalent

0

1

2

1023

...

1 + (0/1023) = 1

1 + (1/1023)

1 + (2/1023)

1 + (1023/1023) = 2

...

 

Figure 1.2. Conversion from bit-string to real representation 
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resources can be pre-determined. The population of solutions is stored in main 

memory or on secondary storage, depending on the type of genetic algorithm and 

computer resources available. 

At the very beginning of the algorithm, a population of solutions is generated 

randomly. In the case of the square root problem, a fixed number of 10 character 

binary strings are generated randomly.  

This population is then modified through the mechanisms of evolution to result 

eventually in individuals that are closer to the solution than these initial random ones. 

Fitness 

Darwinian evolution of a population implies that the strongest individuals will 

survive. To implement such a principle necessitates a means of evaluating the relative 

strength, or fitness, of each individual. In terms of the genetic algorithm, the fitness of 

an individual is a numerical assessment of that individual’s ability to solve the 

problem at hand - it is the ability of the individual to satisfy the requirements of the 

environment. 

In terms of the square root problem, the perfect individual is the numerical value 

approximated by 1.414213562373. This can therefore be regarded as the fittest 

solution. Since fitness is quantified numerically, maximum and minimum fitness 

values of 1 and 0 are normally used. According to this scale, the perfect solution 

...

random individuals

0 0 1 0 0 1 0 1 1 0

0 1 1 0 1 1 0 0 1 1

1 1 0 1 0 0 1 1 1 0

1 0 1 0 0 1 0 0 0 1

individual no

1

2

3

100

...

 

Figure 1.3. Initial random population 
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above represents a fitness of 1. The minimum fitness must be the absolutely worst 

solution possible, to ensure that all solutions are in the range 0-1. In the square root 

problem, the worst solution is “2”, hence the fitness of the solution “2” would be 0. 

Although it is possible to find distinct best and worst case values in this problem it is 

not possible for all problem domains. However, every possible individual in the 

solution space must be restricted to the fitness range 0-1. 

Fitness is normally defined as a function that takes as its single parameter the 

individual and returns a real number representing the fitness value of that individual. 

Fitness cannot be calculated by comparing the perfect solution with the individual 

simply because the perfect solution is not known at the time of calculation. Thus it has 

to be calculated from other information in the specification. In the case of the square 

root problem, the fitness of an individual can be calculated by squaring its numerical 

value and then comparing this to 2. The results can then be scaled to fit in the range 0 

to 1. The following fitness function satisfies these criteria. 

 Fitness x
Abs x

( )
( )

=
−2 2

2
   ..............................................   (1.1) 

In addition to assigning the boundary values, the fitness function must also be able to 

assign values to every other solution in the solution space. The intuitively better 

solutions must be allocated better fitnesses than the worse solutions. This is necessary 

so that the better solution can be selected over the worse one when comparisons are 

being made. For numerical calculations the fitness function is chosen as a relative 

error (as is done above in Equation 1.1) to achieve this aim. In economic problems, 

the profit can be used to generate a fitness function - greater profit tends towards a 

perfect solution while lesser profit has lower fitness values. 
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The table in Figure 1.4 represents some sample solutions in the initial random 

population, together with their associated actual values and their fitnesses. The best 

solution displayed is in the second line, as it has the lowest fitness - it is also the value 

closest to the perfect solution, as expected. 

Reproduction 

The vehicle of all evolutionary change in the genetic algorithm is reproduction. The 

reproduction operation allows the population to progress from one generation into the 

next. This progression occurs in the most natural way possible, favouring the fitter 

individuals. Individuals are selected from one generation of the population to be 

injected into the next generation. This new generation is a permutation (with 

duplicates) of the original population and when completely formed, it replaces the 

original population. 

The selection process is based on the fitnesses of the individuals. Generally, 

individuals with a higher fitness are selected more often than individuals with a lower 

fitness. There have been many strategies to implement this tendency to select fitter 

individuals. 

The most common method is called fitness-proportionate reproduction. In this 

approach, the probability of selecting each individual is proportionate to its fitness. 

Thus the fitter individuals get selected more often than the less fit individuals. This 

...

random individuals

0 0 1 0 0 1 0 1 1 0

0 1 1 0 1 1 0 0 1 1

1 1 0 1 0 0 1 1 1 0

1 0 1 0 0 1 0 0 0 1

binary value

278

435

846

657

...

solution

1.2717

1.4252

1.8270

1.6422

...

fitness

0.1913

0.0156

0.6689

0.3485

...

 

Figure 1.4. Selected individuals with corresponding real values and fitnesses 
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leads to some individuals being selected more than once and others not being selected 

at all, which is only natural as the better individuals flourish while those that are not 

good enough perish.  

The roulette wheel implementation implicitly forces fitness-proportionate 

reproduction. In this approach, the fitnesses of all individuals in the population are 

arranged into a list and then summed. A random number in the range of the sum is 

generated. Then the fitnesses in the list are summated again until the random number 

is reached or exceeded. The last individual in the list is the one chosen. The method 

works because the individuals with higher fitnesses occupy a larger portion of the 

range from which a random number is being selected - therefore they can be selected 

more often. This process is repeated until enough individuals are selected to replace 

the whole of the last generation. 

Another common approach to selecting individuals is tournament selection. Two 

individuals are selected from the population and their fitnesses are compared. The one 

with the higher fitness is progressed into the next generation. The tournament can also 

be carried out among more than 2 individuals (K-tournament selection). 

Elitism is a strategy where the highly fit individuals are explicitly favoured. This can 

be useful when the fitnesses are linear and the problem has a single solution. 

However, most fitness functions do not produce a linear relationship between 

individuals and their fitnesses i.e. there are local minima in the range of fitness values. 

individual 1

2
3

…

 

Figure 1.5. Roulette wheel individual selection 
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The restrictive nature of elitism could cause convergence to one of those local 

minima, which is most likely a far from optimal solution. 

Crossover 

Reproduction on its own cannot cause a population of solutions to evolve since the 

individuals from one generation are simply being copied into the next generation of 

the population. In order for the fitnesses of  individuals to improve, there must be a 

sharing of genetic material. Crossover swaps some of the genetic material of two 

individuals, creating two new individuals (children), who are possibly better than their 

parents. This is analogous to genetic crossover as observed in living organisms. 

In genetic algorithms, crossover is implemented by selecting a point in the character 

string and swapping all characters after that point. This selection point is generated 

randomly and the operation is applied to two individuals of the newly reproduced 

population.  

The result of the crossover genetic operation is two individuals who are possibly fitter 

than their parents. In any event, these individuals are added to the new generation 

parent 1

0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1

parent 2

crossover point

0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1

0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0

child 1
0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0

child 2

CROSSOVER

 

Figure 1.6. Crossover of two individuals in GA 
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being created. The simplest strategy is to replace the parents with the children. That 

way each parent only participates in crossover once. An alternative is to inject the 

children into the population and replace a pair of individuals with relatively low 

fitness. Using fitness-proportionate reproduction, this strategy is unnecessary since the 

population potentially contains more than one copy of the fitter individuals. 

This genetic operator does not have to use only one crossover point. Instead, many 

crossover points can be chosen, and the genetic material exchanged at each point. If 

two crossover points are chosen, then, effectively, the genes between the points are 

exchanged. 

Mutation 

During reproduction, fitter individuals in a population are selected more often than 

others. This leads to some individuals not being selected for promotion into the next 

generation. These are generally the least fit individuals. However, they may contain 

within their structure genes which are part of a better solution. This genetic material is 

lost to the population since the individuals are no longer propagated.  

In order to recover from this loss of genetic material, the individuals are allowed to 

change their genes randomly. This is a slight perturbation in the genetic material 

which occurs with a much lower frequency than crossover. A random point or points 

are chosen in the character string. A random allele is then generated and inserted at 

each of the mutation points. 

Like crossover, mutation can create individuals who replace their parents in the new 

generation, or they can be added to the population. Individuals must be removed so 

that the population does not grow unmanageably large. The primary reason for this is 

to make genetic algorithms feasible for practical implementation.  
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General Algorithm 

//start with an initial generation 
G = 0 
 
//initialise a random generation of fixed-format strings 
Pop = initpopulation (G) 
 
//evaluate the fitnesses of individuals in the population 
evaluate (G) 
 
while not done do 
// increase generation counter 
G++ 
 
// generate new population using fitness-proportionate 
reproduction 
Pop1 = select (Pop); 
 
// crossover genes 
Pop1 = crossover (Pop1); 
 
// mutate genes 
Pop1 = mutate (Pop1); 
 
// evaluate fitnesses of new population 
evaluate (Pop1); 
 
// replace population with new generation 
Pop = Pop1; 

There are various alternatives and modifications of this algorithm but the essential 

structure is always the same. One common change is to incorporate the reproduction 

parent

0 0 1 0 0 1 0 1 1 0

mutation point

MUTATION

1 random allele

child
0 0 1 0 1 1 0 1 1 0

 

Figure 1.7. Mutation of an individual in 

GA 
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operation into the crossover and mutation operations - individuals are selected fitness-

proportionately, crossed over (or mutated) and inserted into the new generation in a 

single operation. 

John Holland’s Schema Theorem [Holland, 1992] is widely accepted as mathematical 

proof that the genetic algorithm, due to its fitness-proportionate reproduction, 

converges to better solutions. According to the schema theorem, individuals are 

grouped into schemata according to particular subsets of their genes. The number of 

individuals in each group converges if the fitness of that group relative to the entire 

population is high, and vice versa. This result is slightly modified by the crossover and 

mutation operations which create new individuals from the existing population, 

implicitly changing the schemata into which individuals fall. 

Evolutionary Programming and Evolution 
Strategies 

Genetic algorithms are just one example of a paradigm of evolutionary programming. 

Other techniques were created, with many similarities to genetic algorithms as 

discussed by Heitkotter and Kinnear [Heitkotter, 1995; Kinnear, 1994]. 

Evolutionary Programming, conceived by Fogel in 1960, uses only mutation as a 

means to improve the fitness of individuals. Individuals can be represented by any 

convenient syntax, since there is no crossover operation. The population is propagated 

from one generation to another by applying the mutation operation in varying degrees 

according to the proximity of the individual to the expected solution. 

Simultaneously with the development of evolutionary programming, a group of 

students in Germany, Rechenberg and Schwefel, developed a strategy to optimise 

shapes of bodies in a wind tunnel. Their technique uses a population of solutions, 

changed by normally distributed random mutations. Each individual contains both 

objective and strategy variables - objective variables are representations of the 

problem domain while strategy variables indicate the decreasing mutation rates to be 

deployed. 
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Genetic Programming 

Genetic algorithms, although very useful for simple problems, can restrict complex 

problems due to its inability to represent individuals other than fixed-format character 

strings. Genetic Programming is a generalisation of genetic algorithms devised by 

Koza [Koza, 1992]. It is readily accepted that the most general form of a solution to a 

computer-modelled problem is a computer program. Genetic Programming (hereafter 

known as GP) takes cognizance of this and attempts to use computer programs as its 

data representation. 

Similarly to genetic algorithms, genetic programming needs only that the problem be 

specified. Then the program searches for a solution in a problem-independent manner. 

Most genetic operators can be implemented, albeit somewhat differently from its 

predecessors. Although Koza has suggested definitional guidelines for GP, these have 

been relaxed in attempts to achieve greater efficiency with reduced computer 

resources. 

Representation 

Each individual in a genetic program is a computer program. However, this definition 

is a little vague since there is no general structure for all computer programs. On 

different platforms with differing compilers and interpreters, the structure of the 

programs can be different. GP is not specific in this regard - it can be applied in all 

cases. 

Most classical programming languages can have their programs represented as 

sequences of functions. These functions can operate on constants or variables or the 

results of other functions. This lends itself to a tree structure for a typical program. 

Computer programs in GP are viewed as free-format trees, consisting of leaves 

(variables and constants) and non-terminal nodes (functions). 
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Any mathematical expression can be considered as a computer program since it takes 

input, processes the input and produces output. The expressions in Figure 1.8 are 

therefore proper programs and can be used to generalise the capabilities of the GP 

algorithm. The tree representation indicates how the GP ought to store the program 

internally. The method of storage is not critical as long as the algorithm can 

manipulate the individual solutions as trees. 

In the illustrated example, there are only two variables, two constants and three 

functions, which totally define the expression. However, real-life computer programs 

can use many hundreds of variables and functions to solve a modestly complex 

problem. Although such problems are still not feasible for solution by GP, it has been 

recognised that the number of variables and functions has a significant impact on the 

efficiency and scale of GP. Hence, the number of variables, constants and functions 

needs to be reduced by eliminating those not necessary in a particular problem 

domain. The functions, appearing only in intermediate nodes, are called the non-

terminals. Variables and constants, appearing only on the leaves of the tree, are 

appropriately called terminals. The non-terminal set for the example is {+, /, *} and 

the terminal set is {x, y, 3, 5}. 

+

* /

3 x * 5

y y

3
5

2

x
y

+

standard expression notation tree representation

 

Figure 1.8. Representation of individuals as trees in GP 
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The terminal set is the set of all alleles that can appear at the leaves of a GP tree while 

the non-terminals are the acceptable functions. These two sets define the search space 

for the problem - every tree constructed has to get its nodes from the terminal and 

non-terminal sets. The size of the search space is determined by the sizes of these two 

sets. An increase in the size of the non-terminal set results in a linear increase in the 

size of the search space. However, an increase in the size of the terminal set results in 

an exponential increase in the search space size, since the combinations of parameters 

available to every function is also increased. 

On the other hand, if a terminal or non-terminal set does not contain sufficient variety, 

it may not be possible to represent some solutions. For example, the expression “-3” 

cannot in any way be represented by selecting terminals and non-terminals from the 

given sets. Thus there are two important considerations when selecting terminal and 

non-terminal sets. Firstly, the set must span the solution space completely. Secondly, 

these sets must be as compact as possible, to prevent extraneous searches. 

For example, if Boolean functions are being considered, then the non-terminal set 

needs only contain {AND, OR, NOT} [Koza, 1992]. These functions are not the 

absolute minimum to span the solution space, but the inclusion of a small degree of 

redundancy allows for the formation of smaller computer programs (expressions). 

Koza has also suggested that every function in the non-terminal set must operate only 

within the scope of the terminal set. The functions must be capable of taking on every 

combination of terminals possible, and the return values must be in the range of the 

terminal set. By requiring this of all functions, there is no possibility of parameter 

incompatibilities. It also allows functions to be nested without restriction. This is an 

obvious feature of some functions but exceptions must be catered for. If the terminal 

set contains integers and the non-terminal set the standard operators {+, -, /, *}, then 

division by zero is a distinct possibility. To cater for this, the division operation can be 

modified or overloaded so that division by zero returns a large number instead of an 

error. This protection of functions enables closure of the non-terminal set. 

Alternatives to closure include the use of strongly-typed GP, where each non-terminal 

has a pre-specified return value type, which may be different for various functions. 
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Haynes [Haynes, 1995] has used this strategy successfully to optimise an artificial 

predator/prey scenario in a manner better than the standard GP. 

Population of Solutions 

Similarly to a GA, genetic programming first constructs a population of random 

individuals and then processes these by simulated evolution. The random individuals 

in this case are random trees. Due to the closure property of the non-terminal set, it is 

possible to recursively create any combination of terminals and non-terminals. 

Populations in GP are normally much larger than those in genetic algorithms. This is 

chiefly because of the unrestrained nature of the representation. While a GA allows 

only fixed-format strings, trees have much greater diversity of size and structure. To 

accommodate this greater diversity, larger populations are necessary. 

+

* /

3 x * 5

y y

individual 1 individual 2

/

* 3

x y

xy

3 3
5

2

x
y

+

 

Figure 1.9. Extract from population of GP trees and corresponding expression representation 
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Fitness 

Since individuals are represented as computer programs, the obvious method of 

testing effectiveness of the solutions would be to execute the programs. Then some 

means of measuring the performance (error, time taken, etc.) can be used as the fitness 

measure. This adds extra overhead to the GP algorithm since each individual has to be 

executed to determine its fitness. Also, most programming languages do not support 

the execution of data items or dynamic conversion between data and code. In such 

cases, an interpreter has to be incorporated into the algorithm. 

The raw fitness of an individual is the fitness value calculated directly from the 

execution of the program. This value is not bound to any range so its needs to be 

modified before it can be used constructively. The standardised fitness converts the 

raw fitness to a zero-centric function - the standardised fitness of an individual is zero 

for the best individual and higher for individuals of lower fitness. The standardised 

fitness attempts to restrict the fitnesses to the range of positive real numbers only. The 

adjusted fitness changes the fitness value so that it lies strictly within the 0-1 range. 

This is useful to standardise the result designation and make statistics more 

meaningful. The adjusted fitness can be generating trivially from the standardised 

fitness by the following function. 

 AdjustedFitness x
StandardizedFitness x

( )
( )

=
+

1

1
   .......    (1.2) 

Kinnear [Kinnear, 1994] stresses the importance of using a fitness function that not 

only generates the right boundary conditions but also allocates appropriate fitness 

values for all other expressions. If partial credit is not given for containing features 

that lead to a better solution, then the fitness function would not be effective. 

Reproduction 

Fitness-proportionate reproduction in GP is identical to GAs, since the change in 

representation has no effect on the copying of individuals. In order to produce a new 

generation, only the fitnesses need be known, and these are gleaned from the adjusted 

fitness function applied to all the individuals in the original population. 
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Crossover 

Crossover is applied to a pair of individuals from the newly reproduced population in 

order to exchange genetic material. In the case of the classic GA, genetic material took 

the form of sub-strings of the character string representation. GP, on the other hand, 

exchanges sub-trees of the individuals in order to create new individuals. Since the 

non-terminals have achieved closure, it is possible to exchange a sub-tree rooted with 

a non-terminal with one rooted by a terminal since the non-terminal function produces 

a return value in the range of the terminal set.  

Another difference between GAs and GP is in the selection of crossover points. In 

GAs, a single crossover point was chosen and applied to both individuals. In GP this 

is not possible since the individuals may have different structures, so instead different 

crossover points are generated for each individual. 
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Mutation 

Mutation is not necessary in GP because the large population sizes almost always 

ensure that the genetic material cannot be easily lost. However, large population sizes 

x

*

+

* /

3 * 5

y y

parent 1 parent 2

/

3

x y

xy

3
3

5

2

x
y

+

crossover point

crossover point

x

*

+

* /

3 * 5

y y

child 1 child 2

/
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2
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y
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Figure 1.10. Crossover of two individuals in GP 
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require lots of resources and, in the absence of these, steps have to be taken to recover 

the genetic material. Also, taking into account the successes of mutation-based 

evolutionary computing, this genetic operator cannot be simply ignored. 

Just as in crossover, mutation is applied to a randomly chosen sub-tree in the 

individual. This sub-tree is removed from the individual and replaced with a new 

randomly created sub-tree. 

General Algorithm 

// start with an initial generation 
G = 0 
 
// initialise a random generation of trees from the terminals 
and non-terminals 
Pop = initpopulation (G) 
 
// evaluate the fitnesses of individuals in the population 
evaluate (G) 
 
while not done do 
// increase generation counter 
G++ 
 
// generate new population using fitness-proportionate 

3x *

+

* /

3 5

y y

parent

3
5

2

x
y

+

mutation point

+

* /

3 5

child

x

3
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Figure 1.11. Mutation of an individual in GP 
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reproduction 
Pop1 = select (Pop); 
 
// crossover sub-trees 
Pop1 = crossover (Pop1); 
 
// mutate sub-trees 
Pop1 = mutate (Pop1); 
 
// evaluate fitnesses of new population 
evaluate (Pop1); 
 
// replace population with new generation 
Pop = Pop1; 

It is apparent that the general algorithm for GP is nearly identical to the GA. As far as 

implementation is concerned, the major difference is in the representation. But this 

difference is sufficient to necessitate changes in the genetic operators and all other 

manipulation routines in the algorithm. There are also implicit differences that affect 

the efficiency or conceptualisation of GP as compared to standard GAs. 

Applications of GP 

In traditional evolutionary algorithms, the optimization of existing solutions is a large 

research area because the algorithms are more suited to slight perturbations rather than 

outright changes (evolutionary programming and evolution strategies). GAs have the 

limitation that the structure of the solution needs to be known in advance in order that 

it may be modelled by the fixed character string. Although some work has been done 

on variable-length GA strings, this is sufficiently different from the original algorithm 

to fall within the ambit of GP itself. GP has no such restrictions on representation 

therefore the scope of applications is much broader. In an ideal situation, any 

application which requires a solution in the form of a computer program can be solved 

using a GP. 

Koza [Koza, 1992] applied the GP to many benchmark problems that are still used to 

test the capabilities of GP systems. The most famous of those problems is that of 

symbolic regression. A set of points is generated from some test data and an equation 

passing through the points is sought. There exists no definite analytic method to find 

such an equation if the form of the equation is not known in advance. Statistical 

methods assume a form for the equation and then try to optimise the coefficients for 
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the equation. GP can find both the structure and the coefficients for the equation. 

Oakley successfully extended symbolic regression to chaotic data [Oakley, 1994]. 

Another popular area of application is the control of artificial animals and robots. 

Reynolds generated programs to control a robot in order to avoid obstacles [Reynolds, 

1994]. Spencer used GP to teach a 6-legged robot how to walk, in terms of the 

sequence of mechanical actions that had to be performed [Spencer, 1994]. 

Economic optimization, a complex field for analytical study, has also lent itself to 

evolutionary computation techniques. Andrews modelled a double auctioning system 

which used GP to generate a better automatic auctioning program than those 

previously known [Andrews, 1994]. 

Koza et al have applied GP to the problem of designing electrical circuits. They 

trained an artificial animal in maximal food foraging - the algorithm being produced 

in the form of an electronic circuit discovered by GP [Koza, 1996-1]. In a similar 

manner, an electronic circuit was successfully built to implement an operational 

amplifier with desirable amplifier characteristics [Koza, 1996-2]. 

Andre used GP to learn rules for optical character recognition [Andre 1996]. It is a 

laborious task to write rules manually to distinguish among different characters in a 

character set, especially when different fonts and sizes are used. GP successfully 

found rules to classify characters with few errors. 

GP can also be applied to classification problems. A finite automaton, when 

duplicated and arranged in a regular formation, can exhibit aggregate behaviour about 

the total structure. A classic problem is to find a boolean-valued automaton that 

relaxes the total automaton into a steady state corresponding to the value that occurred 

most often in the start state. This is known as the Majority Classification Problem and 

can be solved in numerous ways. Andre used GP to find a rule for the cellular 

automata that was better than any previously known rule (for a particular 

configuration) [Andre, 1996]. 

Hand-in-hand with new applications of GP goes the development of new 

implementations. The early Koza-based implementation of GP was done in LISP, but 
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attempts are being made to port the GP paradigm to other programming environments. 

C++ and other 3GLs are useful for implementation but require complex modelling for 

non-trivial problems. Other platforms (eg. Mathematica) are considered to circumvent 

this complexity. 
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2CHAPTER 2 :  
A MATHEMATICA IMPLEMENTATION 

Implementation Languages 

Lisp 

The first implementations of GP done by Koza used the LISP programming language 

[Koza, 1992]. LISP (LISt Processor) has some unique characteristics compared to 

other commonly used languages, which makes it an ideal platform for the 

implementation of GP. 

In LISP, there are only two basic syntactic constructs. The atom is a terminal part of 

an expression, being either a variable or constant. The other construct is a list. Any 

program can be represented solely using lists of atoms. Lists can also be nested and 

embedded recursively. Lists use a prefix notation, as opposed to popular programming 

languages which prefer infix notation for its more obvious interpretation. These lists 

in LISP are known as S-expressions. 

It can be shown that all computer programs are essentially sequences of functions. 

LISP generalises this by requiring all programs to be in the form of a list. The first 

element of the list is the name of the function while the rest constitute its arguments. 

Thus, in Table 2.1, “+” is the name of the function and its arguments are the numbers 

“1” and “2”. These lists can also be represented as trees since they allow nesting. This 

( + 1 2 )

( * a b )

( + ( * a b ) ( / c d ) 8 )

1+2

ab

ab
c

d
8+ +

LISP normal interpretation

 

Table 2.1.  Sample LISP expressions 
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tree visualisation  is ideal since GP requires a tree representation for its various 

manipulations. 

LISP makes no distinction between code and data. Both the program and the data it 

works on are represented as lists. Thus it is possible to execute an item of data as if it 

was code. Alternatively, it is also possible to manipulate a program as if it was pure 

data. The primary reason why most people implement GP in LISP is because they can 

exploit this feature to make the evaluation of fitnesses easier. Instead of writing an 

interpreter to execute the individuals, they can be run directly on the computer by 

virtue of this almost unique LISP feature. 

Although these features of LISP are conducive to a GP implementation, LISP is not 

widely used because programs do not execute fast enough (compared to 3GL 

languages) and compilers/interpreters are uncommon. It is used by AI researchers but 

not by many other people. 

C++ 

In order to create a GP implementation that is both fast and portable, C++ is an ideal 

choice. Of the wide range of 3GL languages available, C++ compilers are available on 

most platforms. Thus the code can be written in a platform-independent manner. C++ 

also has an adequate library of functions to enable greater flexibility when designing 

internal representations and manipulation functions. 

Keith discusses some of the problems that accompany a C++ implementation, 

especially the issue of representation [Keith, 1994].  Since tree structures are not 

native to C++, these have to be simulated using data structures. In a direct conversion 

from LISP, these trees can be created using pointers and objects. However, it is also 

possible to convert the tree into postfix or prefix notation and use a one-dimensional 

array to store the tree. These different methods have a direct effect on the functions 

that manipulate the expressions in terms of complexity and speed. 

The greatest advantage of LISP over C++ is its ability to execute the individuals 

directly to gauge their fitnesses. C++ has to use an interpreter to perform this task. 

This interpreter will have to take the data structure that corresponds to an individual 
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and simulate execution. For simple problems, such an interpreter may be trivial to 

build, but a larger non-terminal set may require a complex interpreter on the scale of 

the compiler itself. 

This can be a prohibitive factor since the interpreter will have to be written as part of 

the GP implementation. In addition, the problem domain will have to be modelled in 

C++. The complexity of such modelling cannot be predetermined so the effect of such 

is not obvious. However, without the aid of function libraries, mathematical modelling 

in C++ is a non-trivial task which may require more development time than the actual 

GP algorithm. 

Mathematica 

Mathematica is an environment in which mathematical computations are easily 

performed. It is essentially an interpreter which takes expressions as input and 

attempts to make conclusions from these expressions. Most Mathematica users only 

utilise this subset of its capabilities. 

Mathematica can be compared to the BASIC (Beginners All Purpose Symbolic 

Instruction Code) interpreter which was bundled with the older versions of MSDOS 

(MicroSoft Disc Operating System). It can execute one command at a time or it can 

take input from a file, thus processing a batch of input at once. This batch processing 

allows the user to write programs in Mathematica.  

Mathematica stores all expressions internally as trees. This makes it easier to 

implement GP in Mathematica since GP requires a tree representation. Mathematica 

also has available a library of functions for manipulation of these trees, and these are 

useful for genetic operators. 

Similarly to LISP, Mathematica makes no distinction between program code and data. 

Thus a program can be manipulated and modified as if it was plain data, and data 

could be executed as if it was code. Unlike C++, it is unnecessary to use an interpreter 

to evaluate the fitnesses of individuals, since the individuals can be executed within 

the framework of the Mathematica environment. 
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The most important factor supporting the implementation of GP in Mathematica is the 

large body of existing and ongoing mathematical modelling in this environment, as 

demonstrated by the number of conferences and publications devoted to it. 

Mathematica is becoming a platform of choice because of its ingrained orientation 

towards the analysis and presentation of mathematical solutions. The ease with which 

complex problems can be implemented in Mathematica makes it feasible to 

implement GP on this platform. Since GP is problem-independent, the majority of 

work done to solve a problem is in the modelling stage. By choosing a platform like 

Mathematica which supports easier modelling, productivity can be increased. 

Nachbar was the first person to document a GP implementation in Mathematica but, 

subsequently,  there has been little work done in this field [Nachbar, 1994]. This study 

explores the implementation of GP on a Mathematica platform, making full use of the 

multiple paradigms, optimizations and other advanced features available in the 

language. 

Introduction to Mathematica 

The following overview of Mathematica is focused on the aspects that are relevant to 

the GP implementation. A more in-depth discussion can be found in [Wolfram, 1991], 

[Wolfram, 1992], [Wickham-Jones, 1994], [Maeder, 1991] and [Abell, 1992]. 

Platforms and Organisation 

Mathematica is available on many different hardware platforms and operating system 

combinations e.g. DOS, Windows 3.x, Sun, Silicon Graphics. However, the 

underlying kernel of the environment is the same in all instances. This kernel is a 

single-line text input processing system. A line of Mathematica code is typed in at the 

keyboard, this expression is immediately evaluated and the results are output to the 

screen. 

In modern GUI (graphical user interface) operating systems, this method of inputting 

data into the environment would not be acceptable since it does not conform to the 

user interface and the advantages of the operating system would be lost. To make 

Mathematica easier to use, a front-end processor was included. This is a graphical 
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program that takes input from the user in the most natural way possible and passes this 

input to the Mathematica kernel. The output from the kernel is then re-directed back to 

the front-end, which formats it in a more natural way. The input and output are both 

displayed as a single document, much in the same way as a word processor displays a 

text document. This allows the user to edit and re-evaluate expressions, which could 

not be done in the line-by-line version. Also, having both the input and output on a 

single page allows for easier publishing of results from the session. This document, 

containing Mathematica input, output and other formatting is known as a Notebook. 

Variables 

Mathematica can do both numerical and symbolic calculations, attempting at all times 

to produce a result which is as accurate as possible. If the answer to a calculation is a 

fraction, then that fraction would be output instead of its numerical equivalent, to 

preserve computational precision.  

The basic data types are String, Integer and Real. These can then be compounded into 

lists. Values are assigned to variables by means of the standard assignment operator 

“=”.  

X=12 

In an actual Mathematica environment, these input and output operations may be 

preceded by an internal numbering system, which allows the user to refer to results 

from previous calculations. 

After such a definition, all occurrences of X (taking case into account) are replaced by 

its associated value. If the input is simply X then the output would be “12”. Obviously, 

the value of one variable can be assigned to another using the same syntax. Variables 

can be created on-the-fly, without the need to declare the list of variables in advance. 

A list of values is denoted by curly braces. 

TestList = {1, 2, 3} 

There are no pointers in Mathematica since it does its own memory management. 

Lists can grow as large as memory and hard disk space (used for virtual memory) 
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allow. They can be embedded and nested to form trees, which are the most general 

form of data structure directly supported in Mathematica. 

Functions 

Mathematica is first and foremost a functional programming language. It contains a 

large collection of pre-defined functions and allows the user to define further 

functions or even enhance the built-in definitions. A program in Mathematica is 

simply a sequence of calls to these functions. These calls can themselves be embedded 

within another function, allowing modular programming. 

Functions are called by the exact name of the function, followed by the parameters 

within square brackets. For example, 

Plus[2, 2] 

would produce the following output: 

4 

All operations without exception can be written in this form. Even simple functions 

like addition and subtraction can use this notation. However, in order to make 

inputting of expressions easier, the kernel allows an alternative notation for some 

common expressions, like addition and multiplication. Thus the expression 

2+2 

is equivalent to the one above and would produce the same output. 

Function calls can be nested and the expression is then evaluated depth-first (in most 

cases). Thus it is possible to write  

Times[12, Plus[2, 1]] 

which would evaluate to “36”. 

Functions are defined using the following general syntax: 

NewFunction [x_, y_] := 2 * x + y 
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The name of the function will be NewFunction. This will be added to the list of 

built-in functions. There is no distinction between built-in functions and user-defined 

functions, allowing the Mathematica environment to be easily extended. 

The parameters within brackets are the formal parameters. The underscores after the 

names of the formal parameters indicate that they are simply placeholders for actual 

parameters. Mathematica uses a system of pattern-matching to implement its function 

mechanism. When the function is called, the actual parameters are replaced for the 

formal parameters wherever they occur in the expression, then the expression is 

evaluated. If the underscores are omitted, Mathematica would try to match the exact 

parameters in the list, without any form of pattern-matching. Thus, only  

NewFunction[x, y] would be successfully parsed. 

The “:=” indicates that the RHS expression is not to be evaluated until the function is 

used within another expression. This ensures that parameter substitution by means of 

pattern-matching gets highest precedence. If the colon was not prefixed to the 

assignment operator then the RHS would be evaluated when the function is defined; if 

x and y are global variables then their values would be substituted, instead of the 

parameters, and the result of the function would be that constant value generated. 

The expression on the RHS of the function definition is the body of the function. The 

variables used are subject to parameter pattern-matching. The result of the function 

call is the evaluation of this expression. Thus  

NewFunction [7, 3] 

would result in 

17 

It is also possible to do symbolic calculations. Variables can be used as input to the 

function, whether they have a value or not. Consider the following code fragment: 

a=12; NewFunction [a, b] 

The output would be 

24 + b 
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If two statements are separated by a semi-colon, then they are executed in sequence 

and the result of the expression is the result of the second expression. In the above 

example, a has an associated value while b does not. The kernel therefore replaces the 

a with its value when calling the function. The second actual parameter is b since it 

doesn’t have a value. Thus the answer is as accurate as possible with the limited 

information provided. Using this technique of defining values for variables it is also 

possible to perform symbolic calculations in Mathematica. 

Overloading of functions is an integral part of the environment, allowing for multi-

part functions and different parameter types and ranges. Functions are very flexible 

when pattern-matching. It is possible to write functions that only accept parameters of 

particular types or ranges or even parameters that obey specific rules. Varying 

numbers of parameters are also catered for. 

Paradigms 

Although Mathematica focuses mainly on the functional aspects of programming, 

there are also mechanisms that enable the user to write procedural and declarative 

code. 

By simple virtue of the fact that function overloading and pattern-matching is 

available, declarative programming becomes feasible. 

Procedural programming relies on constructs that explicitly implement sequence, 

selection and iteration. Sequence is easily accomplished by consecutive lines of input, 

possibly separated by semi-colons. A selection mechanism is normally in the form of 

an “if” statement e.g. in C++ and Pascal. In order not to deviate too much from 

classical languages, such a construct is provided in Mathematica. 

If [x==0, 1, 2] 

Unlike simple functions, the parameters are not evaluated beforehand. The If 

function will evaluate the first parameter. If its result is true then the second parameter 

is evaluated, otherwise the third parameter is evaluated. The result of the entire 

expression is therefore the result of either the second or third parameter. 
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Iteration is implemented in a similar way. The functions are equivalent to their C++ 

counterparts. The Do function is equivalent to the fixed iteration ”for” statement in 

classical languages like C. Do has two parameters, the first being a block of 

statements and the second being an iteration specification. This specification takes the 

form of a list, where the first element is the name of the variable, the second the initial 

value, the third the final value and the fourth the step. There are many different ways 

of specifying a range of values for fixed loops, where some of these elements may be 

omitted in favour of default values. The following example prints the string “Hello 

World” ten times on the screen. 

Do[ Pr i nt [ “ Hel l o Wor l d” ,  { i ,  1,  10} ]  

Conditional loops are implemented with the Whi l e function, which takes only two 

parameters. The first is an expression that is evaluated each time the loop starts, and 

terminates the loop once it is false. The second parameter is a block of statements that 

must be executed. 

This multiple-paradigm approach to programming is beneficial since the problems can 

be modelled using any of these three methods. The best techniques of each paradigm 

can be incorporated into the code. For example, the definition of multiple clauses can 

be used with functions whose bodies are written in a procedural fashion. Being a 

functional programming language, however, Mathematica discourages the use of 

procedural constructs by providing the user with a rich set of functions that implicitly 

iterate over lists of data. 

Modularization - Functions 

Since all variables are created dynamically, it eventually happens that variables begin 

to overlap - i.e. a variable is used for different tasks in different parts of the program. 

This is not critical until the value of a variable needs to be maintained for further 

calculations. The classical solution to this is the introduction of local variables in the 

functions. Since functions do not allow for this in their syntax, Mathematica provides 

additional functions to define local variables explicitly and then execute a block of 

code. Modul e is one such function, where the first argument is a list of local 

variables and the second is a block of statements. 
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Swap [x_, y_]:=Module[{t}, t=x; x=y; y=t, {x, y}] 

In this example, the variable t is a temporary local variable. After swapping the 

values of the parameters they are expressed as a list, since the last expression 

represents the return value of the function. 

Modularization - Files 

Instead of typing in an entire program from the command line, the program can be 

stored in a Notebook and recalled when needed. Notebooks are especially geared 

towards storing input, output and additional formatting. In order to store the definition 

of a function, or a sequence of Mathematica commands, it is not necessary to use a 

Notebook. 

Any text file containing Mathematica code can be used as input to the interpreter. The 

Get function opens the file, reads in the data and executes each line of the file in 

sequence. The result of the Get function is the result of the last expression evaluated. 

This is the easiest method of storing and retrieving Mathematica programs. 

A package is a collection of function definitions stored in a text file. It differs from a 

normal text input file in that there is the addition of scope mechanisms. Instead of 

making all variables globally accessible as before, a package can hide its variables and 

definitions from the rest of the environment. This is accomplished by Mathematica 

dividing the variable space into contexts. Any variable declared is inserted into the 

current context. When a package is loaded, it creates a new context and inserts its 

definitions into that context, finally switching back to the old context. That way its 

definitions are protected from being accidentally overwritten by new definitions. It is 

possible to access members of another context explicitly but this is sufficiently 

complex that it does not happen accidentally. Also, contexts can export their 

definitions so that certain functions may be used in all contexts - after loading a 

package the user can directly call the functions exported by that package but not its 

internal functions. 
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Simple Genetic Programming Implementation 

The complete set of Mathematica files for this implementation is contained in 

Appendix A. 

Representation of Data 

Since Mathematica already stores all data internally in the form of expression trees, 

this can be exploited readily to represent the individuals in a GP implementation.  

The individuals in a population could be represented simply as Mathematica 

expressions due to their correspondence to trees. However, Mathematica would 

attempt to simplify all expressions immediately. Thus any expression with constant 

parameters would be folded immediately to the numerical value of the constant 

expression. For example, 

Plus[2, 3, 7] 

becomes 

12 

Standard Representation

a
b

c
+

Mathematica Expression

Plus[a, Divide[b, c]]

Tree Representation

a

+

/

b c

 

Figure 2.1. Representation of an expression 
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This is not always desirable since genetic material would be lost each time an 

expression is simplified. In order to prevent Mathematica from simplifying 

individuals, the standard functions are replaced with dummy functions. Plus is 

replaced with PPlus, Minus is replaced with PMinus, etc. Since Mathematica 

knows nothing about the functions called PPlus and PMinus, it will not attempt to 

reduce the expressions. The above expression would now be 

PPlus [2, 3, 7] 

and Mathematica would not reduce the expression since it would not know how to do 

that. However, in order to use the expressions in fitness evaluations, they must be 

meaningful to the interpreter. At the last point before evaluation, the expressions can 

be converted to the proper form with a simple transformation. 

XTrans={PPlus->Plus, PMinus->Minus, PTimes->Times,  
PDivide->Divide} 

This defines a set of rules for converting sub-expressions from one value to another. 

In this example, all occurrences of PPlus would be changed to Plus, and so forth. 

Mathematica provides a mechanism to apply this set of transformations to any 

expression as illustrated below. 

PPlus [2, 3, 7] /. Xtrans 

12 

After the expression has been transformed, it is immediately evaluated by the kernel 

and the result is returned. 

According to Koza, the first two elements to consider when modelling a GP are the 

function and terminal sets [Koza, 1994]. The functions can be simply the collection of 

dummy Mathematica functions, corresponding to real functions that may be contained 

in individuals. For simple polynomials, this would include the four basic operations. 

Functions={PPlus, PTimes, PMinus, PDivide} 

Since Mathematica has no knowledge of the functions in the function set, there is no 

way of telling how many parameters each can take. This is required to construct 

syntactically correct individuals, so it has to be specified explicitly as a list of arities. 
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Parameters={2, 2, 1, 2} 

The terminal set would contain all the variables available to each individual. Just as 

with the function set, this is specific to each problem. 

Terminals={x, y, z} 

Closure of Function Set 

Since GP can construct any expressions with any possible numerical values, it is quite 

conceivable that an individual may attempt to divide by zero. This can be prevented 

by explicitly assigning a non-error value to that operation. Mathematica allows the 

programmer to override any function, which includes the standard operations. 

ClearAttributes[Divide, Protected] 

Divide[_, 0]:=1 

SetAttributes[Divide, Protected] 

Every function has attributes to indicate what is possible with the function. The 

Protected attribute indicates that the definition of a function cannot be changed. In 

order to change the definition, this attribute must therefore be temporarily removed.  

It is not necessary to provide a name for the first formal parameter of the definition 

since this parameter is never used. All that Mathematica needs check for is the zero as 

a second parameter - then the value “1” is returned. Since the parameter list is more 

specific, this clause has higher priority than the general case - the kernel will attempt 

to match these parameters before trying the built-in definition. 

Similarly, all other functions used in the implementation must be scrutinised for 

undefined values. Any such values must be overridden with appropriately defined 

values. Besides Divide, it may be useful to overload the definitions for Log and 

Power as well.  

ClearAttributes[Log, Protected] 

Log[0]:=0 

Log[x_ /; x<0]:=Log[-x] 

Log[E^x_]:=x 

SetAttributes[Log, Protected] 
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ClearAttributes[Power, Protected] 

Power[0, -1]:=1 

SetAttributes[Power, Protected] 

Early Mathematica kernels could not automatically simplify some Log expressions so 

those were defined here as well. Once they are defined, these functions will be used 

automatically by the kernel. 

Power has to be overloaded simply because 0-1 is equivalent to division by zero. 

Fitness 

The fitness of an individual can be defined as a function that takes the individual as its 

single parameter and returns the associated fitness value. This function is specific to 

the problem domain so it cannot be included in the general algorithm. However, it is 

possible to pre-define the transformations that the fitness value undergoes. 

The raw fitness is a raw indication of the fitness of the individual. The standardised 

fitness is the zero-based fitness, such that a fitness of zero represents the perfect 

solution. The adjusted fitness maps the standardised fitness onto the range 0-1 such 

that 1 is the best fitness and 0 the worst. 

(* RawFitness *) 

StandardizedFitness[x_]:=RawFitness[x] 

AdjustedFitness[x_]:=N[1/(1+StandardizedFitness[x])] 

RawFitness is enclosed within comment delimiters since it is defined differently 

for each problem domain. AdjustedFitness returns its result in numerical format 

by applying the numerical approximation function N. This forces the kernel to convert 

all fractions to real numbers, which is necessary for the fitness-proportionate 

reproduction stage. 
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Parameters 

These parameters control the GP execution. They are used in conjunction with the 

fitness and function/terminal sets to uniquely define the GP approach to finding a 

solution in a particular problem domain. 

MaxGenerations = 51 

MaxGenerations is the maximum number of generations that must be created by 

the algorithm. If no acceptable solution is found after MaxGenerations 

generations, then the algorithm terminates. 

PopulationSize = 250 

PopulationSize is the number of individuals in a single generation of the 

population. This is a static number to prevent the population from outgrowing the 

computer’s resources or dwindling to obscurity. 

MaxInitialSize = 6 

MaxInitialSize is the maximum initial depth of the trees in generation 0. 

MaxSize = 17 

MaxSize is the maximum depth of the trees. This is different from 

MaxInitialSize since it is expected that better trees in later generations will be 

larger than the initial ones. 

MaxComplexity = 50 

MaxComplexity is the maximum number of nodes that a tree can have. This is 

necessary to prevent bushy trees, which correspond to complex expressions. In effect, 

this parameter controls the parsimony of the generated solutions. A smaller value 

generates more parsimonious individuals but may miss the solution altogether. A 

larger value generates complex expressions but has a better chance of finding 

solutions. 

CrossoverProbability = 0.9 
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CrossoverProbability is the probability that crossover will occur between a 

pair of individuals during the creation of a new generation. It is expressed as a fraction 

relative to 1, thus 0.9 represents a 90% probability of crossover. 

MutationProbability = 0.1 

MutationProbability is the probability that an individual will be mutated 

during the creation of a new generation. 0.1 represents a 10% probability of mutation. 

MinFitness = 0.99 

MinFitness is the minimum fitness value that indicates termination of the 

algorithm. If any individual achieves a fitness equal to or better than this, then that is 

denoted the solution and the algorithm stops iterating. 

Generation of Random Population 

GenerateNormal[d_]:= 
   Module[ 
     {r, Poss, PossPar}, 
     If[ 
        d>1,  
        Poss=Join[Functions, Terminals]; 
        PossPar=Parameters, 
        Poss=Terminals; 
        PossPar={} 
       ]; 
     While[ 
           Length[PossPar]<Length[Poss], 
           PossPar=Append[PossPar,0] 
          ]; 
     r=Random[Integer, {1, Length[Poss]}]; 
     Switch[ 
            PossPar[[r]], 
            0, 
            Poss[[r]], 
            1, 
            Poss[[r]][Generate[d-1]], 
            2, 
            Poss[[r]][Generate[d-1], Generate[d-1]] 
           ] 
   ] 

GenerateNormal recursively generates a random expression tree. It takes a single 

parameter being the depth of the tree and then produces a tree of at most this depth, 

composed entirely of functions and terminals from the pre-specified sets. 

The first statement checks if the depth is greater than one. If so, it allows the 

generation of functions as well as terminals. If the depth is exactly one, then only 
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terminals are allowed. If terminals and non-terminals are acceptable, then they are 

joined together into one list. In either case, the number of parameters associated with 

terminals needs to be set to zero for each terminal. 

After this is done, a random number (between 1 and the number of possible 

functions/terminals) is generated to decide on the sub-expression to be generated at 

that point. The number of parameters for this function is extracted from the PossPar 

list, built in the previous lines, and used to recursively generate expressions for each 

parameter. The output of the Switch function is what is returned by the function so 

each possible output is formed by a function/terminal followed by a set of parameters. 

These parameters are generated using the same GenerateNormal function, except 

that the maximum depth is reduced by one for each parameter. 

Reproduction 

A set of functions works together to create a new population from the previous 

generation, using fitness-proportionate selection. 

(* List of fitnesses of expressions in current generation *) 
Fitnesses={} 

Fitnesses is a list of the fitnesses of all individuals in the population. These are 

calculated whenever a new generation has been created, after all the genetic operators 

have been applied. The list of fitness values are necessary to implement roulette-wheel 

selection. 

(* Make cumulative fitnesses vector *) 
CalcFitnessSum:= 
   Module[{}, 
          FitSum=Table[Apply[Plus, Take[Fitnesses, i]],  
                       {i, 1, Length[Fitnesses]} 
                      ]; 
          FitSum=Insert[FitSum, 0, 1]; 
         ] 

CalcFitnessSum creates a list of partial sums of the fitnesses of individuals. For 

example, if the fitnesses of a 5-individual population corresponds to {1, 2, 3, 4, 5}, 

then the value of FitSum would be {1, 3, 6, 10, 15}. Each element of FitSum is the 

sum of all fitnesses up to that point. Finally an element with value “1” is inserted at 

the beginning of the FitSum list to assist with the search technique employed below. 
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(* Bisection algorithm search for roulette wheel fitnesses *) 
Search[x_] :=  
  Module[{Mid, Start=1, Stop=Length[FitSum]},  
         While[Start+1 != Stop,  
               Mid = Floor[(Start+Stop)/2];  
               If[FitSum[[Mid]] > x,  
                  Stop=Mid, 
                  Start=Mid 
                 ] 
              ];  
         Start 
        ] 

In order to implement roulette-wheel selection of individuals, the normal procedure is 

to add together all fitnesses, generate a random number in the range of this sum and 

then add fitnesses until the random number is exceeded. The bottleneck in such a 

mechanism lies in the linear search through the list of fitnesses that must be done to 

find the selected individual. Freeman modified this technique when applying it to 

GAs, by producing partial sums and executing a binary search for the selected 

individual [Freeman, 1994]. 

The partial sums, as created by the CalcFitnessSum function, are obviously sorted 

in ascending order. A binary search applied to this FitSum list produces exactly the 

same results as the linear search technique applied on Fitnesses. 

(* Create new generation from previous one *) 
NewGen[x_] := Module[ 
  {maxwheel, newgen, lenx}, 
  newgen={}; 
  maxwheel=Apply[Plus, Fitnesses]; 
  lenx=Length[x]; 
  CalcFitnessSum; 
  Do[ 
    Module[ 
      {spot, index, isum}, 
      spot=Random[]*maxwheel; 
      index=Search[spot]; 
      newgen=Append[newgen, x[[index]]] 
    ], 
    {i, 1, lenx} 
  ]; 
  newgen 
] 

NewGen creates a new generation of individuals. The newgen is first initialised to an 

empty list. The sum of fitnesses (maxwheel) and the size of the population (lenx) 

are calculated. It can be argued that the PopulationSize can be used. However, 

by generating the population size dynamically, it is possible to apply this function to 

subsets of the population as well. 
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CalcFitnessSum creates the list of partial sums needed for the binary search. A 

new generation is then created iteratively. A random number is generated and the 

associated individual is selected by the Search function. The individual is then 

appended to the new generation in newgen. 

Finally, the value of newgen is returned as the result of the function, being the new 

population. 

Crossover 

Two child expressions are produced from a pair of parents by means of the crossover 

genetic operator. Cross1 takes two individuals and performs crossover. 

Crossover applies this function to an entire population. 

(* Get list of all indices of internal points in expression *) 
RemoveZero[x_]:=If[Position[x, 0]=={}, x, {}] 
Points[x_]:=Union[Map[RemoveZero, Position[x, _]], {}] 
GetInternal[{x___}]:=x 

The unique position of any node or subtree in a tree can be specified by a list of 

indices, which represent the path from the root to the node. Points is a function 

which generates a list of the positions of every subtree of a given tree. 

(* Perform crossover operation on two expressions *) 
Cross1[x_, y_]:= 
   Module[ 
          {spot1, spot2, point1, point2, temp1, temp2}, 
          If[ 
             Random[]<CrossoverProbability, 
             point1=Points[x]; 
             spot1=Random[Integer, {1, Length[point1]}]; 
             point2=Points[y]; 
             spot2=Random[Integer, {1, Length[point2]}]; 
             temp1=x[[GetInternal[point1[[spot1]]]]]; 
             temp2=y[[GetInternal[point2[[spot2]]]]]; 
             { If[ 
                  point1[[spot1]]=={}, 
                  temp2, 
                  ReplacePart[x, temp2, point1[[spot1]]] 
                 ], 
               If[ 
                  point2[[spot2]]=={}, 
                  temp1, 
                  ReplacePart[y, temp1, point2[[spot2]]] 
                 ] 
             }, 
             {x, y} 
            ] 
         ] 
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Cross1 crosses over two individuals to produce a pair of new individuals. First, a 

random number is generated and this is used to decide whether to apply crossover or 

simply copy the individuals. 

If crossover is to be applied, the node list is generated for each individual by calling 

Points. Random sub-trees are extracted from the individuals and then stored in the 

temp1 and temp2 variables. Finally, the sub-trees are swapped and replaced in the 

individuals and the list of two new individuals is returned from the function. The 

additional check before replacing the sub-tree handles the special case where the sub-

tree is the entire individual. 

(* Perform crossover on all expressions in new generation *) 
Crossover[x_] := Module[ 
  {newx, oldx, n2, leno, origlen}, 
  oldx=x; 
  newx={}; 
  leno=Length[oldx]; 
  origlen=leno; 
  While[ 
    leno>0, 
    If[ 
      leno==1, 
      newx=Append[newx, First[oldx]]; 
      oldx=Rest[oldx], 
      n2=Cross1[oldx[[1]], oldx[[2]]]; 
      If[((Depth[n2[[1]]]<=MaxSize) && 
         (LeafCount[n2[[1]]]<=MaxComplexity)), 
         newx=Append[newx, n2[[1]]], 
         newx=Append[newx, oldx[[1]]] 
        ]; 
      If[((Depth[n2[[2]]]<=MaxSize) && 
         (LeafCount[n2[[2]]]<=MaxComplexity)), 
         newx=Append[newx, n2[[2]]], 
         newx=Append[newx, oldx[[2]]] 
        ]; 
      oldx=Drop[oldx, 2]; 
    ]; 
    leno=Length[oldx] 
  ];  
  newx  
] 

Crossover applies the Cross1 function to an entire population. Once again, the 

new generation (newx) is initialised to an empty set and the length of the population 

is calculated (leno). The first two elements of the old population are crossed. The 

new individuals are separately tested to make sure that they do not exceed the 

maximum size or complexity parameters. Each individual that passes the test is added 

to the new population, while those that fail the test are discarded and the original 
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individuals are then added to the new population. Finally, the first two individuals are 

removed from the list, and the process continues as before. If there is only one 

individual left in the population, that is simply copied to the new population. The 

iteration terminates when the entire old population has been processed. 

Mutation 

Mutation is a function that applies the mutation genetic operator to an individual. 

Mutate[x_]:=Module[ 
                   {spot1, point1, y, xold}, 
                   xold=x; 
                   If[ 
                      Random[]<MutationProbability, 
                      y=Generate[MaxInitialSize]; 
                      point1=Points[x]; 
                      spot1=Random[Integer, {1,Length[point1]}]; 
                      If[ 
                         point1[[spot1]]=={}, 
                         y, 
                         ReplacePart[x, y, point1[[spot1]]] 
                        ], 
                      If[ 
                         ((Depth[x]<MaxSize) && 
                         (LeafCount[x]<MaxComplexity)), 
                         x, 
                         xold 
                        ] 
                     ] 
                  ] 

Before modifying the individual in any way, a copy is kept in xold. Then a random 

number is generated to decide whether to apply the mutation operator or not. If the 

operator is not applied, the individual is simply returned as the result.  

Otherwise, a random expression is generated. Just as with crossover, a random point is 

chosen in the tree. The new expression is inserted at this point, replacing whatever 

was there before. During this replacement, it is still important to check if the whole 

expression needs replacing. Finally, before returning the new individual, it is 

necessary to check that it does not exceed the complexity or size requirements. 

Result Designation 

The best individual from all the generations is designated as the solution, if it satisfies 

the MinFitness criterion. In order to keep track of this solution, it is necessary to 
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store the individual as well as its fitness. CheckSolution checks the population at 

each iteration to determine if an acceptable solution has been found. 

(* Update best-of-run individual *) 
CheckSolution[gen_, x_]:= 
   Module[ 
          {minf, maxf}, 
           Fitnesses=AdjustedFitness /@ x; 
           minf=Position[Fitnesses, Min[Fitnesses]][[1,1]]; 
           maxf=Position[Fitnesses, Max[Fitnesses]][[1,1]]; 
           If[ 
              SolutionFitness<Fitnesses[[maxf]], 
              Solution=x[[maxf]]; 
              SolutionFitness=Fitnesses[[maxf]] 
             ]; 
           SolutionSet=Append[ 
                              SolutionSet, 
                              {gen, Fitnesses[[maxf]], 
                               x[[maxf]], 
                               Fitnesses[[minf]], x[[minf]]} 
                             ]; 
           Print["G", gen, ": max ", Fitnesses[[maxf]], 
                 "    min ", Fitnesses[[minf]]]; 
         ] 

First the fitness is calculated for all individuals in the population. Then the position of 

the minimum and maximum fitnesses are calculated. The best solution of the current 

generation is checked against the global solution (Solution, SolutionFitness) 

and the global values are replaced if appropriate. Finally, the best and worst fitness 

values and their associated individuals are stored for statistical purposes (in 

SolutionSet). 

Initialisation 

Running the GP is a two-step process. First the population and variables must be 

initialised with default or initial values. Then the GP can be run until one of the 

termination criterion is satisfied. 

(* Initialise Genetic algorithm *) 

Initialize:=Block[{poplog}, 
                  Population=Table[Generate[MaxInitialSize],  
                                   {PopulationSize}]; 
                  SolutionFitness=0; 
                  SolutionSet={}; 
                  Generation=0; 
                  TotTime=0; 
                  Print["G", Generation, ": calculating", 
                        "fitnesses ..."]; 
                  Print["G", Generation, ": done ... ",  
                        Timing[CheckSolution[Generation, 



 Page 50 

                        Population]][[1]]]; 
                  Print["G", Generation, ": best-of-run " 
                        "fitness so far = ",  
                        SolutionFitness]; 

                  Off[DeleteFile::nffil]; 
                  DeleteFile["pop.log"]; 
                  On[DeleteFile::nffil]; 
                  poplog=OpenAppend["pop.log"]; 
                  WriteString[poplog, "pop={"]; 
                  Write[poplog, {Generation, Fitnesses}]; 
                  Close[poplog];                   

                  Information[Population]; 
                  GInformation; 
                 ] 

First an initial generation 0 population is created. All global variables are given their 

initial values. SolutionFitness is set to the absolute minimum fitness (0) so that 

the very first time CheckSolution is run, it would attach a value to this variable. 

Generation is set to 0, being the initial generation, and SolutionSet is empty 

since no generations have been processed yet. Then the initial generation is checked 

by CheckSolution and the results displayed on the screen. 

POP.LOG stores statistical information used to monitor the distribution of individuals 

in the population. It is deleted and then initialised with the data for the initial 

generation. 

Finally, the individuals in the initial population are displayed on the screen, together 

with information about the parameters of the impending execution. 

ApplyGen 

The GP algorithm itself is controlled solely by the ApplyGen function. 

(* Apply Genetic algorithm *) 

ApplyGen := Module[ 
  {onetime, poplog}, 
  newpop=Population; 

  While 
   [ 
    (SolutionFitness<MinFitness) && (Generation<MaxGenerations), 
   onetime=Timing[ 
    Print["G", Generation, ": creating mating pool ..."]; 
    Print["G", Generation, ": done ... ", 
          Timing[newpop=NewGen[newpop]][[1]]]; 
    Print["G", Generation, ": performing crossover ..."]; 
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    Print["G", Generation, ": done ... ", 
          Timing[newpop=Crossover[newpop]][[1]]]; 
    Print["G", Generation, ": performing mutation ..."]; 
    Print["G", Generation, ": done ... ", 
          Timing[newpop=Map[Mutate, newpop]][[1]]]; 
    Generation++; 
    Population=newpop; 
    Print["G", Generation, ": calculating fitnesses ..."]; 
    Print["G", Generation, ": done ... ", 
          Timing[CheckSolution[Generation, newpop]][[1]]]; 
    Print["G", Generation, ": best-of-run fitness so far = ", 
          SolutionFitness]; 
   ][[1]]; 
    Time[onetime, "G", Generation,  
         ": total time for Generation change = "]; 
    TotTime+=onetime; 
    Time[TotTime, "G", Generation, ": total time so far = "]; 

    poplog=OpenAppend["pop.log"]; 
    WriteString[poplog, ","]; 
    Write[poplog, {Generation, Fitnesses}]; 
    Close[poplog]; 
   ]; 
  {Solution /. XTrans, SolutionFitness} 
] 

The iteration proceeds as long as the current best solution does not exceed 

MinFitness and the maximum number of generation has not been reached. A new 

generation is created by fitness-proportionate reproduction using the NewGen 

function. Crossover and Mutation are applied to this new generation and it then 

replaces the original population. Finally, CheckSolution checks the fitnesses of 

individuals. Throughout the iteration, the time taken is measured and extensive 

reporting on current activity is carried out. At the end of the iteration, this time is 

reported as well as the time taken for all generations thus far. The population fitness 

data is saved in POP.LOG for statistical purposes and the next iteration begins. 

(* Start run of algorithm *) 
StartGen:=Timing[ 
                 CheckAbort[ 
                            ApplyGen, 
                            {Solution /. XTrans, 
                             SolutionFitness} 
                           ] 
                ] 

ContinueGen[gen_]:=Module[{}, 
                          MaxGenerations=gen; 
                          MinFitness=2; 
                          StartGen 
                         ] 
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StartGen and ContinueGen simply enhance the capabilities of ApplyGen. 

StartGen incorporates the ability to break out of the calculation as well as 

displaying timing information and the solution at the end of the run. ContinueGen 

continues the algorithm after the termination criterion has been met, in an attempt to 

find even better solutions or alternatives. 

Automatic Recovery 

Although the GP algorithm works fairly well if left to run unattended, it takes 

extremely long to find non-trivial results. If a computer is working on a problem for a 

long period of time, it is quite possible  that there could be a power failure. In such 

cases, all intermediate calculations would be wasted and the algorithm would have to 

be started from scratch. 

To save these results, the state of the system at each stage of the calculation can be 

stored in a text file by the following code fragment, for easy continuation at a later 

stage: 

Save["restart.log", PopulationSize]; 
Save["restart.log", ContinueGen]; 

Mathematica saves the definition of PopulationSize and ContinueGen in the 

file called RESTART.LOG. However, since ContinueGen calls ApplyGen, that is 

also saved. All the functions called by ApplyGen are saved as well and this process 

continues recursively. Eventually, every function needed to execute the GP is stored in 

the file. 

There is always the danger, albeit quite small, that the power failure may occur while 

the backup is taking place. The solution to this is to make the backup in a temporary 

file and only swap the files once the backup is complete. Using this technique, in the 

worst case scenario where the power failure occurs during backup, the previous 

backup is still secure and can be used. 

Print["Saving state of system..."]; 
Save["restart.log", PopulationSize]; 
Save["restart.new", ContinueGen]; 
RenameFile["restart.log", "restart.old"]; 
RenameFile["restart.new", "restart.log"]; 
DeleteFile["restart.old"]; 
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This saving of data must be incorporated into both Appl yGen and I ni t i al i ze. In 

order to use this data, Appl yGen must load the data from disk before going into the 

processing loop. This can be accomplished simply by 

Get [ “ r est ar t . l og” ] ;  

Mechanics of a Sample Implementation 

In order to use this GP implementation, the programmer must first model the problem 

domain in Mathematica. Then appropriate terminal and function sets must be chosen 

along with a reasonably well-scaled fitness function. Parameters can be tweaked to 

accommodate peculiarities of the problem domain; for example, a larger population 

size may be needed if the function is larger. 

The initial population is generated and processed by calling 

I ni t i al i se 

The GP algorithm is begun by calling 

St ar t Gen 

Thereafter the progress of the algorithm can be monitored on the screen. 

After a successful GP run, it is possible to utilise the built-in features of Mathematica 

to analyse the results, produce statistics and generate graphs and histograms. 
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3CHAPTER 3 : 
SYMBOLIC REGRESSION 

Statistical Analysis Techniques 

A series of experiments was conducted to evaluate the effectiveness of the 

implementation. These experiments were compared on the basis of time taken, 

resources used, and the changes in the population as the generations progressed, the 

most important changes being those in the fitness values. These fitness values were 

streamed, in Mathematica expression format, to a text file during each run of the GP 

algorithm. 

After the algorithm terminated, it was possible to read in the complete list of fitnesses 

over all generations and extract information regarding the convergence, divergence or 

other shifts in the population. This data could then be displayed graphically using the 

built-in graph-plotting routines in Mathematica. 

ShowCurve:=Module[ 
                  {t}, 
                  t=MapThread[List, SolutionSet]; 
                  ListPlot[MapThread[List, {Join[t[[1]], 
                                     t[[1]]], 
                                     Join[t[[2]], t[[4]]]}],  
                                     PlotRange->{{0, 51}, 
                                                 {0,1}}] 
                 ] 

ShowCurve displays a graph of the minimum and maximum fitnesses of each 

generation. This function is general and can be applied to all problem domains. A 

typical output from ShowCurve is shown in Figure 3.1. This graph indicates 

whether the algorithm is convergent or not. If there is visible convergence and no 

solution has yet been found, then the algorithm can be extended over more 

generations. If convergence is not reached, then the parameters of the run can be 

tweaked to better suit the problem domain. 
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In Figure 3.1, the x-axis represents the generations and the y-axis represents the 

fitnesses of the best and worst individuals. 

Just watching the fitnesses of best and worst individuals may not be enough. If the 

best individual of the run is found in generation 0, then the graph from ShowCurve 

may indicate only a horizontal line. However, the fitnesses of other individuals may 

have changed drastically, making it necessary to visualise the entire population instead 

of just the extremities. For any given generation, every individual’s fitness can be 

plotted on a graph to display the distribution of fitness values. This introduces new 

difficulties since the size of the population dictates the amount of information that 

needs to be contained in the graph. One approach employed throughout this study is to 

divide the fitness value range into discrete intervals. Then the individuals can be split 

into sub-ranges according to their fitnesses. A histogram of fitness values can be 

generated from these discrete ranges. Separate histograms can be created for each 

generation and animated (using built-in Mathematica functions) to display the implicit 

movement of the population towards a greater average fitness. 

Run["copy pop.log+pop.m pop.ful /Y > nul"] 
<<pop.ful 
popfit=MapThread[List, pop][[2]] 
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Figure 3.1. Best and worst fitnesses per generation 
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The first few lines of the histogram generation routines convert the raw data from the 

previous run into a list, containing lists of fitness values for each generation. 

Histogram[x_, opts___]:= 
   Module[{data, fl, figs}, 
          data=Table[0, {10}]; 
          figs=Map[Floor, popfit[[x+1]]*10]; 
          figs=Map[If[#==0, 1, #]&, figs]; 
          Map[(data[[#]]++)&, figs]; 
          BarChart[data, BarLabels->Table[i, {i, 0, 0.9, 0.1}], 
                   PlotRange->{{0, 11}, {0, PopulationSize}}, 
                   PlotLabel->StringJoin["Generation ", 
                                         ToString[x]], 
                   opts] 
         ] 

Histogram generates a histogram from the fitness data for a single population. The 

fitness values are divided into 10 discrete ranges, each with length 0.1. The x-axis 

represents the fitness ranges and the y-axis represents the number of individuals in 

each category. A typical output from Histogram is shown in Figure  3.2. 
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Figure 3.2. Fitness histogram for generation 8 
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HistTable:=Table[Histogram[i, DisplayFunction->Identity],  
                 {i, 0, Length[pop]-1}] 

HistTable creates fitness histograms for all populations, without displaying them 

on the screen - they are simply created and stored in memory. 

AnimateHist:=ShowAnimation[HistTable]; 

AnimateHist displays an animation of the fitness histograms as created by 

HistTable. This can be used to study changes in the overall fitness of the 

population as generations progress. 

Experiment 1: Symbolic Regression in 
Mathematica 

Problem Selection 

Regression is essentially the problem of fitting an equation through a set of sample 

points. Statisticians use various techniques to perform different types of regression on 

test data. However, in almost all cases the form of the equation needs to be pre-

specified. For example, in the case of linear regression, it is attempted to find the 

equation of a straight line that passes through the points. Knowing that a straight line 

equation has the format 

 y = ax + b   .......................................................................    (3.1) 

it is only necessary to find the values of the coefficients a and b. In quadratic 

regression, coefficients a, b and c need to be found in the following equation: 

 y = ax2 + bx + c   .............................................................    (3.2) 

This is not always possible since the test data may be noisy, in which case the search 

is for an equation that produces the least overall error. 

All regression techniques are calculation-intensive and try to find a solution by 

minimising the error between the prospective solution and the test data. If the form of 

the equation is unknown, then various forms are tried and the one with the least error 
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is assumed to be the solution. This selection process is largely intuitive and becomes 

more difficult as the complexity of the required equation increases. 

Symbolic regression is an attempt to solve this problem, by searching for both the 

form and the coefficients of the equation. This is not easily accomplished by normal 

analytical and statistical techniques. A complete expression is sought and that is 

precisely what GP produces. This makes GP an ideal vehicle to implement symbolic 

regression. If the evolution of the expressions is directed by the error between the 

actual data and that generated from the expressions, then the expressions will 

gradually tend towards better-fitting equations. 

Test Data 

In selecting a test problem to apply GP to, it has to be decided whether to use real data 

or simulated data. Since the aim of this experiment was to test the operation of the 

algorithm, data was simulated. The data was a set of 2-dimensional coordinates in the 

x-y plane.  

The generation of test points as shown in Table 3.1 can be either random or derived 

from some known equation. With random data a solution is not guaranteed so it was 

decided to use latter approach. The data in Table 3.1 was generated by selecting 

equidistant points along the x-axis and determining corresponding y-values from the 

given equation (Equation 3.3). This set of test data was used in Experiments 1.4-1.7.  

-2.0 10
-1.8 6.1056
-1.6 3.4176
-1.4 1.6576
-1.2 0.5856
-1.0 4.4409x10-16

-0.8 -0.2624

x y

-0.6 -0.3264
-0.4 -.2784
-0.2 0.1664
0 -2.7756x10-16

0.2 0.2496
0.4 0.6496
0.6 1.3056

x y

0.8 2.3616
1.0 4.0000
1.2 6.4416
1.4 9.9456
1.6 14.8096
1.8 21.3696
2.0 30.0000

x y

 

Table 3.1. 21 pairs of x-y coordinates used as test data in Experiments 1.4-1.7 
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Experiments 1.1-1.3 generated y-coordinates from uniformly random non-equidistant 

points along the x-axis in the range [-1, 1]. New sample points were generated for 

each run of the experiment. These sample points are shown graphically in Figures 3.3, 

3.5 and 3.7. 

Experiment 1.8 added 20% random noise to the sample data indicated in Table 3.1. 

This is further elaborated upon in the discussion of that experiment. 

The advantage of equidistant x-coordinates is that the equations generalise better to 

points in between those given. In the case of non-equidistant x-coordinates, the points 

may be clustered, and there would exist gaps between the clusters that are larger than 

the average gap size. These large gaps can result in unnecessary fluctuations in the 

equations, since there are no points to constrain the path of the curve. 

Rather than generate random data, all the subsequent experiments used an equation, 

that was known to converge in a reasonable amount of time, to generate test cases 

[Koza, 1992]. 

 y = x4 + x3 + x2 + x   ........................................................    (3.3) 

During the course of the experiment, it became clear that Equation 3.3 has some 

useful properties that are not found in other equations (e.g. y=x4+1, y=x3+x+1). 

Firstly, the points were rarely fitted by any other equation, thus preventing 

convergence to a local minimum. Secondly, the equation can be factored in a 

multitude of different ways. Thus there are many different parse trees or 

representations of the equation, which means that the solution occupies a larger 

portion of the search space; hence it can be found more easily. When other equations 

were substituted, GP did not converge to a solution since the population size was no 

longer large enough. It was decided to run all tests using Equation 3.3 so that large 

populations would not be necessary. 

Platform 

All experiments were run on a 486 DX2-66 machine with 16 megabytes of RAM, 

under Mathematica for MS-DOS version 2.2. 
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Statistics 

Additional statistics, specific to this problem, were produced for each run of the 

experiment. 

ShowSample:=ListPlot[MapThread[List, {XPoints, YPoints}]] 

ShowSample displays the test data in graphical format. 

ShowSolution:=Plot[Solution /. XTrans, {x, -2, 2}] 

ShowSolution plots the equation generated by the GP. 

ShowFit:=Show[ShowSample, ShowSolution,  
              PlotRange->{{-2, 2}, {-2, 10}}, 
              PlotLabel->Solution /. XTrans, AxesLabel->{x, ""}, 
              Frame->True 
             ] 

ShowFit superimposes the graphs from ShowSample and ShowSolution to 

graphically display the equation passing through the sample points. A typical graph 

generated by this function in shown in Figure 3.3. 

Stats[s_String]:=Module[{}, 
                        Display[StringJoin[s, ".sam"], 
                                ShowSample]; 
                        Display[StringJoin[s, ".sol"], 
                                ShowSolution]; 
                        Display[StringJoin[s, ".fit"], ShowFit]; 
                        Display[StringJoin[s, ".scu"], 
                                ShowCurve]; 
                       ] 

Stats produces all the graphs relevant to the problem and stores them on disk for 

future reference. 

Problem Representation and Parameters 

The parameters used during the initial experiments (1.1-1.3) are indicated in Table 

3.2. 
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Most of the parameters assume default values. The rest of this section discusses those 

parameters that have been over-ridden as well as those parameters that are specific to 

symbolic regression. 

MutationProbability=0.05 

MutationProbability is set to a low value because the terminal and function 

sets are not large so loss of genetic material should not be a problem. 

XTrans={PPlus->Plus, PMinus->Minus, PTimes->Times,  
        PDivide->Divide, PLog->Log, PExp->Exp} 

XTrans defines the transformations for all functions, whether they are used in the 

actual function set or not. 

Functions={PPlus, PMinus, PTimes, PDivide, PExp, PLog} 

The function set is defined to contain the basic operators as well as logarithms and 

exponents since the form of the equation is supposedly unknown. It is also of interest 

to determine if another totally different equation can fit the exact same points. 

Parameters={2, 1, 2, 2, 1, 1} 

Parameters define the arity of each corresponding function in the function set. 

Terminals={x} 

The terminal set contains only a single variable since the expression sought is a 

function of one variable. Constants are excluded to further shrink the solution space. 

Parameter Value
Population Size 250
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 0.95
Mutation probability 0.05
Crossover probability 0.9
Terminal set {x}
Function set {PPlus, PMinus, PTimes, PDivide, PExp, PLog}

 

Table 3.2. GP Parameters for symbolic regression - Exp 1.1-1.3 
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f[x_]:=x^4 + x^3 + x^2 + x 

f[x] represents the perfect solution, used to generate the test data. Beyond this, it is 

not again used during the course of the experiment. 

NoOfSamples=20 

NoOfSamples is the number of points that are used as test data. 

InitSample:=Block[{}, 
                  XPoints=Table[(Random[]*2)-1, {NoOfSamples}]; 
                  YPoints=Map[f, XPoints]; 
                  ShowSample 
                 ] 

InitSample creates the test data from the given equation. The x-values are either 

random distributed (Experiments 1.1-1.3) or equidistant (Experiments 1.4-1.7) and the 

y-values are generated from the given function f. 

Calc[a_, xvalue_]:=a /. XTrans /. x->xvalue 

Calc returns the y-value calculated from an individual expression and a single x-

value, after transforming the function names. 

RFitness[x_]:=N[Apply[Plus, Abs[( (Calc[x, #1])& /@ XPoints)-
YPoints]]] 
RawFitness[expr_]:=Check[RFitness[expr], 20000] 

RFitness calculates the raw fitness of an individual. The expression is used to 

generate a set of new y-values from the given x-values. These are then compared to 

the original y-values and the absolute sum of the errors represents the fitness. 

RawFitness traps computational errors like overflow and returns sufficiently a high 

fitness value so that that expression is penalised.  

Experiment 1.1 

The range for the x-values in this experiment was [-1, 1]. The experiment was stopped 

after 51 generations. The best individual found was the expression 

 e
x

e e x x
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x x
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22    ...............................................   (3.4) 
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This expression had a fitness of approximately 0.476, which was far from the 

expected fitness. However, the expression fitted the sample data quite reasonably. 

Examination of the sample data and the solution curve indicated that the sample data 

was not evenly spaced, which may have led to the complexity of the solution. 

Figure 3.3 shows how closely Equation 3.4 fits the sample points (the dots represent 

the sample data while the curve represents Equation 3.4). However, it is noted that the 

fit is not perfect; the parameters can potentially be further tweaked to generate a better 

solution. 
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Figure 3.3. Fitting of solution to sample points - Exp 1.1 
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The graph of minimum and maximum fitnesses in Figure 3.4 indicates that the highest 

fitness values are reached around generation 20. Thereafter the fitness values decrease 

rapidly. There is no promise of finding further solutions as a direct consequent of the 

current genetic material in the population. Since not every run of a GP is guaranteed to 

find a solution, it was decided to rerun the experiment, with a different initial 

population. 

Experiment 1.2 

The parameters were carried over from Experiment 1.1 (Table 3.2). However, this 

time the distribution of points was slightly more uniform, which contributed to a 

better fit as illustrated in Figure 3.5. 
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Figure 3.4. Maximum/minimum fitness curve - Exp 1.1 



 Page 65 

The maximum fitness reached was approximately 0.743, which was higher than the 

previous result. The solution expression was also more complex, as it attempted to fit 

almost every point precisely : 

e x e x x x e x x
x x x

e
x x e x x

x

x

+ + −
− +−2 4 3

5
4 3

2( log( ) log( ))(
(log( ) log(log( )))

)     

 .................................    (3.5) 
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Figure 3.5. Fitting of solution to sample points - Exp 1.2 
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Figure 3.6 illustrates that the fitness of individuals was gradually increasing. This 

implies that further generations could find better solutions, albeit more complex ones. 

Although a perfect solution was not found, it appeared viable to continue along 

similar lines for further experiments. 

Experiment 1.3 

Using the same parameters (Table 3.2) as the previous two experiments, an even 

better solution was found with a fitness of approximately 0.884 : 

 x
x

x e x
e x ex

x x+
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.log( )    .............................................    (3.6) 
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Figure 3.6. Maximum/minimum fitness curve - Exp 1.2 
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The fit of the equation to the sample data was nearly visibly perfect (Figure 3.7). This 

equation is still vastly different from the one used to generate the sample. For greater 

accuracy, it was decided to use a larger range of x-values in the sample data for 

subsequent runs. 
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Figure 3.7. Fitting of solution to sample points - Exp 1.3 
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Although the solution obtained has quite high fitness, the fitness curve (Figure 3.8) 

indicates that the fitness values are not increasing steadily. Thus further improvements 

would require much more computation. It was apparent that other means of finding 

solutions faster should be explored beyond larger populations and more generations. 

Experiment 1.4 

Two improvements were added into the code to speed up convergence. 

Although Mathematica is an interpreted language, it allows some functions to be 

compiled to an intermediate format for faster execution. These functions may contain 

only a small subset of the standard Mathematica functions within their bodies. This 

subset includes the four standard arithmetic operations, making this technique 

applicable to the problem of symbolic regression. The definition of RawFitness was 

changed to incorporate compiled functions, as illustrated below. 

RFitness[expr_]:=Apply[Plus, 
                         ((Compile[{{x, _Real}},  
                                    Evaluate[expr /. XTrans] 
                                  ] 
                         /@ XPoints)-YPoints)^2] 
RawFitness[expr_]:=Check[RFitness[expr], 200000]/20 
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Figure 3.8. Maximum/minimum fitness values - Exp 1.3 
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The operations of addition and multiplication were originally defined to take only two 

parameters. However, most expressions generated thus far contained sums or products 

of more than two sub-expressions. This is normally accomplished by a combination of 

two functions. It is easier to form such expressions with addition and multiplication 

functions of greater arity, so these were added to the function set. Addition and 

multiplication functions with arity 4 resulted in much too complex expressions being 

formed, but arity 3 functions sped up the evolution. 

The range of x-values was broadened to [-2, 2] so that evolved expressions would be a 

better fit to the original function. Also, the sample data was generated from 

equidistant x-values as indicated in Table 3.1. The parameters for this experiment are 

indicated in Table 3.3. 

The experiment was run three times and each run found the perfect solution, as 

illustrated in Figure 3.9. 

Parameter Value
Population Size 250
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 0.95
Mutation probability 0.05
Crossover probability 0.9
Terminal set {x}
Function set {PPlus, PPlus, PMinus, PTimes, PTimes, PDivide,

PExp, PLog}
 

Table 3.3. GP Parameters for symbolic regression - Exp 1.4 
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Table 3.4 displays the times taken for each run of the experiment. 

The fluctuations in execution times occurred because of the random nature of the GP 

algorithm. The initial random population might contain individuals that have high 

fitnesses, resulting in faster convergence, or individuals with very low fitnesses, 

resulting in slower convergence. 

Experiment 1.5 

Three runs were carried out to further test the stability of the algorithm and to generate 

histograms of population fitnesses as the generations progressed. In order to speed up 

convergence, the Exp and Log functions were removed from the function set, forcing 

the expressions to be strictly polynomials. The list of parameters is shown in Table 

3.5. 
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Figure 3.9. Fitting of solution to sample points - Exp 1.4 Run 1 

Run 1 1 hour 26 minutes
Run 2 44 minutes
Run 3 2 hours 10 minutes

Average 1 hours 26 minutes
 

Table 3.4. Time taken for GP runs - Exp 1.4 
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All three runs successfully found the best possible solution. In the second run the 

algorithm terminated because the minimum fitness criterion was reached. This 

minimum fitness was set at 0.95 in these experiments and changed to 0.99 for future 

runs. 

Parameter Value
Population Size 250
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 0.95
Mutation probability 0.05
Crossover probability 0.9
Terminal set {x}
Function set {PPlus, PPlus, PMinus, PTimes, PTimes, PDivide}

 

Table 3.5. GP parameters for symbolic regression - Exp 1.5 
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The histograms in Figure 3.10 represent the division of individuals into the range of 

fitnesses displayed. There is an obvious move towards individuals with a higher 

fitness. In the initial generations, there are more individuals with lower fitnesses, but 

as the generations progress, the number of individuals with higher fitnesses increases. 

This is further indication that the average fitness of the population increases through 

evolution. 

The histogram generation functions create a list of graphs. These graphs can either be 

animated or displayed individually. After extracting a subset of the graphs, 

Mathematica can display them in grid format as in Figure 3.10. 
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Figure 3.10. Fitness histograms 
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Experiment 1.6 

This experiment tested the reaction of the algorithm to a reduced population size. The 

population was fixed at 150 individuals instead of the normal 250, and the complexity 

of expressions was reduced to 40 to promote parsimony. The parameters for this 

experiment are indicated in Table 3.6. 

Six parallel runs were executed and the results are indicated in Table 3.7. 

Two runs did not find the perfect solution because of the reduced genetic material in 

the population. This smaller population size resulted in the GP algorithm searching 

more complex expressions rather than expressions with greater variety. It was 

concluded that the changed parameters did not allow sufficient variety to produce 

solutions with high probability. 

Parameter Value
Population Size 150
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 40
Min solution fitness 0.99
Mutation probability 0.05
Crossover probability 0.9
Terminal set {x}
Function set {PPlus, PPlus, PMinus, PTimes, PTimes, PDivide}

 

Table 3.6. GP Parameters for symbolic regression - Exp 1.6 

Run Max Fitness Time Taken
(hours:minutes)

1 1 3:35
2 1 3:22
3 1 3:27
4 0.469308 3:09
5 1 3:22
6 0.182729 2:55

 

Table 3.7. Maximum fitnesses and times taken - Exp 1.6 
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Experiment 1.7 

After tweaking the fitness function (Experiment 1.4), function set (Experiment 

1.4/1.5), convergence criterion (Experiment 1.5), complexity restriction (Experiment 

1.6) and population size (Experiment 1.6), the stability of the algorithm was tested in 

an additional 8 parallel runs. The population size was returned to 250 and the 

complexity to 50. The parameters for this experiment are indicated in Table 3.8. 

All runs were continued beyond the maximum generations limit, and every one found 

the perfect solution. 

Table 3.9 indicates the times taken for each run of the experiment. The average time 

taken was 1 hour and 46 minutes. Once again it can be seen that the randomness of the 

initial population has an influence on the path of evolution. Run 6 started off with 

Parameter Value
Population Size 250
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 0.99
Mutation probability 0.05
Crossover probability 0.9
Terminal set {x}
Function set {PPlus, PPlus, PMinus, PTimes, PTimes, PDivide}

 

Table 3.8. GP Parameters for symbolic regression - Exp 1.7 

Run Time Taken
(hours:minutes)

1 3:20
2 0:22
3 0:38
4 0:23
5 1:54
6 0:13
7 2:25
8 4:54  

Table 3.9. Time taken for runs - Exp 1.7 
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individuals that contained desirable genetic material, so found the perfect solution 

quickly. On the other hand, Run 8 took longer to find the solution because its initial 

population did not contain many highly fit individuals. 

Experiment 1.8 

After proving the stability of the algorithm, its reaction to noisy data was tested. The 

sample data was generated from the given equation in the usual manner and the y-

values were perturbed by a maximum of 20%. For each perturbation, a uniformly-

distributed random number was generated between -10 and +10 and this was then 

used as a percentage by which to either increase or decrease the y-value. 

It was not expected that the algorithm would end with the perfect solution as before 

because of this noise. The experiment was repeated 8 times and two of these resulted 

in the original equation in spite of the imperfect data. The other six runs all ended in 

graphs which did not deviate much from the original path, as shown in Figure 3.11. 

This led to the conclusion that GP performs well with noisy data. 
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Figure 3.11 shows the equations generated for each run, plotted against the sample 

data in each case. 

Conclusion 

The set of experiments 1.1-1.8 illustrates the effectiveness of the Mathematica 

implementation of GP in solving simple symbolic regression problems. The execution 

time is the most important concern since it affects the feasibility of such 

implementations.  

Memory is another factor that affects performance of the algorithm. During runs 

which involved complex expressions or many generations, the Mathematica 

environment frequently ran out of memory and began using disk space for temporary 

storage. This had a distinctly negative impact on the speed of the operations. 
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Figure 3.11. Sample data and their fitted equations for noisy data 
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During the course of the experiments, many optimisations were applied to the original 

code to speed it up and most of these had a considerable effect. The net effect is that 

the general algorithm cannot be improved on much more. So, if more complex 

problems are attempted, then the computing power would need to be increased. This 

increase can be either a change to a faster machine or a move towards parallel 

computing. 

In order to further test the ability of Mathematica to solve problems using GP, the 

binary multiplexer problem, as described by Koza, was modelled in Mathematica 

[Koza, 1992]. GP must find an expression for a combinatorial logic circuit that 

multiplexes 2n binary lines on the basis of an n-digit binary selector (where n is any 

small integer). The experiment was abandoned because the computer could not handle 

the complexity of expressions nor the size of populations necessary to find solutions. 

This further supported the need for greater computing power. 
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4CHAPTER 4 : 
PARALLEL GENETIC PROGRAMMING 

Introduction 

Suitability of Parallel Processing for GP 

Relative to classic analytical algorithms, evolutionary computation techniques like 

GAs and GP usually require vast computer resources in order to achieve a moderate 

success rate. Ideally, evolutionary algorithms can be executed on supercomputers or 

machines with comparable computational power. However, most researchers do not 

have access to such equipment, especially for research in previously unexplored areas. 

Attempts are made to improvise by using faster desktop machines and optimised 

algorithms. Sometimes it is possible to split up portions of the algorithm so that it can 

be run on multiple desktop machines simultaneously. This ability to process in parallel 

is inherent in many artificial intelligence paradigms, including evolutionary 

techniques. 

Genetic programming is especially well suited for parallel processing because of the 

nature of the general algorithm. Most of the processing time in a GP can be attributed 

to the evaluation of fitnesses of individuals. This evaluation can be done in parallel for 

the simple reason that the fitness of each individual is independent of the rest of the 

population. The genetic operators do not depend on each other or any other routines, 

so they can safely be applied to individuals in a parallel fashion. Fitness-proportionate 

reproduction needs information about the entire population to implement the roulette-

wheel mechanism. This process cannot be sub-divided, but this doesn’t have a major 

effect on the algorithm since the percentage of time taken for reproduction is 

comparatively much lower than that for fitness evaluations. 

Parallel processing immediately brings to mind the notion of an algorithm executing 

cooperatively on multiple computers or a system supporting symmetric 

multiprocessing. This distributed model has the advantage of producing results faster, 

but is not the only reason for parallelisation. Since a parallel algorithm has to be split 

up into smaller execution modules, it requires less computational power at each 
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workstation. This makes it feasible to work on problem domains which necessitate 

large populations or large numbers of generations. 

Mathematica stores all intermediate calculations in memory, filling up memory space 

with unnecessary details. If it is no longer necessary to execute the complete algorithm 

in one session, then Mathematica can be restarted at regular intervals. This prevents 

extraneous swapping to disk, as memory runs out. In order for Mathematica to be 

restarted, all necessary data has to be saved to disk. This makes it easier to recover 

from a computer crash during a GP run. 

On a philosophical plane, it can be argued that parallel processing is better suited to 

GP because of the implicitly parallel nature of evolution. Since evolutionary 

computation techniques are based on nature and nature works in parallel, it seems 

reasonable that some benefit could be derived from parallelising evolutionary 

computation. This theory has been tested and found to be true in some cases, as 

described later in this section. 

Parallel Processing Methodologies 

There exist many approaches to applying parallel processing to an algorithm. One of 

the most important considerations is the programming layer at which the algorithm is 

divided. If the operating system and compiler support parallel processing, then this is 

normally done at a very low level, where single machine language instructions or 

high-level commands can constitute modules for parallel processing. If the computer 

does not have built-in support for parallel processing, then this has to be written in by 

the programmer. Built-in support for parallel processing can take advantage of finely-

tuned operating systems and compilers. Programmatic implementations, on the other 

hand, allow greater freedom of choice in design of the algorithm, especially when 

deciding on the size and functionality of program sub-sections. 

Fine-grain parallel processing refers to those instances where the algorithm has been 

sub-divided at the level of individual instructions or other similarly small program 

sections. In the context of GP, the fitness of each individual can be evaluated in 

parallel. This approach to parallel processing has the advantage that the general 

algorithm need not be changed, beyond the delegation of fitness evaluations. The 
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disadvantage of this strategy is that some parts of the algorithm will still have to be 

executed in a serial fashion, most notably fitness-proportionate reproduction. Since 

crossover involves more than one individual, it cannot be accomplished in parallel for 

each individual. Instead, the individuals will have to be submitted for processing in 

pairs. 

Coarse-grain parallelism divides the problem into significantly large sub-sections. In 

the context of GP, the population of individuals is divided into sub-populations (e.g. a 

population of 800 is divided into 16 sub-populations, each containing 50 individuals). 

GP is then applied to each of these sub-populations in parallel. The advantage of this 

approach is that the entire algorithm can be executed on each sub-population 

simultaneously. Thus, fitness-proportionate reproduction will not create a bottle-neck 

as with fine-grain parallelism. The main disadvantage of this approach is that the 

general algorithm has to be changed substantially to sub-divide the population and 

coalesce the results. Since a single sub-population is too small to generate solutions 

with high fitnesses on its own, it has to work together with the other sub-populations. 

This interaction can be implemented in the form of either inter-population genetic 

operators or movement of individuals from one sub-population to another (aptly called 

migration). The latter approach is preferable since this movement can be separated 

from the process of creating new generations. 

In any distributed computing environment the storage of data is a critical concern. GP 

requires the storage of expressions that correspond to the individuals of a population 

or populations. These individuals can be stored at either the workstations or on a 

central server. If the individuals are stored at the workstations, then there need be no 

interaction among the workstations during the creation of new generations. If the 

individuals are stored on a central server then the server has to send the individuals for 

processing to appropriate workstations. The latter approach results in more interaction 

among the computers (or processors in a multi-processor system), thus slowing down 

execution of the algorithm. This client-server model is better suited to coarse-grain 

parallelism, where interactions occur in batches rather than in a continuous sequence. 
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Some Existing Implementations 

Since the parallelisation of GP does not depend on the form of the individuals, the 

issues surrounding its implementation are identical to the GA equivalent. As such, it is 

useful to consider parallel implementations of GAs, since the amount of research done 

in this field is fairly substantial [Cantu-Paz, 1995]. 

GALOPPS (Genetic ALgorithm Optimized for Portability and Parallelism) is a freely 

available library to implement parallel GAs in a coarse-grain manner [Goodman, 

1996]. 

Koza also implemented parallel GP , using a network of transputers [Koza, 1995]. He 

used a coarse-grain algorithm to show that an optimal migration rate can be achieved, 

which would make the parallel algorithm perform relatively faster than a serial 

algorithm with the same population size. It was shown that it is possible to achieve a 

speedup in processing that is more than just linearly proportional to the number of 

processors or computers. This potential for super-linear performance can be exploited 

to speed up parallel algorithms, even if executed on a single processor. 

Parallel Processing Model 

Sub-populations and Migration 

Coarse-grain parallelism (also known as island parallelism) was used as the 

underlying philosophy when changing the serial Mathematica algorithm into a parallel 

one. 

The population of individuals is first split up into a pre-specified number of sub-

populations. These populations then undergo evolution as in the serial model, possibly 

on different computers. After each new generation is created, the best individuals from 

each sub-population are compared to find the global solution. Statistical and recovery 

information is stored and the cycle continues until an acceptable solution is found. 

However, such simple operation reduces the algorithm to a number of runs using 

smaller population sizes. A mechanism must be introduced to bind the populations 

together so that genetic material from one population can interact with individuals 
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from other populations. This is done by means of migration. After each generation has 

been processed, some individuals from one population may swap places with 

individuals from other populations. This migration is done on a fitness-proportionate 

basis to ensure that only the better genetic material can influence other sub-

populations. 

In the most general case, migration can occur between any two sub-populations. The 

net effect of such migration is that an individual from one sub-population may mate 

with an individual from any other sub-population during a single iteration of the 

algorithm. This is not desirable since it reduces the sub-populations to the original 

single population model. The advantages of the parallel model include its ability to 

preserve variety by allowing different populations to co-evolve without much 

interaction. This advantage is lost if there is too much migration or migration is 

allowed between any two sub-populations. To preserve variety, migration must be 

restricted to occur only between specified pairs of sub-populations. This is readily 

accomplished if the sub-populations are distributed spatially on the surface of a 2-

dimensional grid, as shown in Figure 4.1. 

1 2 3 4 5
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11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

 

Figure 4.1. Rectangular spatial distribution of sub-

populations showing migration possibilities for sub-

population 13 



 Page 83 

Migration can be restricted to occur only between neighbouring sub-populations. This 

ensures that genetic material being evolved in one region of the population grid cannot 

directly affect the genetic material in other parts of the population grid.  

In Figure 4.1, the possible migration partners for sub-population 13 in a 25 sub-

population grid is shown. Since sub-population 13 is in the centre of the grid, there are 

8 neighbouring sub-populations. However, the sub-populations along the edge of the 

grid have either 3 or 5 neighbours. In order not to bias the algorithm in favour of the 

central sub-populations, the sub-populations along the edge wrap around to the 

opposite ends of the grid. Thus, sub-population 6 has 1,2,7,11 and 12 as immediate 

neighbours, but may also perform migration with sub-populations 5, 10 and 15. Sub-

populations at the corners wrap around to the diagonally opposite corners. This 

wrapping around of edges results in the 2-dimensional grid being transformed to a 

toroidal representation, where every sub-population has exactly 8 neighbours. 

Although this migration strategy is used successfully to solve problems using the 

Mathematica implementation, there are other strategies that are either equivalent or 

better. Ryan discussed the differences between panmictic schemes (where migration 

can occur between any sub-populations), the Island Model (where migration with 

neighbours has a higher probability without excluding sub-populations that are further 

away) and Spatial Mating, as discussed above [Ryan, 1994]. Levine used a parallel 

GA with exactly one individual migrating during each iteration for implementation-

specific reasons [Levine, 1994]. Toth incorporated migration into the reproduction 

operation [Toth, 1993]. 

An altogether different approach to migration was proposed by Punch [Punch, 1996]. 

He suggested that the best individuals from each sub-population be injected into a 

master population. This alternative may produce better results in some problem 

domains since it is geared towards the preservation of variety. 

General Parallel Algorithm 

initialise global variables 

initialise sub-populations 

check all sub-populations for global solution 
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while solution not found 

 evolve, in parallel, new generations in each sub-population, using 

reproduction, crossover and mutation 

 perform migration between selected sub-populations 

 check all sub-populations for global solution 

Data Storage 

During a run of the GP algorithm, population data, log files and statistical data need to 

be stored and retrieved. Population data, in particular, is accessed by the processors 

(or computers) that perform evolution on the population. In a multi-processing 

environment, the data has to be stored on the storage devices of the computer. In a 

distributed environment, however, the data can either be stored on a central server or 

on the workstations. Workstation-based storage of population data necessitates regular 

communication of data between workstations. This communication has to conform to 

a pre-specified network protocol. Since network protocols are specific to the platforms 

in use, it was decided not to use this form of direct communication. Instead, the data is 

stored on a central server and the directory in which the data resides is shared with all 

the workstations. Thus the server and workstations have access to all the data and 

communications can be handled transparently by the operating system. The 

implementation is portable across computers and operating systems, as long as file 

sharing is supported. The experiments in the next chapter were successfully conducted 

on the following platforms: Windows 3.1 (server), MsDos (clients), Windows 95 

(clients/server), Linux (server). 

Approaches to Job Control 

In any environment where tasks are carried out in parallel, these tasks have to be 

scheduled to execute in the correct order. For example, migration cannot be started 

until all the sub-populations have been processed. 
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In the parallel GP, the sub-populations need to be evolved in parallel. Thereafter all 

populations must be checked for a fitter global solution. Finally, migration takes place 

in parallel. This sequence of steps repeats until an acceptable solution is found. 

There are three distinctly different scheduling scenarios:  

• the number of processors is greater than the number of sub-populations 

• the number of processors is equal to the number of sub-populations 

• the number of processors is less than the number of sub-populations 

If the number of processors is greater than the number of sub-populations then every 

sub-population can be assigned to a single processor. Each processor performs 

evolution on only one sub-population, with some processors lying idle - the available 

resources outnumber the requirements, resulting in wastage. Migration has seemingly 

more stringent requirements since, in the worst case, the number of pairs of sub-

populations is equal to 4n, where n represents the number of sub-populations. Thus 

4n processors would be required for the migration. However, unless sophisticated 

record locking is used, it is not possible for two processors to simultaneously access 

individuals from a single population. Each sub-population would not be able to 

participate in simultaneous migration with more than one of its eight neighbours. 

Scheduling would be needed for this stage, to coordinate the selection of pairs of sub-

populations to which the migration operation is applied. In fact, the migration stage 

requires scheduling irrespective of the ratio of processors to sub-populations. 

If the number of processors is equal to the number of sub-populations then there is no 

wastage of computer resources. Once again, every processor can operate on different 

sub-populations, as described above. 

If the number of processors is less than the number of sub-populations then each 

processor cannot evolve just one population. Scheduling is necessary to assign tasks to 

the processors, be the tasks evolution or migration. This is the most general case since 

it will not be dependent on the number of processors or sub-populations. During the 

course of the experiments conducted (as outlined in the next chapter), a scheduling 

system was built to cater for these requirements. 
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Initially a peer-to-peer system was created, where scheduling was a cooperative 

function of the processors. During initialisation, the population is partitioned and 

stored in separate files. A series of lock files is created, one for each sub-population, 

with appropriate names eg. POP1.LCK, POP2.LCK, etc. Each processor then starts 

executing a loop, where it first searches for a lock file and then processes the 

corresponding sub-population, erasing the lock file when complete. In order to 

preclude the possibility of two processors evolving the same sub-population, the lock 

files must somehow be flagged. Two methods of flagging were attempted. Since 

Mathematica does not provide file locking mechanisms, the ability of the operating 

system (in particular Windows 3.1, but applicable to most operating systems) to 

disallow two processes simultaneously having write access to a file was exploited. 

The code to implement this is shown below. 

Lock2[x_]:=Module[ 
                  {aFile}, 
                  Off[OpenAppend::noopen]; 
                  Off[General::aofil]; 
                  aFile=OpenAppend[x]; 
                  On[OpenAppend::noopen]; 
                  On[General::aofil]; 
                  If[ 
                     SameQ[aFile, $Failed], 
                     -1, 
                     aFile 
                    ] 
                 ] 

Lock[x_]:=Module[ 
                 {}, 
                 If[ 
                    FileNames[x]=={}, 
                    -2, 
                    Lock2[x] 
                   ] 
                ] 

Lock attempts to lock a sub-population, as denoted by the file given as its parameter. 

If the file does not exist, the function returns -2. If the file is already locked by another 

process, the function return -1. Otherwise, it opens the file for writing (using Lock2) 

and returns the file handle. After the population has been processed, the file can be 

deleted. 

This scheme did not work since file locking has to be an indivisible operation to 

support parallel processing, and that could not be guaranteed in a high-level language 
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like Mathematica. A few random scheduling errors occurred because of the instability 

of the platform; these were unacceptable. The alternative was not to rely on the 

implicit locking of files by the operating system and Mathematica. Instead of locking 

files before processing a population, the files were simply deleted. This also failed as a 

scheduling mechanism. Primarily for these reasons, it was decided to introduce a 

secondary program into the algorithm for the express purpose of performing 

scheduling among the processors.  

This program could be run on any machine with the same shared directory as the 

processing workstations. Since the only link between processors is the shared 

directory, this scheduler also has to use files to signal the start and end of each job. 

The scheduler only manipulates files, so it was not necessary to implement it in 

Mathematica. By writing the scheduler in C++ for MS-Windows, it had the added 

advantage that the scheduler could be run on a workstation simultaneously with a 

Mathematica session. This obviated the need for a separate scheduling computer. It 

was also possible to incorporate dynamic starting and stopping, timing of the 

algorithm and continuous displaying of the state of the GP network into the scheduler. 

Figure 4.2 shows a screen snapshot of the scheduler program. 
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When the algorithm is run, the first column indicates the tasks in progress, the second 

indicates waiting tasks and the third completed tasks. The current generation, fitness 

of best individual and total time taken are also shown. 

Scheduling 

The code for the scheduler is contained in Appendix B. 

The scheduler uses the same shared directory as all the processors. Communication is 

performed by the creation and deletion of files in particular directories. It is assumed 

that directories whose names begin with “PROC” refer to processors. The number 

appended to “PROC” is the unique identification number of the processor eg. PROC4 

refers to processor 4. These directories are created by Mathematica during 

initialisation of the run. 

Files are created in these directories to signal that the corresponding processors must 

execute particular tasks. Each processor, whenever idle, constantly monitors its 

directory for such signals. When a file is found, the processor interprets the task to be 

performed and then deletes the file. The absence of the signal file is noticed by the 

scheduler, which then attempts to allocate a new task. 

 

Figure 4.2. Screen snapshot of scheduler 
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The first task allocated to processors is that of evolving new generations for each sub-

population. The signal files are named “POP”, suffixed by the number of the sub-

population. Each processor continuously processes sub-populations until all the sub-

populations have been progressed one generation. The first processor (PROC1) is then 

given the task “MSTART” which signals it to check for global solutions and prepare 

for migration. In preparation for migration, random pairs of neighbouring sub-

populations are selected and stored in the “POP.INF” file. This file is read in by the 

scheduler and the contents are stored in a matrix, associating each sub-population with 

a subset of its neighbours. A matrix is used to store these associations as efficiently as 

possible; also the access time to check on a particular pair in the matrix is constant, 

irrespective of the number of sub-populations. 

Figure 4.3 shows these associations for a 4 sub-population model. According to the 

table, migration of members may occur between sub-population 4 and sub-population 

1. Obviously this corresponds to the pair containing 1 and 4, resulting in a symmetric 

matrix. The storage space is reduced by using only a triangular matrix. Each position 

in the matrix indicates whether or not the two associated sub-populations are eligible 

for migration. 

0 0 0 1

0 0 1 0

0 1 0 1

1 0 1 0

first sub-population

second
sub-

population

1 2 3 4

1

2

3

4

 

Figure 4.3. Matrix of migration possibilities 
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In addition, a list of sub-populations is maintained. This list indicates whether each 

sub-population is currently involved in a migration operation or not.  

When a processor is free, the scheduler searches through the list of sub-populations 

until it finds a pair where migration is impending, as per the matrix. Migration is 

signalled by a file beginning with the letter “M” and ending with a unique number 

assigned to each pair of sub-populations. The migration of that pair is cancelled in the 

matrix and the state of the pair is updated in the list of sub-populations. 

The interaction of the boolean-valued list and boolean-valued matrix provides a 

compromise in terms of speed and efficiency in anticipation of larger search spaces 

and greater numbers of sub-populations. 

When all sub-population pairs are removed from the matrix, the scheduler resets itself 

and begins to repeat the process of evolving sub-populations. 

Mathematica Implementation 

The Mathematica implementation was altered to support parallel execution of the GP 

algorithm. The complete code for this implementation is found in Appendix C. 

Although genetic operators are not affected, initialisation, sequencing of operations, 

population manipulation and statistical routines have to be changed. 

The population of individuals is first split up into sub-populations during the 

initialisation stage. The number of sub-populations must be pre-specified. 

NoOfSubpopulations = 4 

Initialize:=Module[ 
                   {Proc, DelList}, 
 
                   (* paragraph 1 *) 
                   Off[DeleteFile::nffil]; 
                   DeleteFile["calced.m"]; 
                   DeleteFile["pop.inf"]; 
                   DelList=FileNames["logfile.*"]; 
                   If[DelList!={}, DeleteFile[DelList]]; 
                   DelList=FileNames["*.plg"]; 
                   If[DelList!={}, DeleteFile[DelList]]; 
                   DelList=FileNames["*.log"]; 
                   If[DelList!={}, DeleteFile[DelList]]; 
                   DelList=FileNames["backup.*"]; 
                   If[DelList!={}, DeleteFile[DelList]]; 
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                   On[ Del et eFi l e: : nf f i l ] ;  
                   Map[  
                       ( Del et eDi r ect or y[ #,   
                        Del et eCont ent s- >Tr ue] ) &,  
                       Fi l eNames[ " PROC* " ]  
                      ] ;  

                   ( *  par agr aph 2 * )  
                   Genet i c` Par amet er s` Gl obal Sol ut i on=1;  
                   Genet i c` Par amet er s` Gl obal Sol ut i onFi t ness=0;  
                   Genet i c` Par amet er s` Gl obal Sol ut i onSet ={ } ;  
                   Genet i c` Par amet er s` Tot Ti me=0;  

                   ( *  par agr aph 3 * )  
                   Save[ " pop. l og" ,  
                     Genet i c` Par amet er s` Gl obal Sol ut i on] ;  
                   Save[ " pop. l og" ,  
                     Genet i c` Par amet er s` Gl obal Sol ut i onFi t ness] ;  
                   Save[ " pop. l og" ,  
                     Genet i c` Par amet er s` Gl obal Sol ut i onSet ] ;  
                   Save[ " pop. l og" ,  Genet i c` Par amet er s` Tot Ti me] ;   

                   ( *  par agr aph 4 * )  
                   MakePossi bi l i t i es;   

                   ( *  par agr aph 5 * )  
                   Save[ " cal ced. m" ,  
                     Genet i c` Par amet er s` GPossi bi l i t i es] ;  
                   Save[ " cal ced. m" ,  
                     Genet i c` Par amet er s` GPossPar amet er ] ;  
                   Save[ " cal ced. m" ,  
                     Genet i c` Par amet er s` GTer mLengt h] ;  
                   Save[ " cal ced. m" ,  
                     Genet i c` Par amet er s` GPossLengt h] ;   

                   ( *  par agr aph 6 * )  
                   I ni t Names;   

                   ( *  par agr aph 7 * )  
                   Save[ " cal ced. m" ,  
                     Genet i c` Par amet er s` Popul at i onNames] ;   
                   Save[ " cal ced. m" ,  
                     Genet i c` Par amet er s` Mi gr at i onPai r s] ;   

                   ( *  par agr aph 8 * )  
                   Genet i c` Par amet er s` Popul at i onSi ze= 
                    Genet i c` Par amet er s` Popul at i onSi ze/  
                    Genet i c` Par amet er s` NoOf Subpopul at i ons;   

                   ( *  par agr aph 9 * )  
                   GI nf or mat i on;   

                   ( *  par agr aph 10 * )  
                   Map[ I ni t i al i zePop,  
                       Genet i c` Par amet er s` Popul at i onNames] ;   

                   ( *  par agr aph 11 * )  
                   CheckGl obal Sol ut i ons;  
                  ]  
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Initialize initialises all variables and sub-populations in preparation for the 

execution of the GP algorithm. 

All traces of previous runs are erased. This includes log files created and directories 

used to store processor information (paragraph 1).  Global variables are initialised (2) 

and stored in the global information file (3). In order to save time during the 

generation of individuals, the terminal and function sets are joined during initialisation 

and stored in a disk file - CALCED.M (4/5). The names of populations are generated 

together with migration pairs and these are stored in the same disk file (6/7). The 

population size is divided by the number of sub-populations (8) and information on 

the run is displayed (10). Each sub-population is initialised with random individuals 

(11), their fitnesses are evaluated and global statistics are calculated (12). 

After initialising the variables, each processor must be registered for scheduling 

purposes. This registration simply creates a unique directory for each processor. 

RegisterProc[x_]:=Module[ 
                         {proc}, 
                         proc=StringJoin["PROC", ToString[x]]; 
                         CreateDirectory[proc]; 
                        ] 

The algorithm is started from the command-line of the operating system using a batch 

file. This batch file creates a unique copy of itself for each processor and then 

continuously runs the GP algorithm in Mathematica. 

Contents of START.BAT 

copy st ar t 2. bat  t emp%1. bat  
t emp%1 %1 

Contents of START2.BAT 

: s t  
cal l  mat h - r un " <<p. m; Genet i c` Mai n` St ar t Run[ %1] ; Qui t [ ] "  
got o st  

START.BAT is called with the single parameter being the number of the processor. 

This parameter is passed onto the Mathematica function StartRun, which executes 

the GP. 

(* Start run of algorithm *) 
StartRun[x_]:=Module[ 
              {result, log, i}, 
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              Do[    
                 log=StringJoin["LOGFILE.", ToString[x]]; 
                 $Output=Append[$Output, OpenAppend[log]]; 
                 SetOptions[$Output[[2]], FormatType->TextForm]; 

                 Genetic`Parameters`Processor= 
                  StringJoin["PROC", ToString[x]]; 

                 CheckAbort[ 
                            ApplyGen, 
                            0 
                           ]; 

                 Close[$Output[[2]]]; 
                 $Output=Take[$Output, 1], 
                 {i, 1, Genetic`Parameters`Epoch} 
                ]; 
             ] 

A log file is opened at the beginning of the routine to mirror all screen output during 

the session. This log file is subsequently closed at the end of the routine. The name of 

the processor is gleaned from the parameter and ApplyGen is called. This is repeated 

Epoch (default value = 20) times before restarting the Mathematica interpreter, to 

minimise the effect of time taken to run the interpreter from disk. 

(* Apply Genetic algorithm *) 

ApplyGen := Module[ 
   {popfile, onetime, poplog, mig, OrigDirectory}, 

   (* paragraph 1 *) 
   BeginPackage["Genetic`Parameters`", "Global`"]; 
   Get["calced.m"]; 
   EndPackage[]; 

        (* paragraph 2 *) 
        Print["Waiting for processor start flag ..."]; 
        popfile=GetPopFile; 
        While[ 
              SameQ[popfile, "NOFILES"], 
              Pause[1]; 
              popfile=GetPopFile 
             ]; 
        If[ 
           SameQ[StringTake[popfile, 1], "M"], 
           Migrate[popfile]; 
           Return[] 
          ]; 

       (* paragraph 3 - process population *) 
        BeginPackage["Genetic`Parameters`", "Global`"]; 
        Get[StringJoin[popfile, ".log"]]; 
        EndPackage[];     

        (* paragraph 4 *) 
        onetime=Timing[ 
         Print[popfile, "-G", Generation, ": mating pool ... ", 
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          Timing[newpop=CreateNewGeneration[Population]][[1]]]; 
         Print[popfile, "-G", Generation, ": crossover   ... ", 
          Timing[newpop=Crossover[newpop]][[1]]]; 
         Print[popfile, "-G", Generation, ": mutation    ... ", 
          Timing[newpop=Map[Mutate, newpop]][[1]]]; 
         Generation++; 
         Population=newpop; 
         Print[popfile, "-G", Generation, ": fitnesses   ... "]; 
         Print[popfile, "-G", Generation, ": done        ... ", 
          Timing[CheckSolution[Generation, newpop, 
                 popfile]][[1]]]; 
         Print[popfile, "-G", Generation, ": best-of-run   = ", 
          SolutionFitness]; 
        ][[1]]; 
        Time[onetime, popfile, "-G",  
         Generation, ": time for gen  = "]; 

        (* paragraph 5 *) 
        TimeTaken+=onetime; 
        Save[StringJoin[popfile, ".new"], Population]; 
        Save[StringJoin[popfile, ".new"], Fitnesses]; 
        Save[StringJoin[popfile, ".new"], Generation]; 
        Save[StringJoin[popfile, ".new"], TimeTaken]; 
        Save[StringJoin[popfile, ".new"], Solution]; 
        Save[StringJoin[popfile, ".new"], SolutionFitness]; 
        Save[StringJoin[popfile, ".new"], SolutionSet]; 
        RenameFile[StringJoin[popfile, ".log"], 
                   StringJoin[popfile, ".old"]]; 
        RenameFile[StringJoin[popfile, ".new"], 
                   StringJoin[popfile, ".log"]]; 
        DeleteFile[StringJoin[popfile, ".old"]]; 

        (* paragraph 6 *) 
        poplog=OpenAppend[StringJoin[popfile, ".plg"]]; 
        WriteString[poplog, ","]; 
        Write[poplog, {Generation, Fitnesses}]; 
        Close[poplog]; 
        Print[popfile, "-G", Generation, ": system saved ..."]; 

        (* paragraph 7 *) 
        OrigDirectory=Directory[]; 
        SetDirectory[Genetic`Parameters`Processor]; 
        DeleteFile[popfile]; 
        SetDirectory[OrigDirectory]; 
] 

First the complete function and terminal sets are loaded from the disk file, where they 

were saved during initialisation (paragraph 1). Then the processor goes into a loop, 

waiting for a signal file to be created by the scheduler (2). If the name of this file 

begins with “M” then it is assumed that migration is intended and the relevant 

function is called. If evolution is intended, then the normal genetic operators are 

applied (4). Since the interpreter exits after every task, the sub-population is loaded 

from disk before evolution (3) and saved afterwards (5). Statistical information is 

stored (6) and the signal file is deleted to inform the scheduler that the task is 

complete (7). 
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(* perform migration based on parameters *) 
Migrate[popf_]:=Module[ 
                       {OrigDirectory, FullNum, firstpop, 
                        secondpop},  

                       If[ 
                          SameQ[StringDrop[popf, 1], "START"], 
                          CheckGlobalSolutions; 
                          If[ 
                        Genetic`Parameters`GlobalSolutionFitness 
                             >=MinFitness, 
                             OrigDirectory=Directory[]; 
                             SetDirectory[ 
                              Genetic`Parameters`Processor]; 
                             Save["DONE", MinFitness]; 
                             SetDirectory[OrigDirectory] 
                            ], 
                          FullNum=ToExpression[ 
                                   StringDrop[popf, 1]]; 
   

                          firstpop=Floor[ 
                           FullNum/NoOfSubpopulations]+1; 
                          secondpop=Mod[FullNum, 
                           NoOfSubpopulations]+1; 
                          MigratePop[StringJoin["POP", 
                                     ToString[firstpop]], 
                                     StringJoin["POP", 
                                     ToString[secondpop]]] 
                         ]; 
                       OrigDirectory=Directory[]; 
                       SetDirectory[ 
                        Genetic`Parameters`Processor]; 
                       DeleteFile[popf]; 
                       SetDirectory[OrigDirectory]; 
                      ] 

Migrate handles all tasks except evolution of generations. 

If the signal file is “MSTART” then CheckSolutions is called to extract the best 

solution from all the sub-populations. Otherwise, the names of the populations to 

participate in migration are generated and the MigratePop is called with these as 

parameters. Finally, the signal file is deleted to inform the scheduler that the task is 

complete. 

MigratePop performs migration between two sub-populations. They are loaded 

simultaneously into memory and random individuals are swapped. Thereafter the 

populations are saved over the original data. Individuals are selected for migration in a 

fitness-proportionate manner, using the roulette-wheel technique as discussed earlier. 

The average number of individuals to migrate are specified by 

MigrationPercentage (default = 0.1). The actual number of individuals is 
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generated by a Gaussian-distributed random number with MigrationPercentage 

as a mean and a standard deviation of MigrationDeviation (default = 0.05). 

In order to speed up the algorithm, migration is not performed between every possible 

pair of sub-populations during each iteration of the algorithm. The probability that 

migration occurs between any two sub-populations is defined by 

MigrationProbability (default is 1 in 4). 

Sequence of Function Calls 

In order to use the parallel implementation, the parameters for the run must be defined 

in a text file in Mathematica input format (with a default name of “P.M”). Function 

and terminal sets and the fitness function are mandatory but the other parameters will 

be assigned default values if not defined. 

All computers working on the problem must be networked and a shared directory 

created, containing the parallel GP program and data files. 

Mathematica should be started on a single computer in order to Initialize the 

populations. Thereafter each processor must be registered with the RegisterProc 

function. 

The algorithm can be started on each processor by running the START.BAT batch 

file, supplying the number of the processor as the single parameter. All the processors 

will go into a loop, waiting for tasks to be assigned to them. 

The scheduler, GPNET.EXE, must then be run and, by clicking on the Start button, 

the scheduling operations begin. The various processors will then cooperatively 

evolve new generations and perform migration whenever necessary. 
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5CHAPTER 5 : 
APPLICATIONS OF PARALLEL GP 

Statistical Analysis Techniques 

Statistics in a parallel GP can be produced to analyse the performance of either the 

entire population or the individual sub-populations. The entire population indicates 

global trends while a study of the sub-populations can ensure differences in the 

composition of the population at different points on the population grid. 

As before, graphs can be generated to indicate the convergence or divergence of the 

algorithm by plotting the maximum and minimum fitnesses of each generation. 

GlobalCurve:=Module[ 
                    {t, MaxG, MinG, AveG}, 

                    BeginPackage["Genetic`Parameters`"]; 
                    Get["pop.log"]; 
                    EndPackage[]; 

                    t=MapThread[List, 
                     Genetic`Parameters`GlobalSolutionSet]; 

                    MaxG=ListPlot[MapThread[List,  
                                   {t[[1]], t[[2]]}], 
                                  PlotRange->{{0, Max[t[[1]]]}, 
                                   {0, 1}}, 
                                  PlotStyle->{RGBColor[1,0,0]}, 
                                  Frame->True, 
                                  FrameLabel->{ 
      "Generation       Fit(ness): red=max green=min blue=ave", 
                                               "Fit"}, 
                                  PlotLabel-> 
                                   "Global Fitness Curve", 
                                  PlotJoined->True, 
                                  DisplayFunction->Identity]; 

                    MinG=ListPlot[MapThread[List,  
                                   {t[[1]], t[[4]]}], 
                                  PlotRange->{{0, Max[t[[1]]]}, 
                                   {0, 1}}, 
                                  PlotStyle->{RGBColor[0,1,0]}, 
                                  Frame->True, 
                                  FrameLabel->{ 
      "Generation       Fit(ness): red=max green=min blue=ave", 
                                               "Fit"}, 
                                  PlotLabel-> 
                                   "Global Fitness Curve", 
                                  PlotJoined->True, 
                                  DisplayFunction->Identity]; 
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                    AveG=ListPlot[MapThread[List,  
                                   {t[[1]], t[[6]]}], 
                                  PlotRange->{{0, Max[t[[1]]]}, 
                                   {0, 1}}, 
                                  PlotStyle->{RGBColor[0,0,1]}, 
                                  Frame->True, 
                                  FrameLabel->{ 
      "Generation       Fit(ness): red=max green=min blue=ave", 
                                               "Fit"}, 
                                  PlotLabel-> 
                                   "Global Fitness Curve", 
                                  PlotJoined->True, 
                                  DisplayFunction->Identity]; 

                    Show [{MaxG, MinG, AveG}, 
                          DisplayFunction->$DisplayFunction]; 
                 ] 

The global statistical information saved during the run is read in by GlobalCurve 

and three different graphs are generated in memory, one each to display the maximum, 

minimum and average fitnesses. Eventually, the three graphs are superimposed and 

displayed on the screen. 

A typical output from GlobalCurve is shown in Figure 5.1. The maximum, 

minimum and average fitnesses are drawn in red, green and blue respectively to 

1 2 3 4 5 6

Generation
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0.2

0.4
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0.8
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Fitness

red=max
green=min
blue=ave

Global Fitness Curve

 

Figure 5.1. Output from GlobalCurve, displaying maximum, minimum and average fitnesses of 

generations 



 Page 99 

enhance clarity. In this graph, as in most fitness curves, the average fitness is almost 

equal to the minimum. This is not critical because the maximum fitness is of greater 

importance. 

Similar statistics can be generated for individual sub-populations. In order to cater for 

all sub-populations simultaneously, the graph can be promoted to a 3-D format with 

the number of the sub-population being the third dimension. This is not desirable 

since the sub-populations would have to be re-arranged in a linear fashion. 

Peculiarities in the population grid are more obvious if the statistics are arranged in a 

grid corresponding to the sub-populations. However, since this is already a two-

dimensional structure, only one piece of information can be displayed. For example, a 

3-D surface can be used to indicate the maximum fitnesses in generation 0 in all sub-

populations. A series of such graphs can then indicate maximum fitnesses of 

subsequent generations.  
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Figure 5.2 shows a typical histogram for individual sub-populations. The horizontal 

plane indicates the position of each population in the population grid while the heights 

of the bars represent the maximum fitnesses for that generation. All the experiments in 

this chapter resulted in similar graphs, where there is not much difference in fitness 

among the various sub-populations. This is because the small number of sub-

populations used did not promote variety of individuals. Few sub-populations were 

used in order to minimise the ratio of communication time to actual computation time.  

Similar graphs can be generated for the average fitnesses. Graphs such as these are 

produced by the CalcHistogram function, using Mathematica’s existing 3-D graph 

capabilities. 

CalcHistogram:=Module[ 
                        {t, data, popfit, figs, gen,  
                         popsize=0, numgen, 
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Figure 5.2. Typical maximum fitness histogram 
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                         popfiles, first=1, maxes, popnumber, 
                         inFile, outFile}, 

                        popfiles=FileNames["pop*.plg"]; 
                        popfiles=Sort[ 
                                      popfiles,  
                                      (Less[GetPopNumber[#1], 
                                       GetPopNumber[#2]])& 
                                     ]; 
                        Histogram3DMax=Table[0, 
                         {Length[popfiles]}]; 
                        Histogram3DAve=Table[0, 
                         {Length[popfiles]}];                         

                        Map[ 
                            (Print["copying file ", #]; 
                             inFile=OpenRead["pop1.plg"]; 
                             outFile=OpenWrite["pop.ful"]; 
                             While[ 
                                   i=Read[inFile, String];  
                                    Not[SameQ[i, EndOfFile]],  
                                   WriteString[outFile, i, "\n"] 
                                  ]; 
                             Close[inFile]; 
                             WriteString[outFile, "}"]; 
                             Close[outFile]; 

                             Print["reading in data"]; 
                             BeginPackage[ 
                              "Genetic`Parameters`"]; 
                             Get["pop.ful"]; 
                             EndPackage[]; 

                             Print["separating data"]; 
                             popfit=MapThread[List, 
                              Genetic`Parameters`pop][[2]]; 
                             numgen=Max[MapThread[List, 
                              Genetic`Parameters`pop][[1]]]; 

                             If[ 
                                first==1, 
                                data=Table[Table[0, {10}], 
                                           {numgen}]; 
                                first=0 
                               ]; 

                             Print["discretizing data"]; 
                             Do[ 
                                figs=Map[Floor, 
                                popfit[[gen]]*10]; 
                                figs=Map[If[#==0, 1, #]&, figs]; 
                                Map[(data[[gen, #]]++)&, figs], 
                                {gen, 1, numgen} 
                               ]; 

                             Print["extracting maximums"]; 
                             maxes={}; 
                             Do[ 
                                maxes=Append[maxes, 
                                 Max[popfit[[gen]]]], 
                                {gen, 1, numgen} 
                               ]; 
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                             popnumber=ToExpression[ 
                              StringDrop[StringDrop[#, 3], -4]]; 
                             Histogram3DMax[[popnumber]]=maxes; 

                             Print["extracting averages"]; 
                             maxes={}; 
                             Do[ 
                                maxes=Append[maxes,  
                                       Apply[Plus,  
                            popfit[[gen]]]/Length[popfit[[gen]]] 
                                            ], 
                                {gen, 1, numgen} 
                               ]; 
                             Histogram3DAve[[popnumber]]=maxes;                             

                             popsize+=Length[popfit[[1]]])&, 

                             popfiles 
                            ]; 
 
                            Print["generating global graphs"]; 
                            HistogramData= 
                              Table[ 
                                    BarChart[data[[gen]], 
                                     BarLabels->Table[i, {i, 0, 
                                      0.9, 0.1}], 
                                     PlotRange->{{0, 11},  
                                      {0, popsize}}, 
                                     PlotLabel->StringJoin[ 
                                      "Global Generation ", 
                                      ToString[gen]], 
                                     DisplayFunction->Identity], 
                                    {gen, 1, numgen} 
                                   ]; 

                            Print["generating maximum graphs"]; 
                            Histogram3DMax=MapThread[List, 
                             Histogram3DMax]; 
                            Histogram3DMax=Map[Partition[#,  
                             Sqrt[Length[popfiles]]]&,  
                             Histogram3DMax]; 
                            Histogram3DMax= 
                              Table[ 
                               BarChart3D[Histogram3DMax[[gen]], 
                                PlotRange->{Automatic, 
                                 Automatic, {0,1}}, 
                                PlotLabel->StringJoin[ 
                                 "Max of Generation ", 
                                 ToString[gen]], 
                                ViewPoint->{4,1,4}, 
                                DisplayFunction->Identity], 
                               {gen, 1, numgen} 
                                   ]; 
                             
                            Print["generating average graphs"]; 
                            Histogram3DAve=MapThread[List, 
                             Histogram3DAve]; 
                            Histogram3DAve=Map[Partition[#,  
                             Sqrt[Length[popfiles]]]&,  
                             Histogram3DAve]; 
                            Histogram3DAve= 
                              Table[ 
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                               BarChart3D[Histogram3DAve[[gen]], 
                                PlotRange->{Automatic, 
                                 Automatic, {0,1}}, 
                                PlotLabel->StringJoin[ 
                                 "Ave of Generation ", 
                                 ToString[gen]], 
                                ViewPoint->{4,1,4}, 
                                DisplayFunction->Identity], 
                               {gen, 1, numgen} 
                                   ]; 
                       ] 

CalcHistogram generates these 3-D graphs for the maximum and average fitness 

values. As a result of the function, two lists of graphs are created: 

Histogram3DMax contains the maximum fitness graphs and Histogram3DAve 

contains the average fitness graphs. In addition, the set of global histograms is 

generated and stored in HistogramData. Although the routines to generate the 

global histograms were already available in the original serial algorithm, it was 

decided to incorporate all graph generation activity into one loop to prevent repetitive 

preprocessing of the fitness data. 

The population data file corresponding to each sub-population is read in and 

processed. First the unnecessary information is pruned from the data, then the data is 

divided into discrete batches for the global histograms. Finally, the maximum and 

average values are calculated and the graphs are created in memory. 

Mathematica’s built-in animation capabilities were exploited to animate this 

information, thus overcoming the requirement for an additional dimension in 

representing the data. In the absence of animation capabilities, it is still possible to 

display multiple graphs on a single page, as shown in Figure 3.10. 

These various graphical statistics display the trends that manifest themselves in the 

population data as generations progress. The global fitness curve and the 3-D 

histograms indicate the nature of convergence or divergence of the algorithm. The 

global histogram shows the implicit shifts in fitness of the entire population. These 

were used extensively during the modelling of experiments in order to optimise 

parameters to increase the probability of acceptable solutions. 
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Experiment 2: Parallel Symbolic Regression 

In order to evaluate the effectiveness of the parallel GP algorithm in Mathematica, the 

symbolic regression problem (Experiment 1) was revisited. This time, the population 

was divided into 9 sub-populations and the computations were distributed among a set 

of workstations. The number of workstations was varied in order to assess its impact 

on the ratio of computation time to communication time. 

Test Data 

The equation used to generate sample points was once again 

 y = x4 + x3 + x2 +x   .........................................................    (5.1) 

The range of x-values from -1 to 1 was divided into 10 adjacent sections, with 11 

boundary points. Y-values were generated for each of these eleven boundary points 

using Equation 5.1. The x-values and corresponding y-values are shown in Table 5.1. 

All values are stored as fractions to retain a high degree of accuracy when calculating 

the fitnesses. These sample values were used for all iterations of Experiment 2. As 

was done previously, the x-values are equidistant to promote the generation of a more 

parsimonious equation. 

x y
-1 0

-4/5 -164/625
-3/5 -204/625
-2/5 -174/625
-1/5 -104/625

0 0
1/5 156/625
2/5 406/625
3/5 816/625
4/5 1476/625
1 4

 

Table 5.1. Sample points - Exp 2 
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Experiment 2.1 

The first iterations of the experiment attempted to compare the performances of 

various configurations of workstations/processors. The parameters for the run were 

consistent at the values indicated in Table 5.2. 

For this experiment, migration took place on a single computer after each generation 

was evolved i.e. one computer performed migration on the entire set of sub-

populations. 

As shown in the table, the number of sub-populations is 9, implying that the sub-

populations were distributed on a 3x3 grid. Although this does not assist is preserving 

variety of the population, it does make it possible to execute the algorithm in parallel, 

which was the primary focus of this experiment. 

The experiment was repeated 15 times, 5 times each using 1 processor, 3 processors 

and 9 processors. In all instances the perfect solution, as indicated by Equation 5.1, 

was evolved. The times taken to achieve these results are shown in Table 5.3. 

Parameter Value
Population Size 450
No of Sub-populations 9
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 1
Mutation probability 0.1
Crossover probability 0.9
Terminal set {x}
Function set {PPlus, PPlus, PTimes, PTimes, PMinus, PDivide}

 

Table 5.2. Parameters for parallel symbolic regression - Exp 2.1 
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First the algorithm was run on a single machine (Run1A-Run1E) and this found the 

solution in an average time of 2 hours, 2 minutes and 45 seconds. When the algorithm 

was run on a network of 3 computers, it took only an average of 41 minutes and 55 

seconds to find the solution. When 9 processors were used, the increase in speed was 

minimal and the average time taken was reduced to only 41 minutes and 30 seconds. 

Run No No of
Processors

Time Taken
to find

Solution
(h:m:s)

Generations
Processed

Time Taken to Process
Single Generation

(s)

1A 1 2:20:58 18 470
1B 1 2:44:30 20 494
1C 1 2:0:10 15 481
1D 1 2:47:24 21 478
1E 1 0:20:44 3 415

Average 1 2:02:45 15 485
2A 3 1:20:24 19 254
2B 3 0:22:07 7 190
2C 3 0:29:31 9 197
2D 3 0:45:20 12 227
2E 3 0:32:07 10 193

Average 3 0:41:55 12 220
3A 9 0:26:28 10 159
3B 9 0:14:56 6 149
3C 9 1:16:31 22 209
3D 9 0:47:08 14 202
3E 9 0:42:26 14 182

Average 9 0:41:30 12 188  

Table 5.3. Time taken to run parallel symbolic regression on multiple processors 
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Figure 5.3 illustrates the differences in time taken during the three runs. There is a 

substantial decrease in time when the number of processors is increased to 3 but not 

much improvement gained from increasing the number of processors to 9. This is due 

to the serial nature of migration. When 9 processors were used, the time taken for 

evolution was small compared to the time taken for migration. At this point it was 

decided to parallelise the migration operation as well. 

Although the time taken for a complete evolutionary run is  significant, it is not the 

best metric for comparative analysis since the length of each run is most probably 

different. Thus, when comparing the time taken to reach a solution with different 

numbers of processors, it is more accurate to use the average times taken to evolve 

each new generation. Using this data, Figure 5.4 was generated. 
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Figure 5.3. Graph showing overall time taken vs. no of processors - Exp 2.1 
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It can be seen that the total time taken for each run is related almost proportionately to 

the time taken for evolution of a single generation.  

However, if one compares the average total time taken for 1 processor (2h 02m 45s) to 

that of 3 processors (41m 45s), it superficially seems that the latter case achieves 

greater than linear speedup. This is, of course, not the case, since migration and 

collation of results were still serial operations, resulting in lower than optimal 

increases in speed. Thus the 3 processors ought to have achieved less than linear 

speedup of execution. Now, if the average time taken to evolve single generations is 

used instead, then comparisons can be made between different numbers of processors. 

The average time taken to process one generation was 485 seconds for 1 processor and 

220 seconds for 3 processors. This ratio is below 3:1, as was expected.  

Experiment 2.2 

In order to prove that the parallel algorithm really does speed up the execution of the 

algorithm, a single-population model was also tested with all parameters being the 

same except the number of sub-populations, as indicated in Table 5.4. 
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Figure 5.4. Graph showing time taken per generation vs. no of processors - Exp 2.1 
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The times taken for each run of the experiment is indicated in Table 5.5. 

It was expected that the single-population algorithm would be outperformed by both 

the 3-processor and 9-processor models. However, the results of the single-population 

model surpass all models of the parallel algorithm. This occurred primarily because of 

the serial nature of migration, taking a substantial percentage of the total computation 

time. 

Parameter Value
Population Size 450
No of Sub-populations 1
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 1
Mutation probability 0.1
Crossover probability 0.9
Terminal set {x}
Function set {PPlus, PPlus, PTimes, PTimes, PMinus, PDivide}

 

Table 5.4. Parameters for parallel symbolic regression - Exp 2.2 

Run No No of
Processors

Time Taken
to find

Solution
(h:m:s)

Generations
Processed

Time Taken to Process
Single Generation

(s)

A 1 0:43:33 15 172
B 1 0:29:28 10 177
C 1 0:27:45 10 167
D 1 0:40:07 12 201
E 1 0:39:40 13 183

Average 1 0:36:00 12 180
 

Table 5.5. Time taken to run single-population symbolic regression on single processor 
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Experiment 2.3 

Migration was completely parallelised before these experiments were run. Using 3 

processors, Experiment 2.1 was repeated (Run 2A-2E), reverting to the usage of 9 

sub-populations. The times taken for these experiments are indicated in Table 5.6. 

The average time taken to process a single generation was 120 seconds, which is 

significantly lower than both the single-population case (experiment 2.2 - 180 

seconds) and the serial migration multi-population case (experiment 2.1 - 220s). 

Conclusion 

Mathematica can successfully be utilised to execute a GP in parallel on a network of 

workstations. The primary advantage of the parallel implementation is that the 

restriction on population size and generation numbers is removed. The restrictions of 

the physical computer can be overcome by appropriately-sized parameters for the 

parallel algorithm. 

In addition, speed-of-execution improvements can be obtained by performing both the 

evolution and migration operations in parallel. These will be affected by the speed of 

the server and the ratio of computation time to communication time, as dictated by the 

number of sub-populations and their sizes. 

Run No No of
Processors

Time Taken
to find

Solution
(h:m:s)

Generations
Processed

Time Taken to Process
Single Generation

(s)

A 3 0:04:55 3 98
B 3 0:14:07 7 121
C 3 0:27:21 12 137
D 3 0:26:15 12 131
E 3 0:11:28 6 115

Average 3 0:16:45 8 120
 

Table 5.6. Time taken to run parallel symbolic regression on 3 processors with parallelised 

migration operation 
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Experiment 3: CSTR Controller 

A Continuous Stirred Tank Reactor (CSTR) is a chemical reactor that was modelled 

in Mathematica for a simple exothermic reaction [Hajek, 1994]. For some reactions, it 

is desirable to attain a particular state of the reactor, in terms of the temperature, 

concentration of reactant and other parameters. With optimal control of the reaction, 

the chemical reactor may produce maximal yield. It was attempted to control the 

reactor, by means of changes in coolant and reactant inflow. Hajek applied fuzzy 

logic, optimised by a genetic algorithm in order to generate equations to control the 

reactor towards a known unstable steady state. The Mathematica model for this reactor 

was obtained by personal contact with the author and GP was applied in an attempt to 

find controlling equations that achieve the objective with as little control deviation as 

possible. 

The fitness function was pre-specified to be the sum of differences between the 

desired set points and the control variables, temperature and reactant concentration, 

over a set of discrete time intervals. This summation included four scenarios of the 

experiment with different starting points (temperature and reactant concentration). 

This is discussed further in [Hajek, 1994]. 

The function set contained only the four standard arithmetic operators (Plus, Minus, 

Times, Divide), to streamline the genetic processes. The terminal set contained the 

two control variables, temperature (x) and concentration of reactant (y), as well as 

some constant values. The parameters used for the GP run are indicated in Table 5.7. 
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The constants in the terminal set were introduced in order to allow greater scaling of 

the variables i.e. to increase the range of values spanned by the control variables. 

Many copies of the control variables (x and y) were included in the terminal set in 

order to increase the probability of selection of the variables relative to the constants 

in the same set. 

Since two equations were sought, the genetic operators were modified to cater for this. 

Each individual was generalised to be a list of expressions rather than a single 

expression. Then, all operations could be applied to the lists. Crossover on a list of 

expressions was extended to operate on a single expression from the list, chosen with 

uniform randomness - the corresponding expression is chosen from another 

individual. Mutation was changed similarly to operate on one of the expressions 

within the list. 

Experiment 3.1 

Raw fitness criteria were compared to a supplied heuristic estimate for the control 

functions, which produced a value of 25337.2. This criterion corresponds to the 

cumulative error so lower values are indicative of better solutions. The GP algorithm 

produced comparatively better criteria. 

Parameter Value
Population Size 360
No of Sub-populations 9
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 1
Mutation probability 0.1
Crossover probability 0.9
Terminal set {x, x, x, x, x, y, y, y, y, y, 1000, 100, 10, 1,

    0.01, 0.001, 0.0001}
Function set {PPlus, PPlus, PTimes, PTimes, PMinus, PDivide}

 

Table 5.7. GP Parameters for CSTR 
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Figure 5.5 shows the control trajectory achieved (top left graph) as well as the values 

of the control function during the each time interval (coolant inflow on the left and 

reactant inflow on the right). The criterion was 18613.4, which corresponded to a fitter 

solution. The control functions generated were: 

 coolant (x,y,qc) = 10 + 3x + 10y + qc   ...........................    (5.2) 

 reactant (x,y,q) = 0.0001 + q   ........................................    (5.3) 

where x represents the temperature differential, y represents the concentration 

differential and qc and q are the values of the control functions during previous 

iterations. 

From the graphs of control functions, it is obvious that the control of coolant inflow is 

not a convergent function but rather an oscillatory one (bang-bang control). The 

controller does not stabilise the reactor during the course of the experiment. If the 

reaction is continued, there is no guarantee that it will stabilise - the criterion will 

continue to increase.  
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Figure 5.5. Control path for CSTR functions obtained by GP - Exp 3.1 
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Experiment 3.2 

The GP algorithm was repeated in order to search for functions which have low fitness 

in the window of the experiment and generally stabilise the controller as well. 

Figure 5.6 indicates such a case, where the criterion is low but the control functions 

are not oscillatory in nature. The equations generated were: 

 coolant (x,y,qc) = 0.001 ( 1.001 + x + 3y + 0.02 xy ) + qc  (5.4) 

 reactant (x,y,q) = 0.0000001 + q   ..................................    (5.5) 

The variables have the same meanings as discussed above. 

Conclusion 

In both experiments, the coolant inflow control function is non-linear - it depends on 

the values of the current concentration as well as the current temperature. Since there 

are no analytical methods that guarantee the generation of optimal non-linear 

controllers, GP can be applied to evolve near-optimal controllers. In addition, the 
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Figure 5.6. Control path for CSTR functions obtained by GP - Exp 3.2 
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Mathematica implementation is useful in situations such as these where existing 

problems have already been modelled and alternative solution methodologies are 

sought. 

Experiment 4: PID Controller 

A Proportional, Integral, Differential (PID) Controller is another example of a 

derivative controller for a chemical reactor. The Mathematica model of this controller 

was obtained by personal contact from M. Hajek. This class of controllers takes as 

input the current and previous two control deviations (i.e. the differences between the 

required values and those obtained during the reaction). In order to speed up the 

generation of equations, only one previous control deviation is used, effectively 

reducing the controller to a PI controller. The goal of the optimisation was to find a 

controller that followed a given trajectory, as indicated below. 

Figure 5.7 shows the desired trajectory. The horizontal axis represents the temperature 

while the vertical axis represents the concentration in the reactor. The reaction starts 

in an initial condition that corresponds to the upper left corner of the given path. The 
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Figure 5.7. Desired control trajectory of PID controller 
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control equations must thereafter control the reactor so that it follows this path as 

closely as possible. 

GP was applied to this problem using the parameters as indicated in Table 5.8. 

In the terminal set, the variables dt1 and dt2 correspond to the current and previous 

temperature deviations while dx1 and dx2 correspond to the current and previous 

concentration deviations. ec is a placeholder to introduce random constants into the 

algorithm. It is used when generating expressions, and immediately replaced with a 

random value at each occurrence when the expression is complete. The population 

size is larger than usual to cater for a sufficient variety of random coefficients. 

A pair of given heuristic equations to control the reaction had a criterion of 464.09. 

These given equations were: 

temperature (dt1, dt2, dx1, dx2) = -0.0111792 dx1 + 0.00882075 dx2  (5.6) 

coolant (dt1, dt2, dx1, dx2) = 0.000637217 dt1 - 0.000502783 dt2   ....  (5.7) 

GP attempted to find sets of equations with a smaller criterion. 

Parameter Value
Population Size 960
No of Sub-populations 16
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 1
Mutation probability 0.1
Crossover probability 0.9
Terminal set {dt1, dt1, dt2, dt2, dx1, dx1, dx2, dx2, ec, ec, ec,

    ec, 100, 10, 1, 0.01, 0.001}
Function set {PPlus, PPlus, PTimes, PTimes, PMinus, PDivide}

 

Table 5.8. GP Parameters for PID Controller 
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Experiment 4.1 

The GP algorithm was executed and, after 79 generations, a solution with criterion 

1319.15 was found. This solution is not fitter than the given one, but attempts to 

follow the trajectory by changing the direction of control if the error is large. This 

results in coarse oscillatory control, and a non-convergent criterion. 

Figure 5.8 indicates the oscillatory nature of the coolant inflow function (bottom left) 

as well as the discrete trajectory formed by the generated equations (top left). 
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Figure 5.8. Control path for PID controller functions obtained by GP - Exp 4.1 
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Figure 5.9 indicates the global fitness curve for this experiment. It seems from the 

pattern of evolution that the discovery of a much fitter solution is very unlikely. 

Repetition of this experiment produced similarly unsatisfactory results, necessitating 

modification of the parameters.  

Experiment 4.2 

Since the aim of this experiment was to optimise the control functions, it was decided 

to incorporate the heuristic functions (Equations 5.6 and 5.7) into the initial 

population, by seeding each sub-population with the pair. 

The resulting evolved equations had a noticeably lower criterion than the given 

equations. Figure 5.10 indicates the control trajectory and control actions for the set of 

control functions. 
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Figure 5.9. Global fitness curve for PID controller - Exp 4.1  
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The generated controller had a criterion of 51.7333, which is much lower than that of 

the given equations (Equation 5.6 and 5.7). The functions produced by GP were: 

temperature = 0.0013 dt1 - 0.0005 dt2   ............................................    (5.8) 

coolant = ( )− × − − × − − × + × +
×

− × − +
�
�
�

�
�
�

�

�
�

�

�
�0 0111 1 0 011 1 3971 10

6
0 011 1 39823 1 0 4012

0 0004 1

2
8 6981 10

7
0 0001 2. . . . .

.
. .dx dx dx

dt

dx
dx  

.............................................................................................................    (5.9) 

These functions were obviously non-linear and, while still producing a control action 

similar to the given equations (with no oscillations), incurred less error in the 

criterion. The experiment was repeated twice and both times the resulting criterion 

was similar to the first run. Table 5.9 shows the criteria obtained during the 3 runs of 

this experiment. 
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Figure 5.10. Control path for PID controller functions obtained by GP - Exp 4.2 Run 1 
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The similarity of the criteria for different runs suggests that the solutions obtained are 

near-optimal for the given problem domain. The global fitness curve for Run 2 is 

indicated in Figure 5.11. 

This global fitness curve is almost identical for all runs of the experiment. The trend 

suggested by this graph is that the fitness of the best equations will not improve 

significantly in the following generations. 

Run Criterion
1 51.7333
2 54.9929
3 55.3069  

Table 5.9. Criteria for PID 

controllers 
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Figure 5.11. Global fitness curve for PID controller - Exp 4.2 Run 2 
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Experiment 4.3 

In a final attempt to further optimise the equations, the initial population was seeded 

with the given individuals as well as those generated during the three runs of 

Experiment 4.2. However, this did not result in much improvement in the criterion. 

After 73 generations the best individual had a criterion of 49.8443, which is not 

comparatively much smaller than the criteria from the previous experiment. It is not 

expected that further runs of the experiment will result in major improvements in the 

criterion, unless the parameters are changed or the sizing restrictions are relaxed to 

allow searching of a wider range of solutions. 

Conclusion 

The non-linear PID controller generated by GP had a lower criterion than the given 

heuristic equations. GP can be used successfully to take existing equations and evolve 

better solutions from them. Although GP does not need this problem-specific 

information, it helps to speed up evolution if as much known information as possible 

is incorporated into the modelling of the problem domain. 

Experiment 5: The Magic Star 

Discussion 

A magic square is a matrix of numbers with specific properties for its elements e.g. 

the sum of numbers along each row or column could be equal to the same constant. In 

terms of a star, similar rules can be applied. Consider the case of a 6-point star, as 

indicated in Figure 5.12. 
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Figure 5.12 shows the layout of a 6-point star, with each node of the star being 

assigned a label. One classic magic star problem is to assign the first twelve positive 

whole integers to the nodes of the star such that the sum of the values at the points is 

equal to the sum of the values along each line. This can be written as a series of 

equations, solvable by Gauss-Jordan elimination or similar techniques. The equations 

would be: 

 1+2+…+12 = S1+S2+…+S12 

 S1 + S2 + S5 + S8 + S11 + S12  = Sum 

 S1 + S4 + S7 + S11  = Sum 

 S1 + S3 + S6 + S8  = Sum 

 S8 + S9 + S10 + S11  = Sum 

 S2 + S3 + S4 + S5  = Sum 

 S2 + S6 + S9 + S12  = Sum 

 S5 + S7 + S10 + S12  = Sum   ....................    (5.10) 

For some such problems, it may be known that solutions exist and analytical methods 

can be employed to find the solution. For other problems, analytical methods may 

exist but the existence of a solution is not guaranteed. A third class of puzzles has the 

S1

S2 S3 S4 S5

S6 S7

S8 S9 S10 S11

S12

 

Figure 5.12. Six-point magic star configuration 
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property that no solution methods exist. The normal approach to solve such problems 

would be to identify which class they fall in. Then the solution can be derived 

analytically, if one exists. 

GP was used as an alternative to row-reduction to solve the problem described above. 

The problem was modelled in Mathematica, using the parallel GP algorithm as its 

basis. Since GP produces expressions or programs and the solution being sought was a 

list of numbers, a conversion of representations was needed. It was decided to model 

the individuals as permutations that could be applied to a list of 12 numbers. In order 

to generate the list of numbers represented by an individual, the permutation is applied 

to (1,2,3,4,5,6,7,8,9,10,11,12) and the resulting list is the solution. Permutations were 

accomplished by sequences of single-element swaps. These swapping operations were 

stored in the individual in the form of a tree, that was flattened at evaluation time. 

SBlock[expr___]:=TestCase[[1]] 

Swap[a_, b_]:=Module[ 
                     {t}, 
                     t=TestCase[[a]]; 
                     TestCase[[a]]=TestCase[[b]]; 
                     TestCase[[b]]=t; 
                     TestCase[[12]] 
                    ] 

The function set is composed of Swap, which swaps two elements in the list, and 

SBlock, which contains a list of swapping operations. The terminal set contains only 

random numbers in the range 1-12. The complete list of parameters is listed below in 

Table 5.10. 
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The fitness function is the only other necessary parameter in order to run the GP 

algorithm. 

RawFitness[ex_]:=Module[ 
                        {summain, sum, diff=0}, 
                        TestCase=MainCase; 
                        ex /. XTrans; 
                        summain=Apply[Plus, 
                         TestCase[[{1,2,5,8,11,12}]]]; 
                        sum=Apply[Plus, TestCase[[{1,3,6,8}]]]; 
                        diff+=Abs[summain-sum]; 
                        sum=Apply[Plus, 
                         TestCase[[{8,9,10,11}]]]; 
                        diff+=Abs[summain-sum]; 
                        sum=Apply[Plus, TestCase[[{1,4,7,11}]]]; 
                        diff+=Abs[summain-sum]; 
                        sum=Apply[Plus, TestCase[[{2,3,4,5}]]]; 
                        diff+=Abs[summain-sum]; 
                        sum=Apply[Plus, TestCase[[{2,6,9,12}]]]; 
                        diff+=Abs[summain-sum]; 
                        sum=Apply[Plus, 
                         TestCase[[{5,7,10,12}]]]; 
                        diff+=Abs[summain-sum]; 
                        diff 
                       ] 

The raw fitness was calculated by first adding together the values at the points of the 

star, denoted by summain. The values along each line are added and these values are 

then subtracted from summain. The differences are gathered together to form the raw 

fitness. Thus, the fitness function checks an individual to see if it satisfies the criteria 

of the problem as specified by Equations 5.10, and deviations from a perfect solution 

are penalised proportionately. 

Parameter Value
Population Size 1600
No of Sub-populations 16
Max no of Generations 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 1
Mutation probability 0.1
Crossover probability 0.9
Terminal set {ec, ec, ec, ec}
Function set {sblock, sblock, sblock, sblock, swap, swap, swap,

swap}

 

Table 5.10. GP Parameters for Magic Star 
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The aim of this experiment was to ascertain if GP could solve such a problem with 

minimum problem-specific information. The GP algorithm was run on a network of 7 

486-DX33 computers (6 clients and 1 server). 

One run of the algorithm terminated after 72 hours and 237 generations with the 

perfect solution, which was 

sblock[4, swap[sblock[sblock[4, swap[5, 8], 2, 6, 12], 4, 4, 
 sblock[sblock[6, sblock[7, 6, 6, 9], 6, sblock[10, 6, 2], 
 swap[4, 2]],  
 1, 6, sblock[4, 5, sblock[12, 6, 9, 6], 6]]], 6], 
 swap[swap[11, 4], 6]] 

When this expression is evaluated, it transforms the TestCase list into the required 

set of numbers to assign to the nodes of the star, namely: 

{S1, S2, … , S12} = {6, 4, 3, 11, 8, 12, 7, 5, 9, 10, 2, 1} 

The solution is not symmetric so does not lend itself to simple analytical solution 

methods. Although such methods do exist, it may be easier in some circumstances to 

model the problem in a prototyping language like Mathematica and execute a GP on 

it. 

Conclusion 

All the experiments in this chapter demonstrate the applicability of GP to real-world 

problems. The advantages of Mathematica modelling are exploited to decrease the 

setup time and concentrate on the finding of solutions. 

Parallelisation of the GP algorithm has the primary advantage of eliminating the 

constraints that GP placed on memory and computer processing capacity. Thus the 

sizes of evolved expressions and populations are no longer critical parameters of the 

GP algorithm. Also, a parallel GP algorithm can be run cooperatively on multiple 

computers, achieving near-linear speedup of execution. In general, parallelisation of 

the GP algorithm makes it feasible to solve real-world problems in a prototyping 

environment like Mathematica. 
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6CONCLUSION 

It has been confirmed that Genetic Programming can be useful to solve real-world 

problems where no analytical solution methodology exists. Symbolic regression is a 

prime example of such problems and was modelled in both a serial and parallel 

environment during this study. 

Mathematica, already an established mathematical modelling language, was used to 

implement GP. This implementation took advantage of the extensive function libraries 

and programming paradigms of Mathematica. It was found that Mathematica is 

unsuitable for calculations of indeterminate length and time, like GP, due to its 

internal and temporary storage strategies. Also, Mathematica, being an interpreted 

language, could never achieve the speed of execution of compiled code. In order to 

overcome some of these problems, the implementation was parallelised i.e. the GP 

algorithm was broken into smaller computational segments. The parallel algorithm 

does not have the restrictions on program parameters which is found in the serial 

model. Also, speed of execution can be improved in orders of magnitude by executing 

the algorithm on a network of workstations. This parallel implementation was 

successfully used to solve some benchmark and real-world optimization problems. 

The Mathematica GP implementation is useful because it can be applied to problem 

domains already modelled in Mathematica. Other problem domains can be modelled 

in Mathematica with much greater ease than in standard 3GL compiled languages like 

C++. Although languages like C++ can execute a GP faster than Mathematica, 

modelling of complex problem domains can be a time-consuming and complicated 

task. Thus the Mathematica implementation of GP takes advantages of the modelling 

capabilities of the language. In a non-prototyping production environment, where 

speed is an important factor, compiled languages would have obvious preference over 

Mathematica. 

Future Directions 

Further work could be done on porting the Mathematica implementation to other 

platforms. Although the functions are platform-independent, the session management 
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is still based on MS-DOS and compatible operating systems. The scheduler, currently 

a C++ application, can be written in Java or Mathematica to achieve platform-

independence. Scheduling can also be integrated into the algorithm at periodic 

intervals so that it may optionally be run on a single computer without the need for 

multi-tasking. 

If the code is portable then the algorithm can be executed in parallel on multiple 

computers networked via the Internet. Data can be shared using Internet-based file 

system protocols like NFS. Results can be displayed continuously on WWW browsers 

in the form of Java applets. 

The GP algorithm is itself being constantly improved. The Mathematica 

implementation can be readily extended to cater for changes in GP operators or flow 

of control. New features like Automatically Defined  Functions (ADFs), as discussed 

exhaustively by Koza, can be easily incorporated since the implementation already 

caters for multiple sub-expressions within each individual [Koza, 1994].  



 Page 128 

7APPENDIX A : SERIAL ALGORITHM 

xtradefs.m 
 
ClearAttributes[Divide, Protected] 
Divide[_, 0]:=1 
SetAttributes[Divide, Protected] 
 
ClearAttributes[Log, Protected] 
Log[0]:=0 
Log[x_ /; x<0]:=Log[-x] 
Log[E^x_]:=x 
SetAttributes[Log, Protected] 
 
ClearAttributes[Power, Protected] 
Power[0, -1]:=1 
SetAttributes[Power, Protected] 

time.m 
 
Time[x_ Second /; x>=3600, Stuff___] :=  
  Module[{h, m, s}, s = x; h = Floor[s/3600]; s -= h*3600; m = Floor[s/60];  
    s -= m*60; Print[Stuff, h, " Hours, ", m, " Minutes, ", s, " Seconds"]] 
  
Time[x_ Second /; x>=60, Stuff___] := 
  Module[{m, s}, s = x; m = Floor[s/60]; s -= m*60;  
    Print[Stuff, m, " Minutes, ", s, " Seconds"]] 
 
Time[x_ Second, Stuff___]:= 
  Print[Stuff, x, " Seconds"] 

genprog.m 
 
Get["time.m"] 
Get["xtradefs.m"] 
 
(* Terminals *) 
(* Functions *) 
(* Parameters *) 
 
MaxComplexity=50 
 
(* Generate random expression *) 
GenerateNormal[d_]:=Module[ 
                     {r, Poss, PossPar}, 
                     If[ 
                        d>1,  
                        Poss=Join[Functions, Terminals]; 
                        PossPar=Parameters, 
                        Poss=Terminals; 
                        PossPar={} 
                       ]; 
                     While[ 
                           Length[PossPar]<Length[Poss], 
                           PossPar=Append[PossPar,0] 
                          ]; 
                     r=Random[Integer, {1, Length[Poss]}]; 
                     Switch[ 
                            PossPar[[r]], 
                            0, 
                            Poss[[r]], 
                            1, 
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                            Poss[[r]][Generate[d-1]], 
                            2, 
                            Poss[[r]][Generate[d-1], Generate[d-1]], 
                            3, 
                            Poss[[r]][Generate[d-1], Generate[d-1], 
Generate[d-1]] 
                           ] 
                    ] 
 
Generate[d_]:=Module[ 
                     {y}, 
                     y=GenerateNormal[d]; 
                     While[ 
                           LeafCount[y]>MaxComplexity, 
                           y=GenerateNormal[d] 
                          ]; 
                     y 
                    ] 
 
CrossoverProbability=0.9 
 
(* Get list of all indices of internal points in expression *) 
RemoveZero[x_]:=If[Position[x, 0]=={}, x, {}] 
Points[x_]:=Union[Map[RemoveZero, Position[x, _]], {}] 
 
GetInternal[{x___}]:=x 
 
(* Perform crossover operation on two expressions *) 
Cross1[x_, y_]:=Module[ 
                       {spot1, spot2, point1, point2, temp1, temp2}, 
                       If[ 
                          Random[]<CrossoverProbability, 
                          point1=Points[x]; 
                          spot1=Random[Integer, {1, Length[point1]}]; 
                          point2=Points[y]; 
                          spot2=Random[Integer, {1, Length[point2]}]; 
                          temp1=x[[GetInternal[point1[[spot1]]]]]; 
                          temp2=y[[GetInternal[point2[[spot2]]]]]; 
                          { If[ 
                               point1[[spot1]]=={}, 
                               temp2, 
                               ReplacePart[x, temp2, point1[[spot1]]] 
                              ], 
                            If[ 
                               point2[[spot2]]=={}, 
                               temp1, 
                               ReplacePart[y, temp1, point2[[spot2]]] 
                              ] 
                          }, 
                          {x, y} 
                         ] 
                      ] 
 
MutationProbability=0.1 
 
MaxSize=17 
 
(* Perform mutation operation on an expression *) 
Mutate[x_]:=Module[ 
                   {spot1, point1, y, xold}, 
                   xold=x; 
                   If[ 
                      Random[]<MutationProbability, 
                      y=Generate[MaxInitialSize]; 
                      point1=Points[x]; 
                      spot1=Random[Integer, {1, Length[point1]}]; 
                      If[ 
                         point1[[spot1]]=={}, 
                         y, 
                         ReplacePart[x, y, point1[[spot1]]] 
                        ], 
                      If[ 
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                         ((Depth[x]<MaxSize) && 
(LeafCount[x]<MaxComplexity)), 
                         x, 
                         xold 
                        ] 
                     ] 
                  ] 
 
(* RawFitness *) 
 
StandardizedFitness[x_]:=RawFitness[x] 
 
AdjustedFitness[x_]:=N[1/(1+StandardizedFitness[x])] 
 
(* List of fitnesses of expressions in current generation *) 
Fitnesses={} 
 
(* Make cumulative fitnesses vector *) 
CalcFitnessSum:=Module[{}, 
   FitSum=Table[Apply[Plus, Take[Fitnesses, i]], {i, 1, Length[Fitnesses]}]; 
                       FitSum=Insert[FitSum, 0, 1]; 
                      ] 
 
(* Bisection algorithm search for roulette wheel fitness choice *) 
Search[x_] :=  
  Module[{Mid, Start=1, Stop=Length[FitSum]},  
         While[Start+1 != Stop,  
               Mid = Floor[(Start+Stop)/2];  
               If[FitSum[[Mid]] > x,  
                  Stop=Mid, 
                  Start=Mid 
                 ] 
              ];  
         Start 
        ] 
 
(* Create new generation from previous one *) 
NewGen[x_] := Module[ 
  {maxwheel, newgen, lenx}, 
  newgen={}; 
  maxwheel=Apply[Plus, Fitnesses]; 
  lenx=Length[x]; 
  CalcFitnessSum; 
  Do[ 
    Module[ 
      {spot, index, isum}, 
      spot=Random[]*maxwheel; 
      index=Search[spot]; 
      newgen=Append[newgen, x[[index]]] 
    ], 
    {i, 1, lenx} 
  ]; 
  newgen 
] 
 
(* Perform crossover on all expressions in new generation *) 
Crossover[x_] := Module[ 
  {newx, oldx, n2, leno, origlen}, 
  oldx=x; 
  newx={}; 
  leno=Length[oldx]; 
  origlen=leno; 
  While[ 
    leno>0, 
    If[ 
      leno==1, 
      newx=Append[newx, First[oldx]]; 
      oldx=Rest[oldx], 
      n2=Cross1[oldx[[1]], oldx[[2]]]; 
      If[((Depth[n2[[1]]]<=MaxSize) && (LeafCount[n2[[1]]]<=MaxComplexity)), 
         newx=Append[newx, n2[[1]]], 
         newx=Append[newx, oldx[[1]]] 
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        ]; 
      If[((Depth[n2[[2]]]<=MaxSize) && (LeafCount[n2[[2]]]<=MaxComplexity)), 
         newx=Append[newx, n2[[2]]], 
         newx=Append[newx, oldx[[2]]] 
        ]; 
      oldx=Drop[oldx, 2]; 
    ]; 
    leno=Length[oldx] 
  ];  
  newx  
] 
 
MaxGenerations=51 
PopulationSize=250 
 
(* Solution, SolutionFitness, SolutionSet *) 
 
(* Update best-of-run individual *) 
CheckSolution[gen_, x_]:=Module[ 
                          {minf, maxf}, 
                          Fitnesses=AdjustedFitness /@ x; 
                          minf=Position[Fitnesses, Min[Fitnesses]][[1,1]]; 
                          maxf=Position[Fitnesses, Max[Fitnesses]][[1,1]]; 
                          If[ 
                             SolutionFitness<Fitnesses[[maxf]], 
                             Solution=x[[maxf]]; 
                             SolutionFitness=Fitnesses[[maxf]] 
                            ]; 
                          SolutionSet=Append[SolutionSet, 
                           {gen, Fitnesses[[maxf]], x[[maxf]], 
                                 Fitnesses[[minf]], x[[minf]]}]; 
                          Print["G", gen, ": max ", Fitnesses[[maxf]], 
                                        "    min ", Fitnesses[[minf]]]; 
                         ] 
 
MinFitness=0.99 
 
(* Generation, Population, TotTime *) 
 
XTrans={} 
 
(* Apply Genetic algorithm *) 
ApplyGen := Module[ 
  {onetime, poplog}, 
  Off[Get::noopen]; 
  Get["restart.log"]; 
  On[Get::noopen]; 
  newpop=Population; 
(*  Print["G", Generation, ": calculating fitnesses ..."]; *) 
(*  Print["G", Generation, ": done ... ", Timing[CheckSolution[Generation, 
newpop]][[1]]]; *) 
   
  While[ 
    (SolutionFitness<MinFitness) && (Generation<MaxGenerations), 
   onetime=Timing[ 
    Print["G", Generation, ": creating mating pool ..."]; 
    Print["G", Generation, ": done ... ", 
Timing[newpop=NewGen[newpop]][[1]]]; 
    Print["G", Generation, ": performing crossover ..."]; 
    Print["G", Generation, ": done ... ", 
Timing[newpop=Crossover[newpop]][[1]]]; 
    Print["G", Generation, ": performing mutation ..."]; 
    Print["G", Generation, ": done ... ", Timing[newpop=Map[Mutate, 
newpop]][[1]]]; 
    Generation++; 
    Population=newpop; 
    Print["G", Generation, ": calculating fitnesses ..."]; 
    Print["G", Generation, ": done ... ", Timing[CheckSolution[Generation, 
newpop]][[1]]]; 
    Print["G", Generation, ": best-of-run fitness so far = ", 
SolutionFitness]; 
   ][[1]]; 
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    Time[onetime, "G", Generation, ": total time for Generation change = "]; 
    TotTime+=onetime; 
    Time[TotTime, "G", Generation, ": total time so far = "]; 
     
    Print["Saving state of system..."]; 
    Save["restart.log", PopulationSize]; 
    Save["restart.new", ContinueGen]; 
    RenameFile["restart.log", "restart.old"]; 
    RenameFile["restart.new", "restart.log"]; 
    DeleteFile["restart.old"]; 
     
    poplog=OpenAppend["pop.log"]; 
    WriteString[poplog, ","]; 
    Write[poplog, {Generation, Fitnesses}]; 
    Close[poplog]; 
    Print["Finished saving state of system..."]; 
  ]; 
  {Solution /. XTrans, SolutionFitness} 
] 
 
MaxInitialSize=6 
 
(* Initialise Genetic algorithm *) 
Initialize:=Block[ 
                  {poplog}, 
                  Population=Table[Generate[MaxInitialSize],  
                                   {PopulationSize}]; 
                  SolutionFitness=0; 
                  SolutionSet={}; 
                  Generation=0; 
                  TotTime=0; 
                  Print["G", Generation, ": calculating fitnesses ..."]; 
                  Print["G", Generation, ": done ... ",  
                        Timing[CheckSolution[Generation, Population]][[1]]]; 
                  Print["G", Generation, ": best-of-run fitness so far = ",  
                        SolutionFitness]; 
                   
                  Off[DeleteFile::nffil]; 
                  DeleteFile["pop.log"]; 
                  DeleteFile["restart.log"]; 
                  DeleteFile["restart.new"]; 
                  DeleteFile["restart.old"]; 
                  On[DeleteFile::nffil]; 
                   
                  poplog=OpenAppend["pop.log"]; 
                  WriteString[poplog, "pop={"]; 
                  Write[poplog, {Generation, Fitnesses}]; 
                  Close[poplog]; 
                   
                  Save["restart.log", PopulationSize]; 
                  Save["restart.log", ContinueGen]; 
                   
                  Information[Population]; 
                  GInformation; 
                 ] 
 
(* Start run of algorithm *) 
StartGen:=Timing[ 
                 CheckAbort[ 
                            ApplyGen, 
                            {Solution /. XTrans, SolutionFitness} 
                           ] 
                ] 
 
ContinueGen[gen_]:=Module[{}, 
                          MaxGenerations=gen; 
                          MinFitness=2; 
                          Save["restart.log", MaxGenerations]; 
                          Save["restart.log", MinFitness]; 
                          StartGen 
                         ] 
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GInformation:=Module[{}, 
                     Print[""]; 
                     Print["Population Size       : ", PopulationSize]; 
                     Print["Max no of Generations : ", MaxGenerations]; 
                     Print["Max initial size      : ", MaxInitialSize]; 
                     Print["Max size              : ", MaxSize]; 
                     Print["Min solution fitness  : ", MinFitness]; 
                     Print["Mutation probability  : ", MutationProbability]; 
                     Print["Crossover probability : ", 
CrossoverProbability]; 
                     Print["Terminal set          : ", Terminals]; 
                     Print["Function set          : ", Functions]; 
                    ] 

stats.m 
 
ShowSample:=ListPlot[MapThread[List, {XPoints, YPoints}]] 
 
ShowCurve:=Module[ 
                  {t}, 
                  t=MapThread[List, SolutionSet]; 
                  ListPlot[MapThread[List, {Join[t[[1]], t[[1]]], 
                                     Join[t[[2]], t[[4]]]}],  
                                     PlotRange->{{0, 51}, {0, 1}}] 
                 ] 
 
ShowSolution:=Plot[Solution /. XTrans, {x, -2, 2}] 
 
ShowFit:=Show[ShowSample, ShowSolution,  
              PlotRange->{{-2, 2}, {-2, 10}}, 
              PlotLabel->Solution /. XTrans, AxesLabel->{x, ""}, 
              Frame->True 
             ] 
 
Stats[s_String]:=Module[{}, 
                        Display[StringJoin[s, ".sam"], ShowSample]; 
                        Display[StringJoin[s, ".sol"], ShowSolution]; 
                        Display[StringJoin[s, ".fit"], ShowFit]; 
                        Display[StringJoin[s, ".scu"], ShowCurve]; 
                       ] 

hist.m 
 
<<Graphics`Graphics` 
<<Graphics`Animation` 
 
Run["copy pop.log+pop.m pop.ful /Y > nul"] 
 
<<pop.ful 
 
popfit=MapThread[List, pop][[2]] 
 
Histogram[x_, opts___]:= 
   Module[{data, fl, figs}, 
          data=Table[0, {10}]; 
          figs=Map[Floor, popfit[[x+1]]*10]; 
          figs=Map[If[#==0, 1, #]&, figs]; 
          Map[(data[[#]]++)&, figs]; 
          BarChart[data, BarLabels->Table[i, {i, 0, 0.9, 0.1}], 
                   PlotRange->{{0, 11}, {0, PopulationSize}}, 
                   PlotLabel->StringJoin["Generation ", ToString[x]], 
                   opts] 
         ] 
 
HistTable:=Table[Histogram[i, DisplayFunction->Identity],  
                 {i, 0, Length[pop]-1}] 
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AnimateHist:=ShowAnimation[HistTable]; 

restart.m 
 
<<xtradefs.m 
 
<<stats.m 
 
<<restart.log 
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8APPENDIX B : SCHEDULER 
 
#define WIN31 
 
#include <dir.h> 
 
#include <owl.h> 
 
// -------------------------------------------------------------------- \\ 
// Class declaration for a general item of data in a linked list 
 
class Thing 
{ 
public: 
   Thing () {}; 
   Thing           *Next, *Prev; 
}; 
 
// -------------------------------------------------------------------- \\ 
// Class declaration and definition for a general linked list 
 
class ThingList 
{ 
public: 
   ThingList (); 
   void AddThing ( Thing *p ); 
   Thing *PopThing (); 
protected: 
   Thing           *Head, *Tail; 
}; 
 
ThingList::ThingList () 
{ 
   Head=NULL; 
   Tail=NULL; 
} 
 
void ThingList::AddThing ( Thing *p ) 
{ 
   p->Prev=Tail; 
   if (Head==NULL) 
      Head=p; 
   else 
      Tail->Next=p; 
   p->Next=NULL; 
   Tail=p; 
} 
 
Thing *ThingList::PopThing () 
{ 
   if (Head==NULL) 
      return NULL; 
   if (Head==Tail) 
   { 
      Thing *p=Head; 
      Tail=Head=NULL; 
      return p; 
   } 
   else 
   { 
      Thing *p=Head; 
      Head=Head->Next; 
      Head->Prev=NULL; 
      return p; 
   } 
}  
 
// -------------------------------------------------------------------- \\ 
// Declaration and definition for a list of job 
 
class Job : public Thing 
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{  
publ i c:  
   Job (  char  * n ) ;  
   char  * Get Name ( ) ;   
pr ot ect ed:  
   char             Name[ 80] ;  
} ;  
 
Job: : Job (  char  * n )  
{  
   l s t r cpy ( Name,  n) ;  
}  
 
char  * Job: : Get Name ( )  
{  
   r et ur n Name;  
}  
 
/ /  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  \ \  
/ /  Decl ar at i on and def i ni t i on f or  a l i s t  of  j obs 
 
c l ass JobLi st  :  publ i c Thi ngLi st  
{  
publ i c:  
   JobLi st  (  PTDi al og pt d ) ;  
   JobLi st  (  PTDi al og pt d,  i nt  ) ;  
   voi d Ref r esh ( ) ;  
   voi d AddJob (  Job * p ) ;  
pr ot ect ed:  
   PTDi al og        Par ent ;  
} ;  
 
JobLi st : : JobLi st  (  PTDi al og pt d,  i nt  )  
{  
   Par ent =pt d;  
}  
 
JobLi st : : JobLi st  (  PTDi al og pt d )  
{  
   st r uct  f f bl k    f f bl k;  
   i nt            done;  
 
   Par ent =pt d;  
 
   done = f i ndf i r st ( " * . * " ,  &f f bl k,  FA_DI REC) ;  
   whi l e ( ! done)   
   {  
      i f  ( ( f f bl k. f f _name[ 0] ==' P' )  && 
   ( f f bl k. f f _name[ 1] ==' O' )  && 
   ( f f bl k. f f _name[ 2] ==' P' )  && 
   ( f f bl k. f f _name[ l st r l en ( f f bl k. f f _name) - 3] ==' L' )  && 
   ( f f bl k. f f _name[ l st r l en ( f f bl k. f f _name) - 2] ==' O' )  && 
   ( f f bl k. f f _name[ l st r l en ( f f bl k. f f _name) - 1] ==' G' )  && 
   ( f f bl k. f f _name[ 3] ! =' . ' ) )  
      {  
         f f bl k. f f _name[ l st r l en ( f f bl k. f f _name) - 4] =0;  
  Job * p=new Job ( f f bl k. f f _name) ;  
  AddJob ( p) ;  
      }  
      done = f i ndnext ( &f f bl k) ;  
   }  
 
   Ref r esh ( ) ;  
}  
 
voi d JobLi st : : Ref r esh ( )  
{  
   Job             * p=( Job * ) Head;  
 
   Par ent - >SendDl gI t emMsg ( 102,  LB_RESETCONTENT,  0,  0) ;  
   whi l e ( p! =NULL)  
   {  
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      if (p!=NULL) 
  Parent->SendDlgItemMsg (102, LB_ADDSTRING, 0, (long)(p->GetName())); 
      p=(Job *)p->Next; 
   }    
} 
 
void JobList::AddJob ( Job *p ) 
{ 
   AddThing (p); 
} 
 
// -------------------------------------------------------------------- \\ 
// Declaration and definition for a list of migration jobs 
 
class MigrateJobList 
{ 
public: 
   MigrateJobList ( PTDialog ptd, int nos ); 
   ~MigrateJobList (); 
   void AddJob ( char *s ); 
   void Refresh (); 
   char *GetJob (); 
   BOOL MoreJobs (); 
   void ClearJob ( char *s ); 
protected: 
   unsigned char   *Matrix, *List; 
   PTDialog        Parent; 
   unsigned long   Size; 
   char            tJob[256]; 
   unsigned long GetPos ( int r, int c );            
}; 
 
MigrateJobList::MigrateJobList ( PTDialog ptd, int nos ) 
{ 
   Parent=ptd; 
   Size=nos; 
   Matrix=new unsigned char [GetPos (nos-1, nos)+1]; 
   memset (Matrix, 0, GetPos (nos-1, nos)+1); 
   List=new unsigned char [nos]; 
   memset (List, 0, nos); 
} 
 
MigrateJobList::~MigrateJobList () 
{ 
   delete Matrix; 
   delete List; 
} 
 
unsigned long MigrateJobList::GetPos ( int r, int c ) 
{ 
   unsigned long   Pos, r1=r, c1=c; 
   Pos=(((r1-1)*(2*(Size-1)-r1+2))/2)+c1-r1-1; 
   return Pos; 
} 
 
void MigrateJobList::AddJob ( char *s ) 
{ 
   s++; 
   unsigned long Code=atol (s); 
   unsigned long r=(Code / Size)+1; 
   unsigned long c=(Code % Size)+1; 
   Matrix[GetPos (r, c)]=1; 
} 
 
char *MigrateJobList::GetJob () 
{ 
   for ( int a=1; a<Size; a++ ) 
      for ( int b=a+1; b<=Size; b++ ) 
  if ((List[a-1]==0) && (List[b-1]==0) && (Matrix[GetPos (a, b)]==1)) 
  { 
     List[a-1]=1; 
     List[b-1]=1; 
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     Matrix[GetPos (a, b)]=0; 
     char   u[256]; 
     lstrcpy (tJob, "M"); 
     ultoa ((a-1)*Size+(b-1), u, 10); 
     lstrcat (tJob, u); 
     return tJob; 
  } 
   return NULL; 
} 
 
BOOL MigrateJobList::MoreJobs () 
{ 
   if (memchr (Matrix, 1, GetPos (Size-1, Size)+1)==NULL) 
      return FALSE; 
   else 
      return TRUE;  
} 
 
void MigrateJobList::ClearJob ( char *s ) 
{ 
   s++; 
   unsigned long Code=atol (s); 
   unsigned long r=(Code / Size)+1; 
   unsigned long c=(Code % Size)+1; 
   List[r-1]=0; 
   List[c-1]=0; 
} 
 
void MigrateJobList::Refresh () 
{ 
   Parent->SendDlgItemMsg (102, LB_RESETCONTENT, 0, 0); 
   for ( int a=1; a<Size; a++ ) 
      for ( int b=a+1; b<=Size; b++ ) 
  if (Matrix[GetPos (a, b)]==1) 
  { 
     char   u[256]; 
     lstrcpy (tJob, "M"); 
     ultoa ((a-1)*Size+(b-1), u, 10); 
     lstrcat (tJob, u); 
     Parent->SendDlgItemMsg (102, LB_ADDSTRING, 0, (long)tJob); 
  } 
} 
 
// -------------------------------------------------------------------- \\ 
// Declaration and definition for a processor 
 
class Processor : public Thing 
{ 
public: 
   Processor ( char *n ); 
   char *GetJob (); 
   void SetJob ( char *s ); 
   char *GetName (); 
   char *GetCurrentJob (); 
   void KillCurrentJob (); 
protected: 
   char            Name[80]; 
   char            aJob[80]; 
   char            TempJob[80]; 
}; 
 
Processor::Processor ( char *n ) 
{ 
   lstrcpy (Name, n); 
} 
 
char *Processor::GetJob () 
{ 
   struct ffblk    ffblk; 
   int           done; 
   char            attr[256]; 
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   lstrcpy (attr, Name); 
   lstrcat (attr, "\\*.*"); 
   done = findfirst(attr, &ffblk, 0); 
   lstrcpy (TempJob, ffblk.ff_name); 
 
   if (done) 
      return NULL; 
   else 
      return TempJob; 
} 
 
void Processor::SetJob ( char *s ) 
{ 
   char            t[100]; 
 
   lstrcpy (t, Name); 
   lstrcat (t, "\\"); 
   lstrcat (t, s); 
   HFILE f=_lcreat (t, 0); 
   _lclose (f); 
 
   lstrcpy (aJob, s); 
} 
 
char *Processor::GetName () 
{ 
   return Name; 
} 
 
char *Processor::GetCurrentJob () 
{ 
   return aJob; 
} 
 
void Processor::KillCurrentJob () 
{ 
   lstrcpy (aJob, "idle"); 
} 
 
// -------------------------------------------------------------------- \\ 
// Declaration and definition for a list of processors 
 
class ProcessorList : public ThingList 
{ 
public: 
   ProcessorList ( PTDialog ptd ); 
   void Start (); 
   void Refresh (); 
   BOOL            RunComplete, GenComplete; 
protected: 
   PTDialog        Parent; 
   void AddProcessor ( Processor *p ); 
   JobList         *jl; 
   MigrateJobList  *ml; 
   enum            { Processing, Checking, Migrating } RState; 
   void RefreshProcessing (); 
   void RefreshMigrating (); 
   void RefreshChecking (); 
}; 
 
// find all processors, initialise job list and start processing 
ProcessorList::ProcessorList ( PTDialog ptd ) 
{ 
   struct ffblk    ffblk; 
   int           done; 
 
   GenComplete=RunComplete=FALSE; 
 
   Parent=ptd; 
 
   done = findfirst("*.*", &ffblk, FA_DIREC); 
   while (!done)  
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   { 
      if (((ffblk.ff_attrib & FA_DIREC)>0) && 
          (ffblk.ff_name[0]=='P') && 
   (ffblk.ff_name[1]=='R') && 
   (ffblk.ff_name[2]=='O') && 
   (ffblk.ff_name[3]=='C')) 
      { 
         Processor *p=new Processor (ffblk.ff_name); 
  AddProcessor (p); 
      } 
      done = findnext(&ffblk); 
   } 
 
   jl=new JobList (Parent); 
 
   Start (); 
} 
 
// create job lists and assign tasks to each processor 
void ProcessorList::Start () 
{ 
   Processor       *p=(Processor *)Head; 
   Job             *aJob; 
   char            t[256]; 
   char            Generation[10]; 
   char            SolutionFitness[256]; 
   int             NoOfMigrationPairs; 
   int      NoOfSubpopulations; 
   char            MigrationPair[20]; 
 
   Parent->SendDlgItemMsg (101, LB_RESETCONTENT, 0, 0); 
   Parent->SendDlgItemMsg (102, LB_RESETCONTENT, 0, 0); 
   Parent->SendDlgItemMsg (103, LB_RESETCONTENT, 0, 0); 
 
   while (p!=NULL) 
   { 
      aJob=(Job *)jl->PopThing (); 
      if (aJob!=NULL) 
      { 
  p->SetJob (aJob->GetName ()); 
  lstrcpy (t, p->GetName ()); 
  lstrcat (t, "::"); 
         lstrcat (t, aJob->GetName ()); 
  Parent->SendDlgItemMsg (101, LB_ADDSTRING, 0, (long)t); 
  p=(Processor *)p->Next; 
  delete aJob; 
      } 
      else 
         p=NULL; 
   } 
 
   jl->Refresh (); 
   RState=Processing; 
 
   fstream f ("pop.inf", ios::in); 
   f >> Generation; 
   f >> SolutionFitness; 
   f >> NoOfSubpopulations; 
   f >> NoOfMigrationPairs; 
 
   ml=new MigrateJobList (Parent, NoOfSubpopulations); 
 
   for ( int a=0; a<NoOfMigrationPairs; a++ ) 
   { 
      f >> MigrationPair; 
      ml->AddJob (MigrationPair); 
   } 
 
   Parent->SendDlgItemMsg (301, WM_SETTEXT, 0, (long)Generation); 
   Parent->SendDlgItemMsg (302, WM_SETTEXT, 0, (long)SolutionFitness); 
} 
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// refresh job status for each processor 
void ProcessorList::Refresh () 
{ 
   if (RState==Processing) 
      RefreshProcessing (); 
   else if (RState==Checking) 
      RefreshChecking (); 
   else 
      RefreshMigrating (); 
} 
 
// add processor to list 
void ProcessorList::AddProcessor ( Processor *p ) 
{ 
   AddThing (p); 
} 
 
// refresh evolution jobs for each processor and update display 
void ProcessorList::RefreshProcessing () 
{ 
   Processor       *p=(Processor *)Head; 
   char            *aJobName; 
   BOOL            StillComputing=FALSE, JobChange=FALSE; 
   char            t[256]; 
   Job             *aJob; 
 
   Parent->SendDlgItemMsg (101, LB_RESETCONTENT, 0, 0); 
   while (p!=NULL) 
   { 
      aJobName=p->GetJob (); 
      if (aJobName!=NULL) 
      { 
  StillComputing=TRUE; 
  lstrcpy (t, p->GetName ()); 
  lstrcat (t, "::"); 
         lstrcat (t, p->GetCurrentJob ()); 
  Parent->SendDlgItemMsg (101, LB_ADDSTRING, 0, (long)t); 
      } 
      else 
      { 
  aJob=(Job *)jl->PopThing (); 
  if (aJob!=NULL) 
         { 
     Parent->SendDlgItemMsg (103, LB_ADDSTRING, 0, (long)(p-
>GetCurrentJob ())); 
     p->SetJob (aJob->GetName ()); 
     lstrcpy (t, p->GetName ()); 
     lstrcat (t, "::"); 
     lstrcat (t, aJob->GetName ()); 
     Parent->SendDlgItemMsg (101, LB_ADDSTRING, 0, (long)t); 
     delete aJob; 
     JobChange=TRUE; 
     StillComputing=TRUE; 
         } 
  else 
  { 
     if (lstrcmp (p->GetCurrentJob (), "idle")!=0) 
            {    
        Parent->SendDlgItemMsg (103, LB_ADDSTRING, 0, (long)(p-
>GetCurrentJob ())); 
        p->KillCurrentJob (); 
            } 
     lstrcpy (t, p->GetName ()); 
     lstrcat (t, "---idle"); 
     Parent->SendDlgItemMsg (101, LB_ADDSTRING, 0, (long)t); 
  } 
      } 
      p=(Processor *)p->Next; 
   } 
   if (JobChange) 
      jl->Refresh (); 
   if (!StillComputing) 
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   { 
      ((Processor *)(Head))->SetJob ("MSTART"); 
      lstrcpy (t, ((Processor *)(Head))->GetName ()); 
      lstrcat (t, "::MSTART"); 
      Parent->SendDlgItemMsg (101, LB_RESETCONTENT, 0, 0); 
      Parent->SendDlgItemMsg (101, LB_ADDSTRING, 0, (long)t); 
      delete jl; 
      RState=Checking; 
   } 
} 
 
// check for best solution 
void ProcessorList::RefreshChecking () 
{ 
   char            *CurrJob; 
   CurrJob=((Processor *)(Head))->GetJob (); 
 
   if (CurrJob==NULL) 
   { 
      RState=Migrating; 
      ml->Refresh (); 
   } 
   else if (lstrcmpi (CurrJob, "DONE")==0) 
   { 
      delete ml; 
      RunComplete=TRUE; 
   } 
} 
 
// refresh migration jobs for each processor and update display 
void ProcessorList::RefreshMigrating () 
{ 
   Processor       *p=(Processor *)Head; 
   char            *aJobName; 
   BOOL            StillComputing=FALSE, JobChange=FALSE; 
   char            t[256]; 
   char            *aJob; 
 
   Parent->SendDlgItemMsg (101, LB_RESETCONTENT, 0, 0); 
   while (p!=NULL) 
   { 
      aJobName=p->GetJob (); 
      if (aJobName!=NULL) 
      { 
  StillComputing=TRUE; 
  lstrcpy (t, p->GetName ()); 
  lstrcat (t, "::"); 
         lstrcat (t, p->GetCurrentJob ()); 
  Parent->SendDlgItemMsg (101, LB_ADDSTRING, 0, (long)t); 
      } 
      else 
      { 
  if (lstrcmp (p->GetCurrentJob (), "idle")!=0) 
     ml->ClearJob (p->GetCurrentJob ()); 
  aJob=ml->GetJob (); 
  if (aJob!=NULL) 
         { 
     if (lstrcmpi (p->GetCurrentJob (), "idle")!=0) 
        Parent->SendDlgItemMsg (103, LB_ADDSTRING, 0, (long)(p-
>GetCurrentJob ())); 
     p->SetJob (aJob); 
     lstrcpy (t, p->GetName ()); 
     lstrcat (t, "::"); 
     lstrcat (t, aJob); 
     Parent->SendDlgItemMsg (101, LB_ADDSTRING, 0, (long)t); 
     JobChange=TRUE; 
     StillComputing=TRUE; 
         } 
  else 
  { 
     if (lstrcmp (p->GetCurrentJob (), "idle")!=0) 
     { 



 Page 143 

        Parent->SendDlgItemMsg (103, LB_ADDSTRING, 0, (long)(p-
>GetCurrentJob ())); 
        p->KillCurrentJob (); 
            } 
     lstrcpy (t, p->GetName ()); 
     lstrcat (t, "---idle"); 
     Parent->SendDlgItemMsg (101, LB_ADDSTRING, 0, (long)t); 
         } 
      } 
      p=(Processor *)p->Next; 
   } 
   if (JobChange) 
      ml->Refresh (); 
   if (!StillComputing) 
   { 
      if (ml->MoreJobs ()==FALSE) 
      { 
         delete ml; 
  GenComplete=TRUE; 
      } 
   } 
} 
 
// -------------------------------------------------------------------- \\ 
// Declaration and definition of Windows Interface 
 
class MDialog : public TDialog 
{ 
public: 
   MDialog ( PTWindowsObject AParent, LPSTR AName, PTModule AModule=NULL ); 
   virtual void IdleAction (); 
protected: 
   BOOL            Stopped; 
   DWORD    TotTime, StartTime; 
   virtual LPSTR GetClassName () { return "GPNetDialog"; }; 
   virtual void HandleExit ( RTMessage ) = [ ID_FIRST + 201 ]; 
   virtual void Start ( RTMessage ) = [ ID_FIRST + 202 ]; 
   virtual void Stop ( RTMessage ) = [ ID_FIRST + 203 ]; 
   ProcessorList   *pl; 
   void MakeTime ( DWORD t, char *s ); 
}; 
 
MDialog::MDialog ( PTWindowsObject AParent, LPSTR AName, PTModule AModule) : 
  TDialog (AParent, AName, AModule) 
{ 
   pl=NULL; 
   Stopped=FALSE; 
   TotTime=0; 
}; 
 
void MDialog::IdleAction () 
{ 
   if (pl!=NULL) 
   { 
      pl->Refresh (); 
      if (pl->GenComplete==TRUE) 
      { 
  TotTime+=GetTickCount ()-StartTime; 
  delete pl; 
  if (Stopped==FALSE) 
         { 
            StartTime=GetTickCount (); 
     pl=new ProcessorList (this); 
         } 
  else 
     pl=NULL; 
      } 
      else if (pl->RunComplete==TRUE) 
      { 
  TotTime+=GetTickCount ()-StartTime; 
  delete pl; 
         pl=NULL; 
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      } 
      else 
      { 
  char      s[256]; 
  DWORD     t=TotTime+(GetTickCount ()-StartTime); 
         MakeTime (t, s);  
         SendDlgItemMsg (303, WM_SETTEXT, 0, (long)s); 
      } 
   } 
} 
 
void MDialog::HandleExit ( RTMessage ) 
{ 
   CloseWindow (); 
} 
 
void MDialog::Start ( RTMessage ) 
{ 
   if (pl==NULL) 
   { 
      StartTime=GetTickCount (); 
      pl=new ProcessorList (this); 
      Stopped=FALSE; 
   } 
} 
 
void MDialog::Stop ( RTMessage ) 
{ 
   if (pl!=NULL) 
      Stopped=TRUE; 
} 
 
void MDialog::MakeTime ( DWORD t, char *s ) 
{ 
   DWORD           secs, mins, hours; 
 
   t=t/1000; 
   hours=t/3600; 
   t-=hours*3600; 
   mins=t/60; 
   t-=mins*60; 
   secs=t; 
   wsprintf (s, "H: %lu M: %lu S: %lu", hours, mins, secs); 
} 
 
// -------------------------------------------------------------------- \\ 
// Declaration and definition of Application container 
 
class MApplication : public TApplication 
{ 
public: 
   MApplication ( LPSTR AName, HINSTANCE AnInstance, HINSTANCE 
APrevInstance, 
    LPSTR ACmdLine, int ACmdShow ) : 
     TApplication (AName, AnInstance, APrevInstance, ACmdLine, ACmdShow) {}; 
protected: 
   virtual void InitMainWindow (); 
   virtual void IdleAction (); 
   DWORD           TickTimer;   
}; 
 
void MApplication::InitMainWindow () 
{ 
   MainWindow = new MDialog (NULL, "GPNetDialog"); 
   TickTimer=GetTickCount ();  
} 
 
void MApplication::IdleAction () 
{ 
   if ((GetTickCount ()-TickTimer)>=1000) 
   { 
      ((MDialog *)(MainWindow))->IdleAction ();  
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      TickTimer=GetTickCount (); 
   } 
} 
 
// -------------------------------------------------------------------- \\ 
// -------------------------------------------------------------------- \\ 
// Main program body 
// -------------------------------------------------------------------- \\ 
 
int PASCAL WinMain ( HINSTANCE hInstance, HINSTANCE hPrevInstance, 
       LPSTR lpCmdLine, int nCmdShow ) 
{ 
   MApplication M ("GPNet", hInstance, hPrevInstance, lpCmdLine, nCmdShow); 
   M.Run (); 
   return M.Status; 
} 
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9APPENDIX C : PARALLEL GP 

time.m 
 
(* Genetic Programming *) 
 
(* Time output routines *) 
 
(* H. Suleman *) 
(* 24 October 1995 *) 
 
BeginPackage["Genetic`Time`"] 
 
Time::usage = "Time[x] outputs the time taken in seconds, minutes and hours. 
               Time[x, Stuff] outputs Stuff followed by time taken." 
 
Begin["`Private`"] 
 
Time[x_ Second /; x>=3600, Stuff___] :=  
  Module[{h, m, s}, s = x; h = Floor[s/3600]; s -= h*3600; m = Floor[s/60];  
    s -= m*60; Print[Stuff, h, " Hours, ", m, " Minutes, ", s, " Seconds"]] 
  
Time[x_ Second /; x>=60, Stuff___] := 
  Module[{m, s}, s = x; m = Floor[s/60]; s -= m*60;  
    Print[Stuff, m, " Minutes, ", s, " Seconds"]] 
 
Time[x_ Second, Stuff___]:= 
  Print[Stuff, x, " Seconds"] 
 
End[] 
 
Protect[Time] 
 
EndPackage[] 

xtradefs.m 
 
(* Genetic Programming *) 
 
(* Extra definition routines *) 
 
(* H. Suleman *) 
(* 24 October 1995 *) 
 
BeginPackage["Genetic`ExtraDefinitions`"] 
EndPackage[] 
 
ClearAttributes[Divide, Protected] 
Divide[_, 0]:=1 
SetAttributes[Divide, Protected] 
 
ClearAttributes[Mod, Protected] 
Mod[_, 0]:=0 
SetAttributes[Mod, Protected] 
 
ClearAttributes[Log, Protected] 
Log[0]:=0 
Log[x_ /; x<0]:=Log[-x] 
(* Log[E^x_]:=x *) 
SetAttributes[Log, Protected] 
 
ClearAttributes[Power, Protected] 
Power[0, x_ /; x<0]:=1 
SetAttributes[Power, Protected] 
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ClearAttributes[Unequal, Protected] 
Unequal[_String, EndOfFile]:=True 
SetAttributes[Unequal, Protected] 

default.m 
 
(* Genetic Programming *) 
 
(* Default parameters and user-defined functions *) 
 
(* H. Suleman *) 
(* 9 June 1996 *) 
 
BeginPackage["Genetic`Parameters`"] 
 
MaxComplexity = 50 
 
PopulationSize = 40 
 
MaxInitialSize = 5 
 
NoOfSubpopulations = 4 
 
MaxGenerations = 51 
 
MaxSize = 17 
 
MinFitness = 0.99 
 
CrossoverProbability = 0.9 
 
MutationProbability = 0.1 
 
MigrationPercentage = 0.1 
 
MigrationDeviation = 0.05 
 
MigrationProbability = 4 
 
Epoch=20 
 
LengthOfMember = 1 
 
XTrans={PPlus->Plus, PMinus->Minus, PTimes->Times, PDivide->Divide, PMod-
>Mod} 
 
Functions={PPlus, PTimes, PMinus, PDivide} 
 
Parameters={2, 2, 1, 2} 
 
Terminals={ec} 
 
ReTouch[expr_]:=expr /. ec:>Random[Real, {1, 10}] 
 
RawFitness[expr_]:=N[((expr /. XTrans)-Sqrt[2])^2] 
 
StandardizedFitness[expr_]:=RawFitness[expr] 
 
AdjustedFitness[expr_]:=Module[ 
                               {answer}, 
                               answer=N[1/(1+StandardizedFitness[expr])]; 
                               AdjustedFitness[expr]=answer; 
                               answer 
                              ] 
 
EndPackage[] 
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operator.m 
 
(* Genetic Programming *) 
 
(* Genetic operator routines *) 
 
(* H. Suleman *) 
(* 9 June 1996 *) 
 
(* Get parameters *) 
Needs["Genetic`Parameters`", "default.m"] 
 
BeginPackage["Genetic`Operators`"] 
 
Cross1::usage = "Cross1[x, y] performs crossover on x and y to produce {x1, 
y1}." 
 
Crossover::usage = "Crossover[x] performs crossover on the population in 
list x." 
 
Mutate::usage = "Mutate[x] randomly mutates expression x." 
 
Begin["`Private`"] 
 
(* Get list of all indices of internal points in expression *) 
RemoveZero[x_]:=If[Position[x, 0]=={}, x, {}] 
Points[x_]:=Union[Map[RemoveZero, Position[x, _]], {}] 
GetInternal[{x___}]:=x 
 
(* Perform crossover operation on two expressions *) 
Cross1[x_, y_]:=Module[ 
                       {spot1, spot2, point1, point2, temp1, temp2}, 
                       If[ 
                          Random[]<Genetic`Parameters`CrossoverProbability, 
                          point1=Points[x]; 
                          spot1=Random[Integer, {1, Length[point1]}]; 
                          point2=Points[y]; 
                          spot2=Random[Integer, {1, Length[point2]}]; 
                          temp1=x[[GetInternal[point1[[spot1]]]]]; 
                          temp2=y[[GetInternal[point2[[spot2]]]]]; 
                          { If[ 
                               point1[[spot1]]=={}, 
                               temp2, 
                               ReplacePart[x, temp2, point1[[spot1]]] 
                              ], 
                            If[ 
                               point2[[spot2]]=={}, 
                               temp1, 
                               ReplacePart[y, temp1, point2[[spot2]]] 
                              ] 
                          }, 
                          {x, y} 
                         ] 
                      ] 
 
(* perform crossover on corresponding elements in lists *) 
Cross1[x_ /; Head[x]==List, y_ /; Head[y]==List]:= 
   Module[ 
          {z, pos, xnew, ynew}, 
          pos=Random[Integer, {1, Length[x]}]; 
          z=Cross1[x[[pos]], y[[pos]]]; 
          xnew=x; 
          ynew=y; 
          xnew[[pos]]=z[[1]]; 
          ynew[[pos]]=z[[2]]; 
          {xnew, ynew} 
         ] 
 
(* Perform mutation operation on an expression *) 
Mutate[x_]:=Module[ 
                   {spot1, point1, y, xold, xnew}, 
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                   xold=x; 
                   xnew=x; 
                   If[ 
                      Random[]<Genetic`Parameters`MutationProbability, 
                      y=Genetic`Initialization`Generate[Random[Integer, {1, 
Genetic`Parameters`MaxInitialSize}]]; 
                      point1=Points[xnew]; 
                      spot1=Random[Integer, {1, Length[point1]}]; 
                      xnew=If[ 
                              point1[[spot1]]=={}, 
                              y, 
                              ReplacePart[x, y, point1[[spot1]]] 
                             ]; 
                      If[ 
                         ((Depth[xnew]<=Genetic`Parameters`MaxSize) &&  
                          
(LeafCount[xnew]<=Genetic`Parameters`MaxComplexity)), 
                         xnew, 
                         xold 
                        ], 
                      xold 
                     ] 
                  ] 
 
(* perform mutation on an element within a list *) 
Mutate[x_ /; Head[x]==List]:= 
   Module[ 
          {z, xnew}, 
          z=Random[Integer, {1, Length[x]}]; 
          xnew=x; 
          xnew[[z]]=Mutate[x[[z]]]; 
          xnew 
         ] 
 
(* Perform crossover on all expressions in new generation *) 
Crossover[x_] := Module[ 
  {newx, oldx, n2, leno, origlen}, 
  oldx=x; 
  newx={}; 
  leno=Length[oldx]; 
  origlen=leno; 
  While[ 
    leno>0, 
    If[ 
      leno==1, 
      newx=Append[newx, First[oldx]]; 
      oldx=Rest[oldx], 
      n2=Cross1[oldx[[1]], oldx[[2]]]; 
      If[((Depth[n2[[1]]]<=Genetic`Parameters`MaxSize) &&  
          (LeafCount[n2[[1]]]<=Genetic`Parameters`MaxComplexity)), 
         newx=Append[newx, n2[[1]]], 
         newx=Append[newx, oldx[[1]]] 
        ]; 
      If[((Depth[n2[[2]]]<=Genetic`Parameters`MaxSize) &&  
          (LeafCount[n2[[2]]]<=Genetic`Parameters`MaxComplexity)), 
         newx=Append[newx, n2[[2]]], 
         newx=Append[newx, oldx[[2]]] 
        ]; 
      oldx=Drop[oldx, 2]; 
    ]; 
    leno=Length[oldx] 
  ];  
  newx  
] 
 
End[] 
 
Protect[Cross1, Crossover, Mutate] 
 
EndPackage[] 
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initial.m 
 
(* Genetic Programming *) 
 
(* Initialization routines *) 
 
(* H. Suleman *) 
(* 9 June 1996 *) 
 
(* Get time routines *) 
Needs["Genetic`Time`", "time.m"] 
 
(* Get extra definitions for basic arithmetic operations *) 
Needs["Genetic`ExtraDefinitions`", "xtradefs.m"] 
 
(* Get parameters *) 
Needs["Genetic`Parameters`", "default.m"] 
 
(* Get file locking routines *) 
Needs["Genetic`Shares`", "shares.m"] 
 
BeginPackage["Genetic`Initialization`", {"Genetic`Parameters`"}] 
 
Generate::usage = "Generate[x] generates a random expression of depth x."  
 
Initialize::usage = "Initialize initialises the various parameters and 
populations." 
 
GInformation::usage = "GInformation[] lists information about the current 
parameters." 
 
GPopInformation::usage = "GPopInformation[popname] lists information about 
the state and best individual in the current population." 
 
CheckSolution::usage = "CheckSolution calculates fitnesses and checks for 
solutions." 
 
CheckGlobalSolutions::usage = "CheckGlobalSolutions checks if the local 
solution betters the global one." 
 
InitNames::usage = "InitNames initialises the table of name prefixes of 
populations." 
 
Begin["`Private`"] 
 
(* Make lists of terminals+functions, parameters, etc. *) 
MakePossibilities:=Module[ 
                          {}, 
                          Genetic`Parameters`GPossibilities=Join[Terminals,  
                                              Functions]; 
                          Genetic`Parameters`GPossParameter=Join[ 
                                              Table[0, {Length[Terminals]}], 
                                              Parameters 
                                             ]; 
                          
Genetic`Parameters`GPossLength=Length[Genetic`Parameters`GPossibilities]; 
                          Genetic`Parameters`GTermLength=Length[Terminals]; 
                         ] 
 
(* Generate random expression *) 
GenerateNormal[d_]:=Module[ 
                     {r}, 
                     If[ 
                        d>1, 
                        r=Random[Integer, {1, 
Genetic`Parameters`GPossLength}], 
                        r=Random[Integer, {1, 
Genetic`Parameters`GTermLength}] 
                       ]; 
                     Switch[ 
                            Genetic`Parameters`GPossParameter[[r]], 
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                            0, 
                            Genetic`Parameters`GPossibilities[[r]], 
                            1, 
                            
Genetic`Parameters`GPossibilities[[r]][GenerateNormal[d-1]], 
                            2, 
                            
Genetic`Parameters`GPossibilities[[r]][GenerateNormal[d-1],  
                                                GenerateNormal[d-1]], 
                            3, 
                            
Genetic`Parameters`GPossibilities[[r]][GenerateNormal[d-1],  
                                                GenerateNormal[d-1],  
                                                GenerateNormal[d-1]], 
                            4, 
                            
Genetic`Parameters`GPossibilities[[r]][GenerateNormal[d-1],  
                                                GenerateNormal[d-1], 
                                                GenerateNormal[d-1],  
                                                GenerateNormal[d-1]], 
                            5, 
                            
Genetic`Parameters`GPossibilities[[r]][GenerateNormal[d-1],  
                                                GenerateNormal[d-1], 
                                                GenerateNormal[d-1], 
                                                GenerateNormal[d-1],  
                                                GenerateNormal[d-1]] 
                           ] 
                    ] 
 
(* Generate an expression of given depth and maxcomplexity *) 
Generate[d_]:=Module[ 
                     {y}, 
                     y=GenerateNormal[d]; 
                     While[ 
                           ((Depth[y]<d) || (LeafCount[y]>MaxComplexity)), 
                           y=GenerateNormal[d] 
                          ]; 
                     ReTouch[y] 
                    ] 
 
(* Update best-of-run individual and fitnesses in population *) 
CheckSolution[gen_, x_, popname_]:=Module[ 
                          {minf, maxf, AverageFitness}, 
                          Genetic`Parameters`Fitnesses=AdjustedFitness /@ x; 
                          minf=Position[Genetic`Parameters`Fitnesses, 
Min[Genetic`Parameters`Fitnesses]][[1,1]]; 
                          maxf=Position[Genetic`Parameters`Fitnesses, 
Max[Genetic`Parameters`Fitnesses]][[1,1]]; 
                          Genetic`Parameters`Solution=x[[maxf]]; 
                          
Genetic`Parameters`SolutionFitness=Genetic`Parameters`Fitnesses[[maxf]]; 
 
                          AverageFitness=Apply[Plus, 
Genetic`Parameters`Fitnesses]/PopulationSize; 
                          
Genetic`Parameters`SolutionSet=Append[Genetic`Parameters`SolutionSet, 
                           {gen, Genetic`Parameters`Fitnesses[[maxf]], 
x[[maxf]], 
                                 Genetic`Parameters`Fitnesses[[minf]], 
x[[minf]], 
                                 AverageFitness}]; 
                          Print[popname, "-G", gen, ":  min=",  
                                Genetic`Parameters`Fitnesses[[minf]], "  
ave=",  
                                AverageFitness, "  max=", 
Genetic`Parameters`Fitnesses[[maxf]]]; 
                         ] 
 
(* Check global populations *) 
CheckGlobal[popname_]:=Module[ 
                              {info}, 
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                              Print["** checking ", popname]; 
 
                              (* process population *) 
                              BeginPackage["Genetic`Parameters`", 
"Global`"]; 
                              Get[StringJoin[popname, ".log"]]; 
                              EndPackage[]; 
 
                              info=Last [Genetic`Parameters`SolutionSet]; 
 
                              If[ 
                                 
Genetic`Parameters`GMaxSolutionFitness<info[[2]], 
                                 Genetic`Parameters`GMaxSolution=info[[3]]; 
                                 Print["** found better solution : ", 
info[[2]]]; 
                                 
Genetic`Parameters`GMaxSolutionFitness=info[[2]]; 
                                 Genetic`Parameters`GMaxSolutionPop=popname; 
                                ]; 
 
                              If[ 
                                 
Genetic`Parameters`GMinSolutionFitness>info[[4]], 
                                 Genetic`Parameters`GMinSolution=info[[5]]; 
                                 Print["** found worse solution : ", 
info[[4]]]; 
                                 
Genetic`Parameters`GMinSolutionFitness=info[[4]]; 
                                 Genetic`Parameters`GMinSolutionPop=popname; 
                                ]; 
 
                              
Genetic`Parameters`GAveSolutionFitness+=info[[6]]; 
                              
Genetic`Parameters`TotTime+=Genetic`Parameters`TimeTaken; 
                              Genetic`Parameters`NoOfIndividuals+= 
                               Length[Genetic`Parameters`Population]; 
                             ] 
 
(* Check for global solutions among all populations *) 
CheckGlobalSolutions:=Module[ 
                             {f, mp}, 
 
                             Print["** Checking global status"]; 
 
                             BeginPackage["Genetic`Parameters`", "Global`"]; 
                             Get["pop.log"]; 
                             EndPackage[]; 
 
                             Genetic`Parameters`GMaxSolution=1; 
                             Genetic`Parameters`GMaxSolutionFitness=0; 
                             Genetic`Parameters`GMaxSolutionPop="pop"; 
 
                             Genetic`Parameters`GMinSolution=1; 
                             Genetic`Parameters`GMinSolutionFitness=1; 
                             Genetic`Parameters`GMinSolutionPop="pop"; 
 
                             Genetic`Parameters`GAveSolutionFitness=0; 
                             Genetic`Parameters`NoOfIndividuals=0; 
 
                             Map[CheckGlobal, 
Genetic`Parameters`PopulationNames]; 
 
                             Genetic`Parameters`GAveSolutionFitness= 
                              N[Genetic`Parameters`GAveSolutionFitness/ 
                                Genetic`Parameters`NoOfIndividuals]; 
 
                             If[ 
                                Genetic`Parameters`GMaxSolutionFitness> 
                                Genetic`Parameters`GlobalSolutionFitness, 
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                                Genetic`Parameters`GlobalSolutionFitness= 
                                 Genetic`Parameters`GMaxSolutionFitness; 
                                Genetic`Parameters`GlobalSolution= 
                                 Genetic`Parameters`GMaxSolution; 
                               ]; 
 
                             Genetic`Parameters`GlobalSolutionSet= 
                              Append[Genetic`Parameters`GlobalSolutionSet, 
                              {Genetic`Parameters`Generation, 
                               Genetic`Parameters`GMaxSolutionFitness, 
                               Genetic`Parameters`GMaxSolution, 
                               Genetic`Parameters`GMinSolutionFitness, 
                               Genetic`Parameters`GMinSolution, 
                               Genetic`Parameters`GAveSolutionFitness}]; 
 
                             DeleteFile["pop.log"]; 
                             Save["pop.log", Genetic`Parameters`TotTime]; 
                             Save["pop.log", 
Genetic`Parameters`GlobalSolutionSet]; 
                             Save["pop.log", 
Genetic`Parameters`GlobalSolution]; 
                             Save["pop.log", 
Genetic`Parameters`GlobalSolutionFitness]; 
 
                             Off[DeleteFile::nffil]; 
                             DeleteFile["pop.inf"]; 
                             On[DeleteFile::nffil]; 
                              
                             mp=Select[ 
                                       Genetic`Parameters`MigrationPairs, 
                                       (Random[Integer, 
MigrationProbability]==0)& 
                                      ]; 
                              
                             f=OpenWrite["pop.inf"]; 
                             Write[f, Genetic`Parameters`Generation]; 
                             Write[f, 
CForm[Genetic`Parameters`GlobalSolutionFitness]]; 
                             (* Write[f, 
CForm[Genetic`Parameters`MinFitness]]; *) 
                             Write[f, 
CForm[Genetic`Parameters`NoOfSubpopulations]]; 
                             Write[f, Length[mp]]; 
                             Map[ 
                                 (Write[f, TextForm[StringJoin["M", 
ToString[#]]]])&, 
                                 mp 
                                ]; 
                             Close[f]; 
 
                             Print["** Finished global checks"]; 
                            ] 
 
(* Initialise a population *) 
InitializePop[popname_]:=Block[ 
                  {poplog, i, j}, 
                  If[ 
                     LengthOfMember==1, 
                     Genetic`Parameters`Population=Table[ 
                       Generate[ 
                                Mod[ 
                                    i,  
                                    Genetic`Parameters`MaxInitialSize 
                                   ]+1 
                               ],  
                               {i, 1, Genetic`Parameters`PopulationSize} 
                       ], 
                     Genetic`Parameters`Population=Table[ 
                       Table[ 
                         Generate[ 
                                  Mod[ 
                                      i,  
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                                      Genetic`Parameters`MaxInitialSize 
                                     ]+1 
                                 ],  
                                 {j, 1, Genetic`Parameters`LengthOfMember} 
                         ], 
                         {i, 1, Genetic`Parameters`PopulationSize} 
                       ] 
                    ]; 
 
                  Genetic`Parameters`Population[[1]]= 
                     {PPlus[PTimes[Evaluate[Genetic`Parameters`gq0], 
Genetic`Parameters`dt1], 
                      PTimes[Evaluate[Genetic`Parameters`gq1], 
Genetic`Parameters`dt2]], 
                      PPlus[PTimes[Evaluate[Genetic`Parameters`gq0x], 
Genetic`Parameters`dx1], 
                      PTimes[Evaluate[Genetic`Parameters`gq1x], 
Genetic`Parameters`dx2]]}; 
                  Genetic`Parameters`SolutionFitness=0; 
                  Genetic`Parameters`SolutionSet={}; 
                  Genetic`Parameters`Generation=0; 
                  Genetic`Parameters`TimeTaken=0; 
                  Print[popname, "-G", Genetic`Parameters`Generation, ": 
calculating fitnesses ..."]; 
                  Print[popname, "-G", Genetic`Parameters`Generation, ": 
done ... ",  
                        Timing[CheckSolution[Genetic`Parameters`Generation, 
Genetic`Parameters`Population, popname]] 
                         [[1]] 
                       ]; 
                  Print[popname, "-G", Genetic`Parameters`Generation, ": 
best-of-run fitness so far = ",  
                        Genetic`Parameters`SolutionFitness]; 
                   
                  Off[DeleteFile::nffil]; 
                  DeleteFile[StringJoin[popname, ".plg"]]; 
                  DeleteFile[StringJoin[popname, ".log"]]; 
                  DeleteFile[StringJoin[popname, ".new"]]; 
                  DeleteFile[StringJoin[popname, ".old"]]; 
                  On[DeleteFile::nffil]; 
                   
                  poplog=OpenAppend[StringJoin[popname, ".plg"]]; 
                  WriteString[poplog, "pop={"]; 
                  Write[poplog, {Genetic`Parameters`Generation, 
Genetic`Parameters`Fitnesses}]; 
                  Close[poplog]; 
                   
                  Save[StringJoin[popname, ".log"], 
Genetic`Parameters`Population]; 
                  Save[StringJoin[popname, ".log"], 
Genetic`Parameters`Fitnesses]; 
                  Save[StringJoin[popname, ".log"], 
Genetic`Parameters`Generation]; 
                  Save[StringJoin[popname, ".log"], 
Genetic`Parameters`TimeTaken]; 
                  Save[StringJoin[popname, ".log"], 
Genetic`Parameters`Solution]; 
                  Save[StringJoin[popname, ".log"], 
Genetic`Parameters`SolutionFitness]; 
                  Save[StringJoin[popname, ".log"], 
Genetic`Parameters`SolutionSet]; 
 
                  Information[Genetic`Parameters`Population]; 
                  GPopInformation [popname]; 
                 ] 
 
(* Initialise table of name prefixes, migration pairs *) 
InitNames := Module[ 
                    {dim, row1, row2, row3, col1, col2, col3, names={}, 
                     popnos, pop, migt, miglen}, 
 
                    Genetic`Parameters`PopulationNames=Table[ 
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                                         StringJoin["pop", ToString[i]],  
                                         {i, 1, 
Genetic`Parameters`NoOfSubpopulations} 
                                        ]; 
 
                    If[ 
                       Genetic`Parameters`NoOfSubpopulations==1, 
                       Genetic`Parameters`MigrationPairs={}; 
                       Return[] 
                      ]; 
 
                    Genetic`Parameters`MigrationPairs=Table[ 
                          dim=Sqrt[Genetic`Parameters`NoOfSubpopulations]; 
                          row2=Floor[(pop-1)/dim]; 
                          col2=Mod[(pop-1), dim]; 
                          row1=Mod[row2-1, dim]; row3=Mod[row2+1, dim]; 
                          col1=Mod[col2-1, dim]; col3=Mod[col2+1, dim]; 
                          popnos={row1*dim+col1+1, row1*dim+col2+1, 
row1*dim+col3+1, 
                                  row2*dim+col1+1,                  
row2*dim+col3+1, 
                                  row3*dim+col1+1, row3*dim+col2+1, 
row3*dim+col3+1}; 
                          Map[({pop, #})&, popnos], 
                          {pop, 1, Genetic`Parameters`NoOfSubpopulations} 
                         ]; 
                    (*Print[Genetic`Parameters`MigrationPairs];*) 
                    Genetic`Parameters`MigrationPairs= 
                     Flatten[Genetic`Parameters`MigrationPairs, 1]; 
                    (*Print[Genetic`Parameters`MigrationPairs];*) 
                    Genetic`Parameters`MigrationPairs= 
                     Map[Sort, Genetic`Parameters`MigrationPairs]; 
                    (*Print[Genetic`Parameters`MigrationPairs];*) 
                    Genetic`Parameters`MigrationPairs= 
                     Union[Genetic`Parameters`MigrationPairs]; 
                    (*Print[Genetic`Parameters`MigrationPairs];*) 
                    migt=Genetic`Parameters`MigrationPairs; 
                    Genetic`Parameters`MigrationPairs= 
                     Map[((#[[1]]-1)* 
                         Genetic`Parameters`NoOfSubpopulations+ 
                         #[[2]]-1)&,  
                         migt 
                        ]; 
                   ] 
 
(* Initialise all parameters and populations *) 
Initialize::nofunc="a list of Functions must be defined first" 
Initialize::noterm="a list of Terminals must be defined first" 
Initialize::noperm="a list of the no of Parameters in each function must 
                    be defined" 
Initialize:=Module[ 
                   {Proc, DelList}, 
                   If[NameQ["Functions"],, 
                           Message[Initialize::nofunc]; 
                           Return[]]; 
                   If[NameQ["Terminals"],, 
                           Message[Initialize::noterm]; 
                           Return[]]; 
                   If[NameQ["Parameters"],, 
                           Message[Initialize::noparm]; 
                           Return[]]; 
                    
                   Off[DeleteFile::nffil]; 
                   DeleteFile["calced.m"]; 
                   DeleteFile["pop.inf"]; 
                   DelList=FileNames["logfile.*"]; 
                   If[DelList!={}, DeleteFile[DelList]]; 
                   DelList=FileNames["*.plg"]; 
                   If[DelList!={}, DeleteFile[DelList]]; 
                   DelList=FileNames["*.log"]; 
                   If[DelList!={}, DeleteFile[DelList]]; 
                   DelList=FileNames["backup.*"]; 
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                   If[DelList!={}, DeleteFile[DelList]]; 
                   On[DeleteFile::nffil]; 
 
                   Map[ 
                       (DeleteDirectory[#, DeleteContents->True])&, 
                       FileNames["PROC*"] 
                      ]; 
 
                   Genetic`Parameters`GlobalSolution=1; 
                   Genetic`Parameters`GlobalSolutionFitness=0; 
                   Genetic`Parameters`GlobalSolutionSet={}; 
                   Genetic`Parameters`TotTime=0; 
                   Save["pop.log", Genetic`Parameters`GlobalSolution]; 
                   Save["pop.log", 
Genetic`Parameters`GlobalSolutionFitness]; 
                   Save["pop.log", Genetic`Parameters`GlobalSolutionSet]; 
                   Save["pop.log", Genetic`Parameters`TotTime]; 
 
                   MakePossibilities; 
                   Save["calced.m", Genetic`Parameters`GPossibilities]; 
                   Save["calced.m", Genetic`Parameters`GPossParameter]; 
                   Save["calced.m", Genetic`Parameters`GTermLength]; 
                   Save["calced.m", Genetic`Parameters`GPossLength]; 
 
                   InitNames; 
 
                   Save["calced.m", Genetic`Parameters`PopulationNames];  
                   Save["calced.m", Genetic`Parameters`MigrationPairs];  
                    
                   Genetic`Parameters`PopulationSize= 
                    Genetic`Parameters`PopulationSize/ 
                    Genetic`Parameters`NoOfSubpopulations; 
 
                   GInformation; 
 
                   Map[InitializePop, Genetic`Parameters`PopulationNames]; 
 
                   CheckGlobalSolutions; 
                  ] 
 
GInformation:=Module[{}, 
                     $Output=Append[$Output, OpenWrite["params.txt"]]; 
                     SetOptions[$Output[[2]], FormatType->TextForm]; 
                     Print[""]; 
                     Print["Population Size       : ", 
Genetic`Parameters`PopulationSize* 
                                                       
Genetic`Parameters`NoOfSubpopulations]; 
                     Print["No of Subpopulations  : ", 
Genetic`Parameters`NoOfSubpopulations]; 
                     Time[Genetic`Parameters`TotTime, "Total time taken      
: "]; 
                     Print["Max no of Generations : ", 
Genetic`Parameters`MaxGenerations]; 
                     Print["Max initial size      : ", 
Genetic`Parameters`MaxInitialSize]; 
                     Print["Max size              : ", 
Genetic`Parameters`MaxSize]; 
                     Print["Maximum complexity    : ", 
Genetic`Parameters`MaxComplexity]; 
                     Print["Min solution fitness  : ", 
Genetic`Parameters`MinFitness]; 
                     Print["Mutation probability  : ", 
Genetic`Parameters`MutationProbability]; 
                     Print["Crossover probability : ", 
Genetic`Parameters`CrossoverProbability]; 
                     Print["Terminal set          : ", 
Genetic`Parameters`Terminals]; 
                     Print["Function set          : ", 
Genetic`Parameters`Functions]; 
                     Print[""]; 
                     Close[$Output[[2]]]; 
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                     $Output=Take[$Output, 1]; 
                    ] 
 
GPopInformation[popname_]:=Module[{}, 
                     Print[""]; 
                     Print["Population name       : ", popname]; 
                     Print["Current generation    : ", 
Genetic`Parameters`Generation]; 
                     Print["Current best fitness  : ", 
Genetic`Parameters`SolutionFitness]; 
                     Print[""]; 
                     Print["Current best individual ***"]; 
                     Print[Genetic`Parameters`Solution]; 
                     Print[""]; 
                    ] 
 
End[] 
 
EndPackage[] 

genmain.m 
 
(* Genetic Programming *) 
 
(* Main routines *) 
 
(* H. Suleman *) 
(* 28 May 1996 *) 
 
(* Get normal distribution functionality *) 
Needs["Statistics`NormalDistribution`"]; 
 
(* Get time routines *) 
Needs["Genetic`Time`", "time.m"] 
 
(* Get extra definitions for basic arithmetic operations *) 
Needs["Genetic`ExtraDefinitions`", "xtradefs.m"] 
 
(* Get parameters *) 
Needs["Genetic`Parameters`", "default.m"] 
 
(* Get initialization routines *) 
Needs["Genetic`Initialization`", "initial.m"] 
 
(* Get file locking routines *) 
Needs["Genetic`Shares`", "shares.m"] 
 
(* Get genetic operators *) 
Needs["Genetic`Operators`", "operator.m"] 
 
BeginPackage["Genetic`Main`", {"Genetic`Parameters`", 
                               "Genetic`Initialization`", 
                               "Genetic`Operators`", 
                               "Statistics`NormalDistribution`"}] 
 
CreateNewGeneration::usage = "CreateNewGeneration[oldgen] creates a new 
generation from the old generation using fitness-proportionate 
reproduction." 
 
StartRun::usage = "Starts the run of the genetic algorithm." 
 
RegisterProc::usage = "Registers a processor." 
 
Begin["`Private`"] 
 
(* Make cumulative fitnesses vector *) 
CalcFitnessSum:=Module[{fitsum, i}, 
   fitsum=Table[Apply[Plus, Take[Fitnesses, i]],  
                {i, 1, Length[Fitnesses]}]; 
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                       fitsum=Insert[fitsum, 0, 1]; 
                       fitsum 
                      ] 
 
(* Bisection algorithm search for roulette wheel fitness choice *) 
Search[x_, fitsum_] :=  
  Module[{Mid, Start=1, Stop=Length[fitsum]},  
         While[Start+1 != Stop,  
               Mid = Floor[(Start+Stop)/2];  
               If[fitsum[[Mid]] > x,  
                  Stop=Mid, 
                  Start=Mid 
                 ] 
              ];  
         Start 
        ] 
 
(* Create new generation from previous one *) 
CreateNewGeneration[x_] := Module[ 
  {maxwheel, newgen, lenx, fitsum, i}, 
  newgen={}; 
  maxwheel=Apply[Plus, Fitnesses]; 
  lenx=Length[x]; 
  fitsum=CalcFitnessSum; 
  Do[ 
    Module[ 
      {spot, index}, 
      spot=Random[]*maxwheel; 
      index=Search[spot, fitsum]; 
      newgen=Append[newgen, x[[index]]] 
    ], 
    {i, 1, lenx} 
  ]; 
  newgen 
] 
 
(* Get a sub-population filename *) 
GetPopFile:=Module[ 
                   {OrigDirectory, t}, 
                   OrigDirectory=Directory[]; 
                   SetDirectory[Genetic`Parameters`Processor]; 
                   t=FileNames[]; 
                   SetDirectory[OrigDirectory]; 
                   If[ 
                      Length[t]==0, 
                      "NOFILES", 
                      If[ 
                         SameQ[t[[1]], "DONE"], 
                         "NOFILES", 
                         t[[1]] 
                        ] 
                     ] 
                  ] 
 
(* perform migration between source and dest populations *) 
MigratePop[source_, dest_]:=Module[ 
                         {maxwheel1, fitsum1, Fitnesses1, Population1, 
                          TimeTaken1, SolutionSet1, Solution1, 
                          SolutionFitness1, maxwheel, fitsum, noofx, 
                          fname, i}, 
 
                         Print["Migrating pops  :   ", source, " & ", dest]; 
 
(*                          If[Random[Integer, MigrationProbability]!=0, 
                             Return[] 
                            ]; 
*) 
                         BeginPackage["Genetic`Parameters`", "Global`"]; 
                         Get[StringJoin[source, ".log"]]; 
                         EndPackage[]; 
 
                         Population1=Population; 
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                         Fitnesses1=Fitnesses; 
                         TimeTaken1=TimeTaken; 
                         Solution1=Solution; 
                         SolutionFitness1=SolutionFitness; 
                         SolutionSet1=SolutionSet; 
 
                         maxwheel1=Apply[Plus, Fitnesses]; 
                         fitsum1=CalcFitnessSum; 
 
                         BeginPackage["Genetic`Parameters`", "Global`"]; 
                         Get[StringJoin[dest, ".log"]]; 
                         EndPackage[]; 
 
                         maxwheel=Apply[Plus, Fitnesses]; 
                         fitsum=CalcFitnessSum; 
 
                         noofx=Random[ 
                                      NormalDistribution[ 
                                                         
MigrationPercentage, 
                                                         MigrationDeviation 
                                                        ] 
                                     ]; 
 
                         (* noofx=Random[Real, MigrationDeviation* 
                                            MigrationPercentage*2]; 
                         noofx-=MigrationDeviation*MigrationPercentage; 
                         noofx+=MigrationPercentage; *) 
 
                         If[noofx<0, noofx=0]; 
                         If[noofx>1, noofx=1]; 
                         noofx*=Length[Population1]; 
                         noofx=Floor[noofx]; 
 
                         Do[ 
                            Module[ 
                                   {spot1, index1, spot, index, temp}, 
                                   spot1=Random[]*maxwheel1; 
                                   index1=Search[spot1, fitsum1]; 
                                   spot=Random[]*maxwheel; 
                                   index=Search[spot, fitsum]; 
 
                                   temp=Population[[index]]; 
                                   
Population[[index]]=Population1[[index1]]; 
                                   Population1[[index1]]=temp; 
 
                                   temp=Fitnesses[[index]]; 
                                   Fitnesses[[index]]=Fitnesses1[[index1]]; 
                                   Fitnesses1[[index1]]=temp; 
                                  ], 
                            {i, 1, noofx} 
                           ]; 
 
                         fname=StringJoin[dest, ".new"]; 
                         Save[fname, Population]; 
                         Save[fname, Fitnesses]; 
                         Save[fname, Generation]; 
                         Save[fname, TimeTaken]; 
                         Save[fname, Solution]; 
                         Save[fname, SolutionFitness]; 
                         Save[fname, SolutionSet]; 
                         RenameFile[StringJoin[dest, ".log"], 
                                    StringJoin[dest, ".old"]]; 
                         RenameFile[fname, StringJoin[dest, ".log"]]; 
                         DeleteFile[StringJoin[dest, ".old"]]; 
 
                         Population=Population1; 
                         Fitnesses=Fitnesses1; 
                         TimeTaken=TimeTaken1; 
                         Solution=Solution1; 
                         SolutionFitness=SolutionFitness1; 



 Page 160 

                         SolutionSet=SolutionSet1; 
 
                         fname=StringJoin[source, ".new"]; 
                         Save[fname, Population]; 
                         Save[fname, Fitnesses]; 
                         Save[fname, Generation]; 
                         Save[fname, TimeTaken]; 
                         Save[fname, Solution]; 
                         Save[fname, SolutionFitness]; 
                         Save[fname, SolutionSet]; 
                         RenameFile[StringJoin[source, ".log"], 
                                    StringJoin[source, ".old"]]; 
                         RenameFile[fname, StringJoin[source, ".log"]]; 
                         DeleteFile[StringJoin[source, ".old"]]; 
                        ] 
 
(* MigratePop[pairs_]:=Module[ 
                           {}, 
                           Print["Migrating populations ", pairs]; 
                           Map[ 
                               (MigrateMembers[ #1[[1]], #1[[2]] ])&, 
                               pairs 
                              ]; 
                          ] 
*) 
 
 
(* perform migration based on parameters *) 
Migrate[popf_]:=Module[ 
                       {OrigDirectory, FullNum, firstpop, secondpop}, 
 
                       If[ 
                          SameQ[StringDrop[popf, 1], "START"], 
                          CheckGlobalSolutions; 
                          If[ 
                             
Genetic`Parameters`GlobalSolutionFitness>=MinFitness, 
                             OrigDirectory=Directory[]; 
                             SetDirectory[Genetic`Parameters`Processor]; 
                             Save["DONE", MinFitness]; 
                             SetDirectory[OrigDirectory] 
                            ], 
                          FullNum=ToExpression[StringDrop[popf, 1]]; 
                          firstpop=Floor[FullNum/NoOfSubpopulations]+1; 
                          secondpop=Mod[FullNum, NoOfSubpopulations]+1; 
                          MigratePop[StringJoin["POP", ToString[firstpop]], 
                                     StringJoin["POP", ToString[secondpop]]] 
                         ]; 
 
                       OrigDirectory=Directory[]; 
                       SetDirectory[Genetic`Parameters`Processor]; 
                       DeleteFile[popf]; 
                       SetDirectory[OrigDirectory]; 
                      ] 
 
(* Apply Genetic algorithm *) 
ApplyGen := Module[ 
   {popfile, onetime, poplog, mig, OrigDirectory}, 
   
   BeginPackage["Genetic`Parameters`", "Global`"]; 
   Get["calced.m"]; 
   EndPackage[]; 
   
        Print["Waiting for processor start flag ..."]; 
        popfile=GetPopFile; 
         
        While[ 
              SameQ[popfile, "NOFILES"], 
              Pause[1]; 
              popfile=GetPopFile 
             ]; 
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        If[ 
           SameQ[StringTake[popfile, 1], "M"], 
           Migrate[popfile]; 
           Return[] 
          ]; 
         
        (* process population *) 
        BeginPackage["Genetic`Parameters`", "Global`"]; 
        Get[StringJoin[popfile, ".log"]]; 
        EndPackage[]; 
     
        onetime=Timing[ 
         Print[popfile, "-G", Generation, ": mating pool ... ", 
Timing[newpop=CreateNewGeneration[Population]][[1]]]; 
         Print[popfile, "-G", Generation, ": crossover   ... ", 
Timing[newpop=Crossover[newpop]][[1]]]; 
         Print[popfile, "-G", Generation, ": mutation    ... ", 
Timing[newpop=Map[Mutate, newpop]][[1]]]; 
         Generation++; 
         Population=newpop; 
         Print[popfile, "-G", Generation, ": fitnesses   ... "]; 
         Print[popfile, "-G", Generation, ": done        ... ", 
Timing[CheckSolution[Generation, newpop, popfile]][[1]]]; 
         Print[popfile, "-G", Generation, ": best-of-run   = ", 
SolutionFitness]; 
        ][[1]]; 
        Time[onetime, popfile, "-G", Generation, ": time for gen  = "]; 
        TimeTaken+=onetime; 
 
        Save[StringJoin[popfile, ".new"], Population]; 
        Save[StringJoin[popfile, ".new"], Fitnesses]; 
        Save[StringJoin[popfile, ".new"], Generation]; 
        Save[StringJoin[popfile, ".new"], TimeTaken]; 
        Save[StringJoin[popfile, ".new"], Solution]; 
        Save[StringJoin[popfile, ".new"], SolutionFitness]; 
        Save[StringJoin[popfile, ".new"], SolutionSet]; 
        RenameFile[StringJoin[popfile, ".log"], StringJoin[popfile, 
".old"]]; 
        RenameFile[StringJoin[popfile, ".new"], StringJoin[popfile, 
".log"]]; 
        DeleteFile[StringJoin[popfile, ".old"]]; 
 
        poplog=OpenAppend[StringJoin[popfile, ".plg"]]; 
        WriteString[poplog, ","]; 
        Write[poplog, {Generation, Fitnesses}]; 
        Close[poplog]; 
        Print[popfile, "-G", Generation, ": system saved ..."]; 
       
        OrigDirectory=Directory[]; 
        SetDirectory[Genetic`Parameters`Processor]; 
        DeleteFile[popfile]; 
        SetDirectory[OrigDirectory]; 
] 
 
(* Start run of algorithm *) 
StartRun[x_]:=Module[ 
              {result, log, i}, 
 
              Do[    
                 log=StringJoin["LOGFILE.", ToString[x]]; 
                 $Output=Append[$Output, OpenAppend[log]]; 
                 SetOptions[$Output[[2]], FormatType->TextForm]; 
 
                 Genetic`Parameters`Processor=StringJoin["PROC", 
ToString[x]]; 
 
                 CheckAbort[ 
                            ApplyGen, 
                            0 
                           ]; 
 
                 Close[$Output[[2]]]; 
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                 $Output=Take[$Output, 1], 
                 {i, 1, Genetic`Parameters`Epoch} 
                ]; 
 
             ] 
 
RegisterProc[x_]:=Module[ 
                         {proc}, 
                         proc=StringJoin["PROC", ToString[x]]; 
                         CreateDirectory[proc]; 
                        ] 
 
End[] 
 
EndPackage[] 

stats.m 
 
(* Genetic Programming *) 
 
(* Statistics routines *) 
 
(* H. Suleman *) 
(* 30 October 1996 *) 
 
Needs["Graphics`Graphics`"]; 
 
Needs["Graphics`Animation`"]; 
 
BeginPackage["Genetic`Stats`", {"Graphics`Graphics`", 
                                "Graphics`Animation`",  
                                "Graphics`Graphics3D`" }] 
 
GlobalCurve::usage = "GlobalCurve[] shows the global fitness curve." 
 
GlobalHistogram::usage = "GlobalHistogram produces a set of 
               histograms for the entire population." 
 
MaxHistogram::usage = "MaxHistogram produces a set of 3-D histograms  
                       showing the progress of the solution fitness 
                       in each subpopulation." 
 
AveHistogram::usage = "AveHistogram produces a set of 3-D histograms  
                       showing the average fitness in each subpopulation." 
 
CalcHistogram::usage = "CalcHistogram calculates the global histograms 
                        and 3D histograms." 
 
HistogramData={}; 
 
Histogram3DMax={}; 
Histogram3DAve={}; 
 
Begin["`Private`"] 
 
GlobalCurve:=Module[ 
                    {t, MaxG, MinG, AveG}, 
 
                    BeginPackage["Genetic`Parameters`"]; 
                    Get["pop.log"]; 
                    EndPackage[]; 
 
                    t=MapThread[List, Genetic`Parameters`GlobalSolutionSet]; 
 
                    MaxG=ListPlot[MapThread[List, {t[[1]], t[[2]]}], 
                                  PlotRange->{{0, Max[t[[1]]]}, {0, 1}}, 
                                  PlotStyle->{RGBColor[1,0,0]}, 
                                  Frame->True, 
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                                  FrameLabel->{"Generation       Fit(ness): 
red=max green=min blue=ave", 
                                               "Fit"}, 
                                  PlotLabel->"Global Fitness Curve", 
                                  PlotJoined->True, 
                                  DisplayFunction->Identity]; 
 
                    MinG=ListPlot[MapThread[List, {t[[1]], t[[4]]}], 
                                  PlotRange->{{0, Max[t[[1]]]}, {0, 1}}, 
                                  PlotStyle->{RGBColor[0,1,0]}, 
                                  Frame->True, 
                                  FrameLabel->{"Generation       Fit(ness): 
red=max green=min blue=ave", 
                                               "Fit"}, 
                                  PlotLabel->"Global Fitness Curve", 
                                  PlotJoined->True, 
                                  DisplayFunction->Identity]; 
 
                    AveG=ListPlot[MapThread[List, {t[[1]], t[[6]]}], 
                                  PlotRange->{{0, Max[t[[1]]]}, {0, 1}}, 
                                  PlotStyle->{RGBColor[0,0,1]}, 
                                  Frame->True, 
                                  FrameLabel->{"Generation       Fit(ness): 
red=max green=min blue=ave", 
                                               "Fit"}, 
                                  PlotLabel->"Global Fitness Curve", 
                                  PlotJoined->True, 
                                  DisplayFunction->Identity]; 
 
                    Show [{MaxG, MinG, AveG}, 
                          DisplayFunction->$DisplayFunction]; 
                 ] 
 
GetPopNumber[x_]:=ToExpression[StringTake[x, {4, StringLength[x]-4}]] 
 
CalcHistogram:=Module[ 
                        {t, data, popfit, figs, gen, popsize=0, numgen, 
                         popfiles, first=1, maxes, popnumber, inFile,  
                         outFile}, 
 
                        popfiles=FileNames["pop*.plg"]; 
                        popfiles=Sort[ 
                                      popfiles,  
                                      (Less[GetPopNumber[#1], 
GetPopNumber[#2]])& 
                                     ]; 
                        Histogram3DMax=Table[0, {Length[popfiles]}]; 
                        Histogram3DAve=Table[0, {Length[popfiles]}]; 
                         
                        Map[ 
                            (Print["copying file ", #]; 
(*                             cmdline="copy "; 
                             cmdline=StringJoin[cmdline, #]; 
                             cmdline=StringJoin[cmdline, "+pop.m pop.ful /Y 
> nul"]; 
                             Run[cmdline];*) 
 
                             inFile=OpenRead["pop1.plg"]; 
                             outFile=OpenWrite["pop.ful"]; 
                             While[ 
                                   i=Read[inFile, String];  
                                    Not[SameQ[i, EndOfFile]],  
                                   WriteString[outFile, i, "\n"] 
                                  ]; 
                             Close[inFile]; 
                             WriteString[outFile, "}"]; 
                             Close[outFile]; 
 
                             Print["reading in data"]; 
                             BeginPackage["Genetic`Parameters`"]; 
                             Get["pop.ful"]; 
                             EndPackage[]; 
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                             Print["separating data"]; 
                             popfit=MapThread[List, 
Genetic`Parameters`pop][[2]]; 
                             numgen=Max[MapThread[List, 
Genetic`Parameters`pop][[1]]]; 
                              
                             If[ 
                                first==1, 
                                data=Table[Table[0, {10}], {numgen}]; 
                                first=0 
                               ]; 
 
                             Print["discretizing data"]; 
                             Do[ 
                                figs=Map[Floor, popfit[[gen]]*10]; 
                                figs=Map[If[#==0, 1, #]&, figs]; 
                                Map[(data[[gen, #]]++)&, figs], 
                                {gen, 1, numgen} 
                               ]; 
                                
                             Print["extracting maximums"]; 
                             maxes={}; 
                             Do[ 
                                maxes=Append[maxes, Max[popfit[[gen]]]], 
                                {gen, 1, numgen} 
                               ]; 
                             popnumber=ToExpression[ 
                                       StringDrop[StringDrop[#, 3], -4] 
                                                   ]; 
                             Histogram3DMax[[popnumber]]=maxes; 
                              
                             Print["extracting averages"]; 
                             maxes={}; 
                             Do[ 
                                maxes=Append[maxes,  
                                       Apply[Plus,  
                                        popfit[[gen]]]/Length[popfit[[gen]]] 
                                            ], 
                                {gen, 1, numgen} 
                               ]; 
                             Histogram3DAve[[popnumber]]=maxes; 
                              
                             popsize+=Length[popfit[[1]]])&, 
 
                             popfiles 
                            ]; 
 
                            Print["generating global graphs"]; 
                            HistogramData= 
                              Table[ 
                                    BarChart[data[[gen]], 
                                      BarLabels->Table[i, {i, 0, 0.9, 0.1}], 
                                      PlotRange->{{0, 11}, {0, popsize}}, 
                                      PlotLabel->StringJoin["Global 
Generation ", 
                                                  ToString[gen]], 
                                      DisplayFunction->Identity], 
                                    {gen, 1, numgen} 
                                   ]; 
                             
                            Print["generating maximum graphs"]; 
                            Histogram3DMax=MapThread[List, Histogram3DMax]; 
                            Histogram3DMax=Map[Partition[#,  
                                                Sqrt[Length[popfiles]]]&,  
                                               Histogram3DMax]; 
                            Histogram3DMax= 
                              Table[ 
                                    BarChart3D[Histogram3DMax[[gen]], 
                                      PlotRange->{Automatic, Automatic, 
{0,1}}, 
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                                      PlotLabel->StringJoin["Max of 
Generation ", 
                                                  ToString[gen]], 
                                      ViewPoint->{4,1,4}, 
                                      DisplayFunction->Identity], 
                                    {gen, 1, numgen} 
                                   ]; 
                             
                            Print["generating average graphs"]; 
                            Histogram3DAve=MapThread[List, Histogram3DAve]; 
                            Histogram3DAve=Map[Partition[#,  
                                                Sqrt[Length[popfiles]]]&,  
                                               Histogram3DAve]; 
                            Histogram3DAve= 
                              Table[ 
                                    BarChart3D[Histogram3DAve[[gen]], 
                                      PlotRange->{Automatic, Automatic, 
{0,1}}, 
                                      PlotLabel->StringJoin["Ave of 
Generation ", 
                                                  ToString[gen]], 
                                      ViewPoint->{4,1,4}, 
                                      DisplayFunction->Identity], 
                                    {gen, 1, numgen} 
                                   ]; 
                       ] 
 
MyOpenTempCounter=1; 
MyOpenTemporary:=Module[ 
                        {front="TF"}, 
                        front=StringJoin[front, 
ToString[MyOpenTempCounter++]]; 
                        OpenWrite[front] 
                       ] 
 
MyRasterFunction = Module[ 
                          {fname = MyOpenTemporary}, 
                          Display[fname, #]; 
                          Close[fname] 
                         ]& 
 
GlobalHistogram:=Module[ 
                        {}, 
                        If[HistogramData=={}, CalcHistogram]; 
                        ShowAnimation[HistogramData, 
                                      RasterFunction->MyRasterFunction] 
                       ] 
 
MaxHistogram:=Module[ 
                     {}, 
                     If[Histogram3DMax=={}, CalcHistogram]; 
                     ShowAnimation[Histogram3DMax, 
                                   RasterFunction->MyRasterFunction] 
                    ] 
 
AveHistogram:=Module[ 
                     {}, 
                     If[Histogram3DAve=={}, CalcHistogram]; 
                     ShowAnimation[Histogram3DAve, 
                                   RasterFunction->MyRasterFunction] 
                    ] 
 
Stats[s_String]:=Module[{}, 
                        Display[StringJoin[s, ".scu"], GlobalCurve]; 
                       ] 
 
End[] 
 
EndPackage[] 
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