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ABSTRACT

Genetic Programming (GP) is an implementation of evolutionary programming, where
the problem-solving domain is modelled on computer and the algorithm attempts to
find a solution by the process of simulated evolution, employing the biological theory
of genetics and the Darwinian principle of surviva of the fittest. GP is distinct from

other techniques because of its tree representation and manipulation of all solutions.

GP has traditionally been implemented in LISP but there is a Slow migration towards
faster languages like C++. Any implementation language is dictated not only by the
speed of the platform but also by the desirability of such an implementation. With a
large number of scientists migrating to scientifically-biased programming languages

like Mathematica, such provides an ideal testbed for GP.

In this study it was attempted to implement GP on a Mathematica platform, exploiting
the advantages of Mathematica’'s unique capabilities. Wherever possible,
optimizations have been applied to drive the GP algorithm towards realistic goals. At
an early stage it was noted that the standard GP agorithm could be significantly
speeded up by parallelisation and the distribution of processing. This was incorporated

into the algorithm, using known techniques and M athematica-specific knowledge.

Benchmark problems were tested on both the serial and parallel algorithms to assess
the ability of the implementation to effectively solve problems using GP. Mostly
known problems were used since it was desired to test the implementation and not the

capabilities of the algorithm itself.

Mathematica has been found to be suitable for the implementation of GP in cases
where the problem domain has been modelled aready in this environment. Although
Mathematica is not an optimal environment for the execution of a GP, it is highly
adaptable to different problem domains, thus promoting the implementation of

problem-solving techniques like GP.
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CHAPTER 1:
INTRODUCTION

The Evolutionary Paradigm of Programming

Computer Science had its beginnings when scientists built the first computers and
realised that these machines needed to be constantly tended. This tending took the
form of writing programs and thereafter maintaining these programs and their data. At
first it was a rather haphazard process, with programmers writing code on the spur of
the moment and then changing their programs to suit changes in the environment or
the requirements. As time passed, this disorderly process caused more problems than
solutions and Computer Science began to turn its head towards the formal

specification of programming.

The programming of computers can be considered as the focus of research in
Computer Science. In recent years, people have been asking very pertinent questions
regarding the speed and size of programs. There has been a quest to write programs
that run faster and use less memory and storage. Also, some programs are sought
simply for parsimony or the ability to prove correctness mathematically. But, like any
other scientific field, the thrust of work is not on efficiency but on new developments.
Problems from all aspects of life are modelled on computer and new solutions are

being constantly sought.

People from varied disciplines implement their problem-solving methodologies on
computer. In many cases an existing sequence of stepsis known and this simply needs
to be converted into a computer program. In other situations, only raw data is
available and this then needs to be processed to generate useful information. Both
scenarios require that computer programs be written, whether by the user or an

external party.

Programming, by its very creative nature, is an intuitive process that cannot be broken
down into finite determinate steps. Many people argue for and against this standpoint.
Software engineers argue quite strongly that software can be created using a pre-

defined series of steps in a determinate manner [Schach, 1992]. But they also agree
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that innovations in programming cannot follow this same process. Ultimately, a
program has to be written and that program cannot always be created in a definite
manner. This implies that a programmer will have to intuitively devise a new
algorithm, using and incorporating existing algorithms. Being a creative process, it
takes an unknown amount of time and resources to accomplish. Also, the programmer
never knows for certain whether the problem will be solved (except for some cases
where this is proven mathematically in advance) by the program. Some problems do
not even lend themselves to a program, although most of these are ferreted out by the

experienced programmer.

Whatever the case may be, an experienced programmer has to devote an unknown
amount of time in order to solve any moderately complex problem. Thisin itself isa
problem worthy of study. How can this programming task be made easier ? Classical
computer science has proposed many techniques to ease programming by
modularising the data and programs e.g. object-orientation. Artificial intelligence
suggests different approaches which consider computer programs as simply “black

boxes’ which convert input into the appropriate output.

Neural networks are a popular strategy for problem solving nowadays. Using this
approach, a computer model of the human brain is created and this then learns the
relationship between the input and output. Information is stored internally in the form
of amatrix of weights, where each weight refers to the relative ability of one neuron to
fire another one. This *connectionist” approach is used widely because of its ability to
simulate the learning and recollection process of human thought. However, it does
have some disadvantages, namely the requirement that the inter-neuron connections be
seeded before learning can begin (in back-propagation learning). This initial state has
to be determined experimentally and this makes it somewhat similar to the classical

program because an expert needs to set up the neural network.

The *“non-connectionist” school of artificia intelligence has tried to implement the
black-box computer component by modelling it on existing systems other than the
human brain. One of the most popular approaches isto model the computer on nature.
Nature has succeeded in solving a rather complex problem, that of creating and

sustaining life. In order to do this, simple living organisms were first introduced into
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the environment. Then these organisms underwent a transformation process through
evolution, lasting many millions of years. The current set of organisms that inhabits
the world is far stronger and better adapted to its environment than its predecessors.
For example, the ratio of diameters of blood vessels in the human body allows for
better flow according to modern fluid dynamics [Hietkotter, 1995]. But this was a
result of evolution and not some individual’s calculations. So if problem-solving is
modelled on evolution, it may be possible to discover solutions that are optimal or
better than the analytical ones.

Evolution was a theory proposed by Darwin [Darwin, 1959] to explain the creation of
life. He proposed that the nature of living creatures changed over the years to result in
stronger specimens, better suited to the environment, being formed. The better
specimens would then dominate and the lesser individuals would eventually cease to
exist. Thisis commonly known as “survival of the fittest”. This does not preclude the
evolutionary process creating individuals that are less fit than their predecessors. In
such cases, the new generation individuals would simply perish and their ancestors

would continue to thrive, until they can generate better specimens.

This does not suggest that evolutionary techniques are the solution to al our
problems. Evolution itself does not guarantee the creation of fitter individuals. It does
however, explore many possibilities that may lead to stronger individuals. There is no
ultimate goal or problem that must be solved by natural evolution. Instead organisms
are constantly changed to suit the environment, which changes just as rapidly.
Similarly, in an artificia environment of simulated evolution, solutions can be

gradually adapted to satisfy the problem specification with greater accuracy.

According to modern theory of genetics, the fabric of our being is stored as a set of
attributes in our DNA (genes). An individual’s genes are like a blueprint to create that
individual, since it is a complete description. When two parents mate to produce
offspring, the children receive some genetic material from each parent. This crossing
over of the genetic material allows nature to create individuals different from either

parent.
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For example, consider a monkey population where long tails are desired and long
noses are not. If one parent with along tail and short nose mates with another with a
short tail and long nose, the offspring could have any combination of these features. If
the child has a long nose and short tail, that child would not be very strong since it
cannot hang from branches and its nose would aways get in the way - it would
probably not reproduce since none of the other monkeys would be attracted to a weak
individual. On the other hand, a child with along tail and short nose would be ideally
suited to the monkey’s environment. This child would be the fitter of the two and

would propagate its genes in future generations.

Computer programs modelled on nature, normally associate possible solutions with
the populations of individuals from nature. Then these solutions undergo a ssimulated
evolution to attempt to produce better individuals. Just like nature, this process is
quasi-random and solutions generated can be either better or worse than their parents.
However, the probability of producing better solutions in this way is much higher than
a blind random search through the solution space [Koza, 1992]. There exist many
different approaches to this modelling, the most common being Genetic Algorithms,
Evolutionary Programming, Evolution Strategies and Genetic Programming [Kinnear,
1994]. Collectively these are known as Evolutionary Algorithms. An evolutionary
algorithm has the following general structure :

initialise a random generation of individuals

Pop = initpopulation (Q

eval uate the fitnesses of individuals in the popul ation
eval uate (G

whi |l e not done do
/'l select couples for reproduction
Popl = sel ect (Pop);

/1 apply genetic operations to genes
Popl = genetic operations (Popl);

/1 evaluate fitnesses of new popul ation
eval uate (Popl);

/1 merge new individuals into the existing popul ation
Pop = merge (Popl);
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Genetic Algorithms

In order to understand Genetic Programming, it isfirst vital to consider the alternative
approaches to evolutionary programming that led to its creation. Most discussions on
genetic programming begin with an explanation of genetic algorithms, being the direct

predecessor of genetic programming [Koza, 1992; Andre, 1994].

Genetic Algorithms (GAs) are evolutionary programs that manipulate a population of
individuals represented by fixed-format strings of information. Their acceptance as a
means to solve real-world optimization problems is readily attributable to the theory
of artificial adaptation discussed in the ground-breaking work of Holland [Holland,
1992]. An initial population of individuals (solutions) is generated for the problem
domain and these then undergo evolution by means of reproduction, crossover and

mutation of individuals until an acceptable solution is found.

Genetic algorithms, like most other evolutionary computation techniques, require that
only the parameters for the problem be specified. Thereafter the algorithm applied to

search for asolution is mostly problem-independent .

As an inheritance from its biological counterpart, in genetic algorithms each character
in the individual’s data string is called a gene. Each possible value that the gene can
take on is caled an alele. These concepts are elaborated upon in numerous texts on

biological genetics e.g. Hartl [Hartl, 1988].

For the purposes of the following discussion of genetic algorithms, the problem being

solved is finding the square root of 2.

Representation of Problem

The representation of the problem domain is one of the most important factors when
designing a genetic algorithm. Genetic algorithms usually represent al solutionsin the
form of fixed length character strings, analogous to the DNA that is found in living
organisms. There are a few genetic agorithm implementations that make use of
variable-length strings and other representations [Michaewicz, 1992] but these are not
common. The reason for the fixed length character strings is to alow easier

mani pulation, storage, modelling and implementation of the genetic algorithm.
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Consider the example of finding the square root of two. The first step would be to
identify a possible range of solutions. Assuming no knowledge of the solution, it
would be possible to deduce that the solution lies between zero and the number itself
(in this case 2). Since it is known that the square of 1 is one, all numbers less than one
can be removed. Also, the square of two will produce 4 so that can be eliminated as
well. Thus the range is reduced to numbers greater than 1 and less than 2 - no solution
to this problem can lie outside of this range. Of course, negative numbers can aso
produce the same results but since negative numbers are only different in sign, only
the positive numbers need be considered. The next step is to represent all numbers
between 1 and 2 with a fixed length character string. Binary numbers are usualy
utilised for numerical computations such as this. The reasons for this are outlined
below. Binary numbers also allow for easy conversion to and from the exact solution.
However, since there are obvioudly infinitely many real numbers between 1 and 2,
fixed-length strings pose an additional problem for the programmer. To solve this, the
real number range must be discretized into a finite number of constituent real number
segments, corresponding to each binary number used in the character string. Suppose
that the character strings have a length of n=10. Then the possible values for the
character string would be from 0000000000 to 1111111111.

Figure 1.1 Bit-string GA representation

These binary numbers must be mapped onto the range of possible solutions, viz. the
numbers between 1 and 2. There are 1024 (2") distinct numbers in the binary range,

hence the numbers start from 0 and end at 1023 (2" -1). The 1 (solution space) is

Page 7



mapped onto the O (binary) and the 2 (solution space) is mapped onto the 1023

(binary). All other binary numbers are mapped linearly onto the real solution range.

binary binary value real equivalent
| o[o]ojo|ofo]o|o] o 0o 0 1+(0/1023) =1
|ofofojo|o][o]o|o] o] 1] 1 1+ (1/1023)
lolo]ofo|o]o]ofo] 1] 0] 2 1+ (2/1023)
lafafafa[afafa|2]|af 1] 1023 1+ (1023/1023) = 2

Figure 1.2. Conversion from bit-string to real representation

One of the reasons for using binary numbers is to disallow incorrectly formatted
solutions automatically. Every combination of 1's and O's corresponds to a possible
solution. Decimal numbers can be used but since the solution range is between 1 and
2, aremapping process would have to be carried out to exclude the numbers greater
than 2 or less than 1. In binary, it is easier to visualise some characteristics being
present (by a 1) or absent (by a 0). This is more applicable to non-numeric problem
domains. In addition, there are only two possible binary values (1 and 0). This means
that all possible binary values can be generated by these two values. Thus the binary
individuals 0000000000 and 1111111111 contain al the genetic material possiblei.e.
they span the solution space. With representations of alarger order (e.g. decimal), the
number of individuals needed to span the solution space is much larger and this has
repercussions on the speed at which the genetic algorithm finds a solution and the size
of the parameters needed.

Population of Solutions

A collection of possible solutions is kept throughout the life cycle of the genetic
algorithm. This collection is generally known as the population since it is analogous to
apopulation of living organisms. The population can be either of fixed or variable size

but fixed size populations are used more often so that the exact amount of computer
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resources can be pre-determined. The population of solutions is stored in main
memory or on secondary storage, depending on the type of genetic algorithm and

computer resources available.

At the very beginning of the agorithm, a population of solutions is generated
randomly. In the case of the square root problem, a fixed number of 10 character

binary strings are generated randomly.

individual no random individuals
1 [o[o]1]of o 1]0]1] 9 o]
2 lo[1]1]o[1]1]o]o] 1] 1
3 [1[2]o]1]o]of1[1] 2] O]
100 |1{o]1]o|o[1]o]0] o] 1]

Figure 1.3. Initial random population

This population is then modified through the mechanisms of evolution to result

eventually in individuals that are closer to the solution than these initial random ones.

Fitness

Darwinian evolution of a population implies that the strongest individuals will
survive. To implement such a principle necessitates a means of evaluating the relative
strength, or fitness, of each individual. In terms of the genetic algorithm, the fitness of
an individual is a numerical assessment of that individual’s ability to solve the
problem at hand - it is the ability of the individual to satisfy the requirements of the

environment.

In terms of the square root problem, the perfect individual is the numerical vaue
approximated by 1.414213562373. This can therefore be regarded as the fittest
solution. Since fitness is quantified numerically, maximum and minimum fitness

values of 1 and O are normally used. According to this scale, the perfect solution
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above represents a fitness of 1. The minimum fitness must be the absolutely worst
solution possible, to ensure that al solutions are in the range 0-1. In the square root
problem, the worst solution is “2”, hence the fitness of the solution “2” would be 0.
Although it is possible to find distinct best and worst case values in this problem it is
not possible for all problem domains. However, every possible individual in the

solution space must be restricted to the fitness range 0-1.

Fitness is normally defined as a function that takes as its single parameter the
individual and returns a real number representing the fitness value of that individual.
Fitness cannot be calculated by comparing the perfect solution with the individua
simply because the perfect solution is not known at the time of calculation. Thusit has
to be calculated from other information in the specification. In the case of the square
root problem, the fitness of an individual can be calculated by squaring its numerical
value and then comparing this to 2. The results can then be scaled to fit in the range O
to 1. Thefollowing fitness function satisfies these criteria.

Abs(x? - 2)

Fitness(x) = T 5 (1.2

In addition to assigning the boundary values, the fitness function must also be able to
assign values to every other solution in the solution space. The intuitively better
solutions must be allocated better fitnesses than the worse solutions. Thisis necessary
so that the better solution can be selected over the worse one when comparisons are
being made. For numerical calculations the fitness function is chosen as arelative
error (asisdone above in Equation 1.1) to achieve this aim. In economic problems,
the profit can be used to generate a fitness function - greater profit tends towards a

perfect solution while lesser profit has lower fitness values.
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random individuals binary value solution fitness
|ojoj1][o]o[1]o]1]| 2o 278 1.2717 0.1913
lo[1]1]o |1 1]ofo|1f1] 435 1.4252 0.0156
|1]/1]of1]o]of1][2] 1] 0] 846 1.8270 0.6689
|1{of1]o|o[1]ofo| o[ 1] 657 1.6422 0.3485

Figure 1.4. Selected individual s with corresponding real values and fitnesses

The table in Figure 1.4 represents some sample solutions in the initial random
population, together with their associated actual values and their fitnesses. The best
solution displayed is in the second line, as it has the lowest fitness - it is also the value

closest to the perfect solution, as expected.

Reproduction

The vehicle of al evolutionary change in the genetic algorithm is reproduction. The
reproduction operation allows the population to progress from one generation into the
next. This progression occurs in the most natural way possible, favouring the fitter
individuals. Individuals are selected from one generation of the population to be
injected into the next generation. This new generation is a permutation (with
duplicates) of the original population and when completely formed, it replaces the
original population.

The selection process is based on the fitnesses of the individuals. Generdly,
individuals with a higher fitness are selected more often than individuals with a lower
fitness. There have been many strategies to implement this tendency to select fitter

individuals.

The most common method is called fitness-proportionate reproduction. In this
approach, the probability of selecting each individual is proportionate to its fitness.
Thus the fitter individuals get selected more often than the less fit individuals. This
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leads to some individuals being selected more than once and others not being selected
at al, which is only natural as the better individuals flourish while those that are not
good enough perish.

The roulette whed implementation implicitly forces fitness-proportionate
reproduction. In this approach, the fitnesses of all individuals in the population are
arranged into a list and then summed. A random number in the range of the sum is
generated. Then the fitnesses in the list are summated again until the random number
is reached or exceeded. The last individual in the list is the one chosen. The method
works because the individuals with higher fitnesses occupy a larger portion of the
range from which a random number is being selected - therefore they can be selected
more often. This process is repeated until enough individuals are selected to replace
the whole of the last generation.

Figure 1.5. Roulette wheel individual selection

Another common approach to selecting individuals is tournament selection. Two
individuals are selected from the population and their fitnesses are compared. The one
with the higher fitness is progressed into the next generation. The tournament can also

be carried out among more than 2 individuals (K-tournament selection).

Elitism is a strategy where the highly fit individuals are explicitly favoured. This can
be useful when the fitnesses are linear and the problem has a single solution.
However, most fitness functions do not produce a linear relationship between

individuals and their fitnesses i.e. there are local minimain the range of fitness values.
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The restrictive nature of elitism could cause convergence to one of those local

minima, which ismost likely afar from optimal solution.

Crossover

Reproduction on its own cannot cause a population of solutions to evolve since the
individuals from one generation are simply being copied into the next generation of
the population. In order for the fitnesses of individuals to improve, there must be a
sharing of genetic material. Crossover swaps some of the genetic material of two
individuals, creating two new individuals (children), who are possibly better than their

parents. Thisis analogous to genetic crossover as observed in living organisms.

In genetic algorithms, crossover is implemented by selecting a point in the character
string and swapping all characters after that point. This selection point is generated
randomly and the operation is applied to two individuals of the newly reproduced
population.

parent 1 parent 2
[ofof1]o]o[1]o[s][1[ o] [2]o]1]o]o]1]ojo]0f1

T—{ crossover point ‘—T

[ofofz]ool1[q[ 4 1 of [1]ofrfo]of1]o]]q of 1

\/

| crROssOVER |

/\

[ofofz]ool1[q[ g of 1 [1]ofrfo]of1]o]] 4 10

[ofof1]o]o[1]ofo of 2] [2]of1]ofo[1]o]1]1]0]
child 1 child 2

Figure 1.6. Crossover of two individualsin GA

The result of the crossover genetic operation is two individuals who are possibly fitter

than their parents. In any event, these individuals are added to the new generation
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being created. The simplest strategy is to replace the parents with the children. That
way each parent only participates in crossover once. An aternative is to inject the
children into the population and replace a pair of individuas with relatively low
fitness. Using fitness-proportionate reproduction, this strategy is unnecessary since the

population potentially contains more than one copy of the fitter individuals.

This genetic operator does not have to use only one crossover point. Instead, many
crossover points can be chosen, and the genetic material exchanged at each point. If
two crossover points are chosen, then, effectively, the genes between the points are

exchanged.

Mutation

During reproduction, fitter individuals in a population are selected more often than
others. This leads to some individuals not being selected for promotion into the next
generation. These are generally the least fit individuals. However, they may contain
within their structure genes which are part of a better solution. This genetic material is

lost to the population since the individuals are no longer propagated.

In order to recover from this loss of genetic material, the individuas are alowed to
change their genes randomly. This is a dight perturbation in the genetic material
which occurs with a much lower frequency than crossover. A random point or points
are chosen in the character string. A random allele is then generated and inserted at

each of the mutation points.

Like crossover, mutation can create individuals who replace their parents in the new
generation, or they can be added to the population. Individuals must be removed so
that the population does not grow unmanageably large. The primary reason for thisis

to make genetic algorithms feasible for practical implementation.
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parent
L o[ofz]o]of1]o][1] 1] o]

t—{mwaMnujm|

random dlele

[ mutaTiON |

'

[ofof1]o]1]1]of1] 1] o]
child

Figure 1.7. Mutation of an individual in
GA

General Algorithm

//start with an initial generation
G=0

/linitialise a random generation of fixed-format strings
Pop = initpopulation (Q

/levaluate the fitnesses of individuals in the popul ation
eval uate (G

whi | e not done do

/'l increase generation counter

G+

/1l generate new popul ation using fitness-proportionate
reproduction

Popl = sel ect (Pop);

/'l crossover genes
Popl = crossover (Popl);

/1 mutate genes
Popl = nmutate (Popl);

/1 evaluate fitnesses of new popul ation
eval uate (Popl);

/'l replace population with new generation
Pop = Popl;

There are various aternatives and modifications of this algorithm but the essential

structure is aways the same. One common change is to incorporate the reproduction
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operation into the crossover and mutation operations - individuals are selected fitness-
proportionately, crossed over (or mutated) and inserted into the new generation in a

single operation.

John Holland's Schema Theorem [Holland, 1992] is widely accepted as mathematical
proof that the genetic algorithm, due to its fitness-proportionate reproduction,
converges to better solutions. According to the schema theorem, individuals are
grouped into schemata according to particular subsets of their genes. The number of
individuals in each group converges if the fitness of that group relative to the entire
population is high, and vice versa. Thisresult is slightly modified by the crossover and
mutation operations which create new individuals from the existing population,

implicitly changing the schemata into which individualsfall.

Evolutionary Programming and Evolution
Strategies

Genetic algorithms are just one example of a paradigm of evolutionary programming.
Other techniques were created, with many similarities to genetic algorithms as
discussed by Heitkotter and Kinnear [Heitkotter, 1995; Kinnear, 1994].

Evolutionary Programming, conceived by Fogel in 1960, uses only mutation as a
means to improve the fitness of individuals. Individuals can be represented by any
convenient syntax, since there is no crossover operation. The population is propagated
from one generation to another by applying the mutation operation in varying degrees

according to the proximity of the individual to the expected solution.

Simultaneously with the development of evolutionary programming, a group of
students in Germany, Rechenberg and Schwefel, developed a strategy to optimise
shapes of bodies in a wind tunnel. Their technique uses a population of solutions,
changed by normally distributed random mutations. Each individual contains both
objective and strategy variables - objective variables are representations of the
problem domain while strategy variables indicate the decreasing mutation rates to be

deployed.
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Genetic Programming

Genetic algorithms, although very useful for ssmple problems, can restrict complex
problems due to its inability to represent individuals other than fixed-format character
strings. Genetic Programming is a generalisation of genetic algorithms devised by
Koza[Koza, 1992]. It is readily accepted that the most general form of a solution to a
computer-modelled problem is a computer program. Genetic Programming (hereafter
known as GP) takes cognizance of this and attempts to use computer programs as its

data representation.

Similarly to genetic agorithms, genetic programming needs only that the problem be
specified. Then the program searches for a solution in a problem-independent manner.
Most genetic operators can be implemented, albeit somewhat differently from its
predecessors. Although Koza has suggested definitional guidelines for GP, these have
been relaxed in attempts to achieve greater efficiency with reduced computer

resources.

Representation

Each individua in a genetic program is a computer program. However, this definition
is a little vague since there is no general structure for all computer programs. On
different platforms with differing compilers and interpreters, the structure of the
programs can be different. GP is not specific in this regard - it can be applied in al

cases.

Most classical programming languages can have their programs represented as
sequences of functions. These functions can operate on constants or variables or the
results of other functions. This lends itself to a tree structure for a typical program.
Computer programs in GP are viewed as free-format trees, consisting of leaves

(variables and constants) and non-terminal nodes (functions).
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standard expression notation tree representation

3X+—

Figure 1.8. Representation of individuals astreesin GP

Any mathematical expression can be considered as a computer program since it takes
input, processes the input and produces output. The expressions in Figure 1.8 are
therefore proper programs and can be used to generalise the capabilities of the GP
algorithm. The tree representation indicates how the GP ought to store the program
internally. The method of storage is not critical as long as the agorithm can

mani pul ate the individual solutions astrees.

In the illustrated example, there are only two variables, two constants and three
functions, which totally define the expression. However, real-life computer programs
can use many hundreds of variables and functions to solve a modestly complex
problem. Although such problems are still not feasible for solution by GP, it has been
recognised that the number of variables and functions has a significant impact on the
efficiency and scale of GP. Hence, the number of variables, constants and functions
needs to be reduced by eliminating those not necessary in a particular problem
domain. The functions, appearing only in intermediate nodes, are called the non-
terminals. Variables and constants, appearing only on the leaves of the tree, are
appropriately called terminals. The non-terminal set for the example is {+, /, *} and
theterminal setis{x,y, 3, 5}.
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The terminal set isthe set of all aleles that can appear at the leaves of a GP tree while
the non-terminals are the acceptabl e functions. These two sets define the search space
for the problem - every tree constructed has to get its nodes from the terminal and
non-terminal sets. The size of the search space is determined by the sizes of these two
sets. An increase in the size of the non-terminal set results in a linear increase in the
size of the search space. However, an increase in the size of the terminal set resultsin
an exponential increase in the search space size, since the combinations of parameters

available to every function is also increased.

On the other hand, if aterminal or non-terminal set does not contain sufficient variety,
it may not be possible to represent some solutions. For example, the expression “-3”
cannot in any way be represented by selecting terminals and non-terminals from the
given sets. Thus there are two important considerations when selecting terminal and
non-terminal sets. Firstly, the set must span the solution space completely. Secondly,

these sets must be as compact as possible, to prevent extraneous searches.

For example, if Boolean functions are being considered, then the non-terminal set
needs only contain {AND, OR, NOT} [Koza, 1992]. These functions are not the
absolute minimum to span the solution space, but the inclusion of a small degree of

redundancy allows for the formation of smaller computer programs (expressions).

Koza has also suggested that every function in the non-terminal set must operate only
within the scope of the terminal set. The functions must be capable of taking on every
combination of terminals possible, and the return values must be in the range of the
terminal set. By requiring this of all functions, there is no possibility of parameter
incompatibilities. It also alows functions to be nested without restriction. This is an
obvious feature of some functions but exceptions must be catered for. If the terminal
set contains integers and the non-terminal set the standard operators {+, -, /, *}, then
division by zero isadistinct possibility. To cater for this, the division operation can be
modified or overloaded so that division by zero returns a large number instead of an

error. This protection of functions enables closure of the non-terminal set.

Alternatives to closure include the use of strongly-typed GP, where each non-terminal

has a pre-specified return value type, which may be different for various functions.
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Haynes [Haynes, 1995] has used this strategy successfully to optimise an artificial
predator/prey scenario in amanner better than the standard GP.

Population of Solutions

Similarly to a GA, genetic programming first constructs a population of random
individuals and then processes these by simulated evolution. The random individuals
in this case are random trees. Due to the closure property of the non-terminal set, it is

possible to recursively create any combination of terminals and non-terminals.

individual 1 individual 2

Xy y
3 5

Figure 1.9. Extract from population of GP trees and corresponding expression representation

Populations in GP are normally much larger than those in genetic algorithms. Thisis
chiefly because of the unrestrained nature of the representation. While a GA alows
only fixed-format strings, trees have much greater diversity of size and structure. To

accommodate this greater diversity, larger populations are necessary.
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Fithness

Since individuals are represented as computer programs, the obvious method of
testing effectiveness of the solutions would be to execute the programs. Then some
means of measuring the performance (error, time taken, etc.) can be used as the fitness
measure. This adds extra overhead to the GP algorithm since each individual hasto be
executed to determine its fitness. Also, most programming languages do not support
the execution of data items or dynamic conversion between data and code. In such

cases, an interpreter has to be incorporated into the algorithm.

The raw fitness of an individual is the fitness value calculated directly from the
execution of the program. This value is not bound to any range so its needs to be
modified before it can be used constructively. The standardised fithess converts the
raw fitness to a zero-centric function - the standardised fitness of an individual is zero
for the best individual and higher for individuals of lower fitness. The standardised
fitness attempts to restrict the fitnesses to the range of positive real numbers only. The
adjusted fitness changes the fitness value so that it lies strictly within the 0-1 range.
This is useful to standardise the result designation and make statistics more
meaningful. The adjusted fitness can be generating trivially from the standardised

fitness by the following function.

1
1+ StandardizedFitness(x)

AdjustedFitness(x) =

Kinnear [Kinnear, 1994] stresses the importance of using a fitness function that not
only generates the right boundary conditions but also allocates appropriate fitness
values for all other expressions. If partial credit is not given for containing features

that lead to a better solution, then the fitness function would not be effective.

Reproduction

Fitness-proportionate reproduction in GP is identical to GAs, since the change in
representation has no effect on the copying of individuals. In order to produce a new
generation, only the fitnesses need be known, and these are gleaned from the adjusted

fitness function applied to al the individualsin the original population.
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Crossover

Crossover is applied to a pair of individuas from the newly reproduced population in
order to exchange genetic material. In the case of the classic GA, genetic material took
the form of sub-strings of the character string representation. GP, on the other hand,
exchanges sub-trees of the individuals in order to create new individuals. Since the
non-terminals have achieved closure, it is possible to exchange a sub-tree rooted with
a non-terminal with one rooted by aterminal since the non-terminal function produces

areturn value in the range of the terminal set.

Another difference between GAs and GP is in the selection of crossover points. In
GAs, a single crossover point was chosen and applied to both individuals. In GP this
is not possible since the individuals may have different structures, so instead different

crossover points are generated for each individual .
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parent 1

| crossover point |

parent 2

Xy y
3 33X+ 5

child 1 child 2
X y?
3 Sy +g

Figure 1.10. Crossover of two individualsin GP

Mutation

Mutation is not necessary in GP because the large population sizes amost always

ensure that the genetic material cannot be easily lost. However, large population sizes
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require lots of resources and, in the absence of these, steps have to be taken to recover
the genetic material. Also, taking into account the successes of mutation-based

evolutionary computing, this genetic operator cannot be simply ignored.

Just as in crossover, mutation is applied to a randomly chosen sub-tree in the
individual. This sub-tree is removed from the individual and replaced with a new

randomly created sub-tree.

parent child

3
X+ — 33Xy +—

Figure 1.11. Mutation of an individual in GP

General Algorithm

/] start with an initial generation

G=0

/] initialise a random generation of trees fromthe term nals
and non-termnal s

Pop = initpopulation (Q

/'l evaluate the fitnesses of individuals in the popul ation
eval uate (G

whi |l e not done do
/] increase generation counter
GH+

/1l generate new popul ation using fitness-proportionate
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reproduction
Popl = sel ect (Pop);

!/l crossover sub-trees
Popl = crossover (Popl);

// mutate sub-trees
Popl = nutate (Popl);

/1 evaluate fitnesses of new popul ation
eval uate (Popl);

/1l replace popul ation with new generation
Pop = Popl;

It is apparent that the general algorithm for GP is nearly identical to the GA. Asfar as
implementation is concerned, the major difference is in the representation. But this
difference is sufficient to necessitate changes in the genetic operators and all other
manipulation routines in the algorithm. There are also implicit differences that affect

the efficiency or conceptualisation of GP as compared to standard GAs.

Applications of GP

In traditional evolutionary algorithms, the optimization of existing solutionsis alarge
research area because the algorithms are more suited to slight perturbations rather than
outright changes (evolutionary programming and evolution strategies). GAs have the
limitation that the structure of the solution needs to be known in advance in order that
it may be modelled by the fixed character string. Although some work has been done
on variable-length GA strings, thisis sufficiently different from the original algorithm
to fall within the ambit of GP itself. GP has no such restrictions on representation
therefore the scope of applications is much broader. In an idea situation, any
application which requires a solution in the form of a computer program can be solved

using a GP.

Koza [Koza, 1992] applied the GP to many benchmark problems that are still used to
test the capabilities of GP systems. The most famous of those problems is that of
symbolic regression. A set of points is generated from some test data and an equation
passing through the points is sought. There exists no definite analytic method to find
such an equation if the form of the equation is not known in advance. Statistical

methods assume a form for the equation and then try to optimise the coefficients for
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the equation. GP can find both the structure and the coefficients for the equation.
Oakley successfully extended symbolic regression to chaotic data [Oakley, 1994].

Another popular area of application is the control of artificial animals and robots.
Reynolds generated programs to control arobot in order to avoid obstacles [Reynolds,
1994]. Spencer used GP to teach a 6-legged robot how to walk, in terms of the
sequence of mechanical actions that had to be performed [ Spencer, 1994].

Economic optimization, a complex field for analytical study, has aso lent itself to
evolutionary computation techniques. Andrews modelled a double auctioning system
which used GP to generate a better automatic auctioning program than those

previously known [Andrews, 1994].

Koza et d have applied GP to the problem of designing electrical circuits. They
trained an artificial animal in maximal food foraging - the algorithm being produced
in the form of an electronic circuit discovered by GP [Koza, 1996-1]. In a similar
manner, an electronic circuit was successfully built to implement an operational

amplifier with desirable amplifier characteristics [Koza, 1996-2].

Andre used GP to learn rules for optical character recognition [Andre 1996]. It is a
laborious task to write rules manually to distinguish among different charactersin a
character set, especially when different fonts and sizes are used. GP successfully

found rules to classify characters with few errors.

GP can also be applied to classification problems. A finite automaton, when
duplicated and arranged in a regular formation, can exhibit aggregate behaviour about
the total structure. A classic problem is to find a boolean-valued automaton that
relaxes the total automaton into a steady state corresponding to the value that occurred
most often in the start state. Thisis known as the Mgjority Classification Problem and
can be solved in numerous ways. Andre used GP to find a rule for the cellular
automata that was better than any previously known rule (for a particular
configuration) [Andre, 1996].

Hand-in-hand with new applications of GP goes the development of new

implementations. The early Koza-based implementation of GP was done in LISP, but
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attempts are being made to port the GP paradigm to other programming environments.
C++ and other 3GLs are useful for implementation but require complex modelling for

non-trivial problems. Other platforms (eg. Mathematica) are considered to circumvent

this complexity.
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CHAPTER 2 :
A MATHEMATICA IMPLEMENTATION

Implementation Languages

Lisp
The first implementations of GP done by Koza used the LISP programming language
[Koza, 1992]. LISP (LISt Processor) has some unique characteristics compared to

other commonly used languages, which makes it an idea platform for the

implementation of GP.

In LISP, there are only two basic syntactic constructs. The atom is a terminal part of
an expression, being either a variable or constant. The other construct is a list. Any
program can be represented solely using lists of atoms. Lists can also be nested and
embedded recursively. Lists use a prefix notation, as opposed to popular programming
languages which prefer infix notation for its more obvious interpretation. These lists

in LISP are known as S-expressions.

LISP normal interpretation
(+12) 1+2
(* ab) ab

c
(+(*ab)(/cd)8) ab+a+8

Table2.1. Sample LISP expressions

It can be shown that all computer programs are essentially sequences of functions.
LISP generalises this by requiring all programs to be in the form of a list. The first
element of the list is the name of the function while the rest constitute its arguments.
Thus, in Table 2.1, “+” is the name of the function and its arguments are the numbers

“1” and “2". These lists can also be represented as trees since they allow nesting. This
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tree visuadisation is ideal since GP requires a tree representation for its various

manipulations.

LISP makes no distinction between code and data. Both the program and the data it
works on are represented as lists. Thusiit is possible to execute an item of dataasif it
was code. Alternatively, it is also possible to manipulate a program as if it was pure
data. The primary reason why most people implement GP in LISP is because they can
exploit this feature to make the evaluation of fitnesses easier. Instead of writing an
interpreter to execute the individuals, they can be run directly on the computer by

virtue of thisamost unique LISP feature.

Although these features of LISP are conducive to a GP implementation, LISP is not
widely used because programs do not execute fast enough (compared to 3GL
languages) and compilerg/interpreters are uncommon. It is used by Al researchers but

not by many other people.

C++

In order to create a GP implementation that is both fast and portable, C++ is an idea
choice. Of the wide range of 3GL languages available, C++ compilers are available on
most platforms. Thus the code can be written in a platform-independent manner. C++
also has an adequate library of functions to enable greater flexibility when designing

internal representations and manipulation functions.

Keith discusses some of the problems that accompany a C++ implementation,
especialy the issue of representation [Keith, 1994]. Since tree structures are not
native to C++, these have to be simulated using data structures. In a direct conversion
from LISP, these trees can be created using pointers and objects. However, it is aso
possible to convert the tree into postfix or prefix notation and use a one-dimensiona
array to store the tree. These different methods have a direct effect on the functions

that manipulate the expressions in terms of complexity and speed.

The greatest advantage of LISP over C++ is its ability to execute the individuals
directly to gauge their fitnesses. C++ has to use an interpreter to perform this task.

This interpreter will have to take the data structure that corresponds to an individual
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and simulate execution. For simple problems, such an interpreter may be trivial to
build, but a larger non-terminal set may require a complex interpreter on the scale of

the compiler itself.

This can be a prohibitive factor since the interpreter will have to be written as part of
the GP implementation. In addition, the problem domain will have to be modelled in
C++. The complexity of such modelling cannot be predetermined so the effect of such
is not obvious. However, without the aid of function libraries, mathematical modelling
in C++ isanon-trivia task which may require more devel opment time than the actual
GP agorithm.

Mathematica

Mathematica is an environment in which mathematical computations are easily
performed. It is essentially an interpreter which takes expressions as input and
attempts to make conclusions from these expressions. Most Mathematica users only

utilise this subset of its capabilities.

Mathematica can be compared to the BASIC (Beginners All Purpose Symbolic
Instruction Code) interpreter which was bundled with the older versions of MSDOS
(MicroSoft Disc Operating System). It can execute one command at a time or it can
take input from afile, thus processing a batch of input at once. This batch processing

allows the user to write programs in Mathematica.

Mathematica stores all expressions internally as trees. This makes it easier to
implement GP in Mathematica since GP requires a tree representation. Mathematica
also has available a library of functions for manipulation of these trees, and these are

useful for genetic operators.

Similarly to LISP, Mathematica makes no distinction between program code and data.
Thus a program can be manipulated and modified as if it was plain data, and data
could be executed as if it was code. Unlike C++, it is unnecessary to use an interpreter
to evaluate the fitnesses of individuals, since the individuals can be executed within

the framework of the M athemati ca environment.
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The most important factor supporting the implementation of GP in Mathematicais the
large body of existing and ongoing mathematical modelling in this environment, as
demonstrated by the number of conferences and publications devoted to it.
Mathematica is becoming a platform of choice because of its ingrained orientation
towards the analysis and presentation of mathematical solutions. The ease with which
complex problems can be implemented in Mathematica makes it feasible to
implement GP on this platform. Since GP is problem-independent, the majority of
work done to solve a problem is in the modelling stage. By choosing a platform like

M athematica which supports easier modelling, productivity can be increased.

Nachbar was the first person to document a GP implementation in Mathematica but,
subsequently, there has been little work donein this field [Nachbar, 1994]. This study
explores the implementation of GP on a Mathematica platform, making full use of the
multiple paradigms, optimizations and other advanced features available in the

language.

Introduction to Mathematica

The following overview of Mathematica is focused on the aspects that are relevant to
the GP implementation. A more in-depth discussion can be found in [Wolfram, 1991],
[Wolfram, 1992], [Wickham-Jones, 1994], [Maeder, 1991] and [Abell, 1992].

Platforms and Organisation

Mathematica is available on many different hardware platforms and operating system
combinations e.g. DOS, Windows 3.x, Sun, Silicon Graphics. However, the
underlying kernel of the environment is the same in al instances. This kernel is a
single-line text input processing system. A line of Mathematica code is typed in at the
keyboard, this expression is immediately evaluated and the results are output to the

screen.

In modern GUI (graphical user interface) operating systems, this method of inputting
data into the environment would not be acceptable since it does not conform to the
user interface and the advantages of the operating system would be lost. To make

Mathematica easier to use, a front-end processor was included. This is a graphical
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program that takes input from the user in the most natural way possible and passes this
input to the Mathematica kernel. The output from the kernel is then re-directed back to
the front-end, which formats it in a more natural way. The input and output are both
displayed as a single document, much in the same way as aword processor displays a
text document. This allows the user to edit and re-evaluate expressions, which could
not be done in the line-by-line version. Also, having both the input and output on a
single page alows for easier publishing of results from the session. This document,

containing Mathematicainput, output and other formatting is known as a Notebook.

Variables

Mathematica can do both numerical and symbolic calculations, attempting at all times
to produce aresult which is as accurate as possible. If the answer to a calculation is a
fraction, then that fraction would be output instead of its numerical equivaent, to

preserve computational precision.

The basic data types are String, Integer and Real. These can then be compounded into

lists. Values are assigned to variables by means of the standard assignment operator

X=12

In an actual Mathematica environment, these input and output operations may be
preceded by an internal numbering system, which alows the user to refer to results

from previous calculations.

After such a definition, all occurrences of X (taking case into account) are replaced by
its associated value. If theinput is simply X then the output would be “12”. Obviously,
the value of one variable can be assigned to another using the same syntax. Variables
can be created on-the-fly, without the need to declare the list of variables in advance.

A list of valuesis denoted by curly braces.

TestList = {1, 2, 3}

There are no pointers in Mathematica since it does its own memory management.

Lists can grow as large as memory and hard disk space (used for virtual memory)
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allow. They can be embedded and nested to form trees, which are the most general
form of data structure directly supported in Mathematica.

Functions

Mathematica is first and foremost a functional programming language. It contains a
large collection of pre-defined functions and alows the user to define further
functions or even enhance the built-in definitions. A program in Mathematica is
simply a sequence of calls to these functions. These calls can themselves be embedded

within another function, allowing modular programming.

Functions are called by the exact name of the function, followed by the parameters

within square brackets. For example,
Plus[2, 2]
would produce the following output:

4

All operations without exception can be written in this form. Even simple functions
like addition and subtraction can use this notation. However, in order to make
inputting of expressions easier, the kernel alows an aternative notation for some

common expressions, like addition and multiplication. Thus the expression
2+2

is equivalent to the one above and would produce the same output.

Function calls can be nested and the expression is then evaluated depth-first (in most

cases). Thusit is possible to write

Times[ 12, Plus[2, 1]]

which would evaluate to “36".

Functions are defined using the following general syntax:

NewFunction [x_, y_ ] (=2 * x +y
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The name of the function will be NewFFunct i on. This will be added to the list of
built-in functions. There is no distinction between built-in functions and user-defined

functions, allowing the Mathematica environment to be easily extended.

The parameters within brackets are the formal parameters. The underscores after the
names of the formal parameters indicate that they are ssmply placeholders for actua
parameters. Mathematica uses a system of pattern-matching to implement its function
mechanism. When the function is called, the actual parameters are replaced for the
forma parameters wherever they occur in the expression, then the expression is
evauated. If the underscores are omitted, Mathematica would try to match the exact
parametersin the list, without any form of pattern-matching. Thus, only

NewFuncti on[ x, y] would be successfully parsed.

The “:=" indicates that the RHS expression is not to be evaluated until the function is
used within another expression. This ensures that parameter substitution by means of
pattern-matching gets highest precedence. If the colon was not prefixed to the
assignment operator then the RHS would be evaluated when the function is defined; if
x and y are globa variables then their values would be substituted, instead of the

parameters, and the result of the function would be that constant value generated.

The expression on the RHS of the function definition is the body of the function. The
variables used are subject to parameter pattern-matching. The result of the function

call isthe evaluation of this expression. Thus

NewFunction [7, 3]

would result in

17

It is also possible to do symbolic calculations. Variables can be used as input to the

function, whether they have avalue or not. Consider the following code fragment:

a=12; NewkFunction [a, b]

The output would be

24 + b
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If two statements are separated by a semi-colon, then they are executed in sequence
and the result of the expression is the result of the second expression. In the above
example, a has an associated value while b does not. The kernel therefore replaces the
a with its value when calling the function. The second actual parameter is b since it
doesn't have a value. Thus the answer is as accurate as possible with the limited
information provided. Using this technique of defining values for variables it is also

possible to perform symbolic calculations in Mathematica.

Overloading of functions is an integral part of the environment, allowing for multi-
part functions and different parameter types and ranges. Functions are very flexible
when pattern-matching. It is possible to write functions that only accept parameters of
particular types or ranges or even parameters that obey specific rules. Varying

numbers of parameters are also catered for.

Paradigms

Although Mathematica focuses mainly on the functional aspects of programming,
there are also mechanisms that enable the user to write procedural and declarative

code.

By simple virtue of the fact that function overloading and pattern-matching is

available, declarative programming becomes feasible.

Procedural programming relies on constructs that explicitly implement sequence,
selection and iteration. Sequence is easily accomplished by consecutive lines of input,
possibly separated by semi-colons. A selection mechanism is normally in the form of
an “if” statement e.g. in C++ and Pascal. In order not to deviate too much from

classical languages, such a construct is provided in Mathematica.

If [x==0, 1, 2]

Unlike simple functions, the parameters are not evaluated beforehand. The | f
function will evaluate the first parameter. If its result is true then the second parameter
is evaluated, otherwise the third parameter is evaluated. The result of the entire

expression is therefore the result of either the second or third parameter.
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Iteration is implemented in a similar way. The functions are equivalent to their C++
counterparts. The Do function is equivalent to the fixed iteration "for” statement in
classical languages like C. Do has two parameters, the first being a block of
statements and the second being an iteration specification. This specification takes the
form of alist, where the first element is the name of the variable, the second the initial
value, the third the final value and the fourth the step. There are many different ways
of specifying a range of values for fixed loops, where some of these elements may be
omitted in favour of default values. The following example prints the string “Hello

World” ten times on the screen.

Do[Print[“Hello World”, {i, 1, 10}]

Conditional loops are implemented with the Whi | e function, which takes only two
parameters. The first is an expression that is evaluated each time the loop starts, and
terminates the loop once it is false. The second parameter is a block of statements that

must be executed.

This multiple-paradigm approach to programming is beneficia since the problems can
be modelled using any of these three methods. The best techniques of each paradigm
can be incorporated into the code. For example, the definition of multiple clauses can
be used with functions whose bodies are written in a procedural fashion. Being a
functional programming language, however, Mathematica discourages the use of
procedural constructs by providing the user with arich set of functions that implicitly

iterate over lists of data

Modularization - Functions

Since all variables are created dynamically, it eventually happens that variables begin
to overlap - i.e. avariable is used for different tasks in different parts of the program.
This is not critical until the value of a variable needs to be maintained for further
calculations. The classical solution to this is the introduction of local variables in the
functions. Since functions do not alow for this in their syntax, Mathematica provides
additional functions to define local variables explicitly and then execute a block of
code. Modul e is one such function, where the first argument is a list of local

variables and the second is ablock of statements.
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Swap [x_, y_]:=Module[{t}, t=x; x=y; y=t, {x, y}]

In this example, the variable t is a temporary local variable. After swapping the
values of the parameters they are expressed as a list, since the last expression

represents the return value of the function.

Modularization - Files

Instead of typing in an entire program from the command line, the program can be
stored in a Notebook and recalled when needed. Notebooks are especially geared
towards storing input, output and additional formatting. In order to store the definition
of afunction, or a sequence of Mathematica commands, it iS not necessary to use a
Notebook.

Any text file containing Mathematica code can be used as input to the interpreter. The
Get function opens the file, reads in the data and executes each line of the file in
sequence. The result of the Get function is the result of the last expression evaluated.

Thisisthe easiest method of storing and retrieving Mathematica programs.

A package is a collection of function definitions stored in atext file. It differs from a
normal text input file in that there is the addition of scope mechanisms. Instead of
making all variables globally accessible as before, a package can hide its variables and
definitions from the rest of the environment. This is accomplished by Mathematica
dividing the variable space into contexts. Any variable declared is inserted into the
current context. When a package is loaded, it creates a new context and inserts its
definitions into that context, finaly switching back to the old context. That way its
definitions are protected from being accidentally overwritten by new definitions. It is
possible to access members of another context explicitly but this is sufficiently
complex that it does not happen accidentally. Also, contexts can export their
definitions so that certain functions may be used in al contexts - after loading a
package the user can directly call the functions exported by that package but not its

internal functions.
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Simple Genetic Programming Implementation

The complete set of Mathematica files for this implementation is contained in

Appendix A.

Representation of Data

Since Mathematica already stores all data internally in the form of expression trees,

this can be exploited readily to represent the individuals in a GP implementation.

Standar d Repr esentation M athemati ca Expr ession

b
a+ E Plus[a, Divide[b, c]]

Tree Representation

Figure 2.1. Representation of an expression

The individuals in a population could be represented simply as Mathematica
expressions due to their correspondence to trees. However, Mathematica would
attempt to simplify all expressions immediately. Thus any expression with constant
parameters would be folded immediately to the numerical value of the constant
expression. For example,

Plus[2, 3, 7]

becomes

12
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This is not aways desirable since genetic material would be lost each time an
expression is simplified. In order to prevent Mathematica from simplifying
individuals, the standard functions are replaced with dummy functions. Pl us is
replaced with PPl us, M nus is replaced with PM nus, etc. Since Mathematica
knows nothing about the functions called PPl us and PM nus, it will not attempt to

reduce the expressions. The above expression would now be

PPlus [2, 3, 7]

and Mathematica would not reduce the expression since it would not know how to do
that. However, in order to use the expressions in fitness evaluations, they must be
meaningful to the interpreter. At the last point before evaluation, the expressions can

be converted to the proper form with a simple transformation.

XTrans={ PPl us- >Pl us, PM nus->M nus, PTi nes->Ti nes,
PDi vi de- >Di vi de}

This defines a set of rules for converting sub-expressions from one value to another.
In this example, al occurrences of PPl us would be changed to Pl us, and so forth.

Mathematica provides a mechanism to apply this set of transformations to any

expression asillustrated below.

PPlus [2, 3, 7] /. Xtrans

12

After the expression has been transformed, it is immediately evaluated by the kernel

and the result is returned.

According to Koza, the first two elements to consider when modelling a GP are the
function and terminal sets [Koza, 1994]. The functions can be simply the collection of
dummy Mathematica functions, corresponding to real functions that may be contained

inindividuals. For simple polynomials, this would include the four basic operations.

Functi ons={ PPl us, PTines, PM nus, PD vide}

Since Mathematica has no knowledge of the functions in the function set, there is no
way of telling how many parameters each can take. This is required to construct

syntactically correct individuals, so it has to be specified explicitly asalist of arities.
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Parameters={2, 2, 1, 2}

The terminal set would contain all the variables available to each individual. Just as

with the function set, thisis specific to each problem.

Term nal s={x, vy, z}

Closure of Function Set

Since GP can construct any expressions with any possible numerical values, it is quite
conceivable that an individual may attempt to divide by zero. This can be prevented
by explicitly assigning a non-error value to that operation. Mathematica allows the

programmer to override any function, which includes the standard operations.

ClearAttributes[Divide, Protected]

Divide[_, 0]:=1

Set Attri butes[ Di vide, Protected]
Every function has attributes to indicate what is possible with the function. The
Pr ot ect ed attribute indicates that the definition of a function cannot be changed. In

order to change the definition, this attribute must therefore be temporarily removed.

It is not necessary to provide a name for the first formal parameter of the definition
since this parameter is never used. All that Mathematica needs check for is the zero as
a second parameter - then the value “1” is returned. Since the parameter list is more
specific, this clause has higher priority than the general case - the kernel will attempt

to match these parameters before trying the built-in definition.

Similarly, al other functions used in the implementation must be scrutinised for
undefined values. Any such values must be overridden with appropriately defined
values. Besides Di vi de, it may be useful to overload the definitions for Log and

Power aswadll.

ClearAttributes[Log, Protected]
Log[ 0] : =0

Log[ x_ /; x<0]:=Log[-X]

Log[ E*x_]:=x

Set Attri butes[Log, Protected]
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Cl earAttributes[ Power, Protected]
Power[ 0, -1]:=1
Set Attri butes[ Power, Protected]

Early Mathematica kernels could not automatically simplify some Log expressions so
those were defined here as well. Once they are defined, these functions will be used

automatically by the kernel.

Power has to be overloaded simply because 0™ is equivalent to division by zero.

Fitness

The fitness of an individua can be defined as afunction that takes the individual asits
single parameter and returns the associated fitness value. This function is specific to
the problem domain so it cannot be included in the general algorithm. However, it is

possible to pre-define the transformations that the fitness value undergoes.

The raw fitness is a raw indication of the fitness of the individual. The standardised
fitness is the zero-based fitness, such that a fitness of zero represents the perfect
solution. The adjusted fitness maps the standardised fitness onto the range 0-1 such
that 1 isthe best fitness and O the worst.

(* RawFitness *)
St andar di zedFi t ness[ x_] : =RawFi t ness| x]

Adj ustedFi t ness[x_]:=N 1/ (1+St andar di zedFi t ness[ x] )]

RawFi t ness is enclosed within comment delimiters since it is defined differently
for each problem domain. Adj ust edFi t ness returnsits result in numerical format
by applying the numerical approximation function N. This forces the kernel to convert
all fractions to rea numbers, which is necessary for the fitness-proportionate

reproduction stage.
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Parameters

These parameters control the GP execution. They are used in conjunction with the
fitness and function/terminal sets to uniquely define the GP approach to finding a

solution in aparticular problem domain.

MaxCener ati ons = 51

MaxCGener at i ons is the maximum number of generations that must be created by
the agorithm. If no acceptable solution is found after MaxGener ati ons

generations, then the algorithm terminates.

Popul ati onSi ze = 250

Popul ati onSi ze is the number of individuals in a single generation of the
population. This is a static number to prevent the population from outgrowing the

computer’ s resources or dwindling to obscurity.

Maxl nitial Size = 6

Maxl ni tial Si ze isthe maximum initial depth of the treesin generation O.

MaxSi ze = 17

MaxSi ze is the maximum depth of the trees. This is different from
Maxl nitial Si ze since it is expected that better trees in later generations will be

larger than the initial ones.

MaxConpl exity = 50

MaxConpl exi ty is the maximum number of nodes that a tree can have. This is
necessary to prevent bushy trees, which correspond to complex expressions. In effect,
this parameter controls the parsimony of the generated solutions. A smaller value
generates more parsimonious individuals but may miss the solution atogether. A
larger value generates complex expressions but has a better chance of finding

solutions.

CrossoverProbability = 0.9
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Crossover Probabi | ity is the probability that crossover will occur between a
pair of individuals during the creation of a new generation. It is expressed as a fraction

relative to 1, thus 0.9 represents a 90% probability of crossover.

Miut ati onProbability = 0.1

Mut at i onPr obabi | ity is the probability that an individual will be mutated

during the creation of a new generation. 0.1 represents a 10% probability of mutation.

M nFi tness = 0. 99

M nFi t ness is the minimum fitness value that indicates termination of the
algorithm. If any individual achieves a fitness equal to or better than this, then that is
denoted the solution and the algorithm stops iterating.

Generation of Random Population

CGenerateNormal [d_]: =
Modul e[
{r, Poss, PossPar},
If[
d>1,
Poss=Joi n[ Functi ons, Term nal s];
PossPar =Par anet er s,
Poss=Ter ni nal s;
PossPar ={}
l;
Vi | e[
Lengt h[ PossPar ] <Lengt h[ Poss] ,
PossPar =Append[ PossPar , 0]
l;
r=Randoni | nteger, {1, Length[Poss]}];
Swi t ch[
PossPar[[r]],
0,
Poss[[r]],
1
Poss[[r]][CGenerate[d-1]],
2,
Poss[[r]][ Generate[d-1], Generate[d-1]]

]

Gener at eNor mal recursively generates a random expression tree. It takes a single
parameter being the depth of the tree and then produces a tree of at most this depth,

composed entirely of functions and terminals from the pre-specified sets.

The first statement checks if the depth is greater than one. If so, it alows the

generation of functions as well as terminals. If the depth is exactly one, then only
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terminals are alowed. If terminals and non-terminals are acceptable, then they are
joined together into one list. In either case, the number of parameters associated with

terminals needs to be set to zero for each terminal.

After this is done, a random number (between 1 and the number of possible
functions/terminals) is generated to decide on the sub-expression to be generated at
that point. The number of parameters for this function is extracted from the PossPar

list, built in the previous lines, and used to recursively generate expressions for each
parameter. The output of the Swi t ch function is what is returned by the function so
each possible output is formed by a function/terminal followed by a set of parameters.
These parameters are generated using the same Gener at eNor mal function, except

that the maximum depth is reduced by one for each parameter.

Reproduction

A set of functions works together to create a new population from the previous

generation, using fitness-proportionate selection.

(* List of fitnesses of expressions in current generation *)
Fi t nesses={}

Fi t nesses isalist of the fitnesses of al individuas in the population. These are
calculated whenever a new generation has been created, after all the genetic operators
have been applied. The list of fitness values are necessary to implement roul ette-wheel

selection.

(* Make cunul ative fitnesses vector *)
Cal cFi t nessSum =
Modul e[ {},
Fi t Sum=Tabl e[ Appl y[ Pl us, Take[Fitnesses, i]],
{i, 1, Length[Fitnesses]}

] 1
FitSumel nsert[FitSum 0, 1];
]

Cal cFi t nessSumcreates a list of partial sums of the fitnesses of individuals. For
example, if the fitnesses of a 5-individual population corresponds to {1, 2, 3, 4, 5},
then the value of Fi t Sumwould be {1, 3, 6, 10, 15}. Each element of Fi t Sumisthe
sum of all fitnesses up to that point. Finally an element with value “1” is inserted at

the beginning of the Fi t Sumlist to assist with the search technique employed below.
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(* Bisection algorithmsearch for roulette wheel fitnesses *)
Search[x_] :=
Modul e[{M d, Start=1, Stop=Length[FitSum},
VWhile[Start+1 != Stop
Md = Floor[(Start+Stop)/2];
If[FitSun{[Md]] > x,
St op=M d,
Start=Md

]
l;
Start
]

In order to implement roulette-wheel selection of individuals, the normal procedureis
to add together all fitnesses, generate a random number in the range of this sum and
then add fitnesses until the random number is exceeded. The bottleneck in such a
mechanism lies in the linear search through the list of fitnesses that must be done to
find the selected individual. Freeman modified this technique when applying it to
GAs, by producing partial sums and executing a binary search for the selected
individual [Freeman, 1994].

The partial sums, as created by the Cal cFi t nessSumfunction, are obviously sorted
in ascending order. A binary search applied to this Fi t Sumlist produces exactly the

same results as the linear search technique applied on Fi t nesses.

(* Create new generation from previous one *)

NewGen[ x_] := Modul e[
{maxwheel , newgen, | enx},
newgen={};

maxwheel =Appl y[ Pl us, Fitnesses];
| enx=Lengt h[ x] ;
Cal cFi t nessSum

Do
Modul e[
{spot, index, isun},
spot =Randoni ] * maxwheel
i ndex=Sear ch[ spot];
newgen=Append[ newgen, Xx[[index]]]
]1
{i, 1, lenx}
l;
newgen

]

NewGen creates a new generation of individuals. The newgen isfirst initialised to an
empty list. The sum of fitnesses (maxwheel ) and the size of the population (I enx)
are calculated. It can be argued that the Popul at i onSi ze can be used. However,
by generating the population size dynamically, it is possible to apply this function to
subsets of the population as well.
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Cal cFi t nessSumcreates the list of partial sums needed for the binary search. A
new generation is then created iteratively. A random number is generated and the
associated individual is selected by the Sear ch function. The individua is then

appended to the new generation in newgen.

Finaly, the value of newgen is returned as the result of the function, being the new

population.

Crossover

Two child expressions are produced from a pair of parents by means of the crossover
genetic operator. Crossl takes two individuals and performs crossover.

Crossover appliesthisfunction to an entire population.

(* Get list of all indices of internal points in expression *)
RenmoveZero[ x_]:=If[Position[x, 0]=={}, x, {}]

Poi nt s[ x_] : =Uni on[ Map[ RenobveZero, Position[x, _]11, {}]
Getinternal [{x___}]:=

The unique position of any node or subtree in a tree can be specified by a list of
indices, which represent the path from the root to the node. Poi nt s is a function

which generates alist of the positions of every subtree of agiven tree.

(* Performcrossover operation on two expressions *)
Crossl[x_, y_ ]:=
Modul e[
{spot 1, spot2, pointl, point2, tenpl, tenp2},
If[
Randoni ] <Cr ossover Probability,
poi nt 1=Poi nt s[ x] ;
spot 1=Randoni I nteger, {1, Length[pointl]}];
poi nt 2=Poi nt s[y] ;
spot 2=Randoni I nteger, {1, Length[point2
tenpl=x[[CetInternal [point1[[spotl]]]]];
tenp2=y[[CetInternal [point2[[spot2]]]]];
{ If[
poi nt1[[spot1] ] =={},
tenp2,
Repl acePart[x, tenp2, pointl[[spotl]]]
1,
If[
poi nt 2[ [ spot 2] | =={},
tenpl,
Repl acePart[y, tenpl, point2[[spot2]]]
]

{x, vy}

]
]
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Cross1 crosses over two individuals to produce a pair of new individuas. First, a
random number is generated and this is used to decide whether to apply crossover or

simply copy the individuals.

If crossover is to be applied, the node list is generated for each individual by calling
Poi nt s. Random sub-trees are extracted from the individuals and then stored in the
tenpl and t enp?2 variables. Finaly, the sub-trees are swapped and replaced in the
individuals and the list of two new individuals is returned from the function. The
additional check before replacing the sub-tree handles the special case where the sub-

treeisthe entire individual.

(* Performcrossover on all expressions in new generation *)

Crossover[x_] := Mbodul ]
{newx, oldx, n2, leno, origlen},
ol dx=x;
newx={};

| eno=Lengt h[ ol dx] ;
ori gl en=l eno;
Whi | e[
| eno>0,
I f[
| eno==1,
newx=Append[ newx, First[oldx]];
ol dx=Rest [ ol dx],
n2=Crosslfoldx[[1]], oldx[[2]]];
If[((Depth[n2[[1]]] <=MaxSi ze) &&
(Leaf Count[ n2[[ 1]]] <=MaxConpl exity)),
newx=Append[ newx, n2[[1]]],
newx=Append[ newx, ol dx[[1]]]

1
I f[((Depth[n2[[2]]] <=MaxSi ze) &&
(Leaf Count[ n2[[2]]] <=MaxConpl exity)),
newx=Append[ newx, n2[[2]]],
newx=Append[ newx, ol dx[[2]]]
1;
ol dx=Drop[ ol dx, 2];
Iéno:Length[oIdx]
1

newx

]

Crossover applies the Cr oss1 function to an entire population. Once again, the
new generation (newx) isinitialised to an empty set and the length of the population
is calculated (I eno). The first two elements of the old population are crossed. The
new individuals are separately tested to make sure that they do not exceed the
maximum size or complexity parameters. Each individual that passes the test is added

to the new population, while those that fail the test are discarded and the original
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individuals are then added to the new population. Finaly, the first two individuals are
removed from the list, and the process continues as before. If there is only one
individual left in the population, that is simply copied to the new population. The

iteration terminates when the entire old population has been processed.

Mutation

Mut at i on isafunction that applies the mutation genetic operator to an individual.

Mut at e[ x_] : =Mbdul e[

{spotl, pointl, y, xold},

xol d=x;

I f[
Randoni ] <Mut at i onProbability,
y=Cener at e[ Maxl ni ti al Si ze] ;
poi nt 1=Poi nt s[ x] ;
spot 1=Randoni I nt eger, {1, Length[pointl]}];
I f[

poi nt1[[spot 1] ] =={},

y1
Repl acePart[x, y, pointl[[spotl]]]

1,
f]

((Dept h[ X] <MaxSi ze) &&
(Leaf Count [ x] <MaxConpl exi ty)),
X,
xol d
]
]
]

Before modifying the individual in any way, a copy is kept in xol d. Then a random
number is generated to decide whether to apply the mutation operator or not. If the

operator is not applied, the individual is simply returned as the result.

Otherwise, arandom expression is generated. Just as with crossover, arandom point is
chosen in the tree. The new expression is inserted at this point, replacing whatever
was there before. During this replacement, it is still important to check if the whole
expression needs replacing. Finaly, before returning the new individual, it is

necessary to check that it does not exceed the complexity or size requirements.

Result Designation

The best individual from all the generations is designated as the solution, if it satisfies

the M nFi t ness criterion. In order to keep track of this solution, it is necessary to
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store the individual as well asits fitness. CheckSol ut i on checks the population at

each iteration to determine if an acceptabl e solution has been found.

(* Update

best-of -run individual *)

CheckSol ution[gen_, x_]:=

Modul e[

]

{mnf, maxf},

Fi t nesses=Adj ust edFitness / @X;

m nf =Posi tion[ Fitnesses, Mn[Fitnesses]][[1,1]];

mexf =Posi tion[ Fi tnesses, Max[Fitnesses]][[1,1]];

I f[

Sol uti onFi t ness<Fi t nesses[[ maxf]],
Sol ution=x[[maxf]];
Sol uti onFi t ness=Fi t nesses[ [ maxf]]
l;
Sol uti onSet =Append]
Sol uti onSet ,
{gen, Fitnesses[[maxf]],
x[[maxf]],

Fitnesses[[m nf]], x[[mnf]]}
l;
Print["G"', gen, ": max ", Fitnesses[[maxf]],

" mn ", Fitnesses[[m nf]]];

First the fitness is calculated for all individuals in the population. Then the position of

the minimum and maximum fitnesses are calculated. The best solution of the current

generation is checked against the global solution (Sol ut i on, Sol uti onFi t ness)

and the global values are replaced if appropriate. Finaly, the best and worst fitness

values and their associated individuals are stored for statistical purposes (in

Sol uti onSet).

Initialisation

Running the GP is a two-step process. First the population and variables must be
initialised with default or initial values. Then the GP can be run until one of the

termination criterion is satisfied.

(* Initial

ise Cenetic algorithm?*)

Initialize: =Bl ock[{popl og},

Popul ati on=Tabl e[ Gener at e[ Maxl ni ti al Si ze],
{Popul ati onSi ze}];

Sol uti onFi t ness=0;

Sol uti onSet ={};

Gener at i on=0;

Tot Ti me=0;

Print["G', Generation, ": calculating",
"fitnesses ..."];

Print["G', Generation, ": done ... ",

Ti m ng[ CheckSol uti on[ Gener ati on,
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Population]][[1]]1];

Print["G', Generation, ": best-of-run "
"fitness so far ="
Sol uti onFi t ness] ;

Of[DeleteFile::nffil];

Del eteFil e[ "pop.l0g"];
On[DeleteFile::nffil];

popl og=CpenAppend[ " pop. | 0g"] ;
WiteString[popl og, "pop={"];
Wite[popl og, {CGeneration, Fitnesses}];
d ose[ popl og] ;

I nformati on[ Popul ati on];
G nf ormati on;

]
First an initial generation O population is created. All global variables are given their
initial values. Sol ut i onFi t ness is set to the absolute minimum fitness (0) so that
the very first time CheckSol ut i on is run, it would attach a value to this variable.
Gener ati on is set to 0, being the initial generation, and Sol ut i onSet is empty
since no generations have been processed yet. Then the initial generation is checked

by CheckSol ut i on and the results displayed on the screen.

POP.LOG stores statistical information used to monitor the distribution of individuals
in the population. It is deleted and then initialised with the data for the initia

generation.

Finally, the individuals in the initial population are displayed on the screen, together

with information about the parameters of the impending execution.

ApplyGen

The GP agorithm itself is controlled solely by the Appl yGen function.

(* Apply Genetic algorithm*)
Appl yGen : = Modul e[
{onetine, poplog},
newpop=Popul ati on;
Wi | e

(Sol utionFitness<M nFitness) && (Ceneration<MaxGenerations),
onet i me=Ti m ng[

Print["G', Generation, ": creating mating pool ..."];
Print["G', Generation, ": done ... ",

Ti m ng[ newpop=NewCGen[ newpop] ] [[1]]];
Print["G', Generation, ": perform ng crossover ..."];
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Print["G', Generation, ": done ... ",

Ti m ng[ newpop=Cr ossover[newpop] ] [[1]]1];
Print["G", Generation, ": performng mutation ..."];
Print["G', Generation, ": done ... ",

Ti m ng[ newpop=Map[ Mut ate, newpop]][[1]]1];
Gener ati on++;

Popul at i on=newpop;

Print["G', Generation, ": calculating fitnesses ..."];
Print["G', Generation, ": done ... ",

Ti m ng[ CheckSol uti on[ Generation, newop]][[1]1];
Print["G', Generation, ": best-of-run fitness so far = ",

Sol uti onFi t ness] ;

1001

Ti me[ onetinme, "G', Ceneration,

total tine for Ceneration change = "];
Tot Ti me+=onet i ne;
Time[TotTinme, "G, Ceneration, ": total time so far = "];

popl og=CpenAppend[ " pop. | 0g"] ;
WiteString[poplog, ","];

Wite[popl og, {CGeneration, Fitnesses}];
d ose[ popl og] ;

l;

{Solution /. XTrans, Sol utionFitness}

The iteration proceeds as long as the current best solution does not exceed
M nFi t ness and the maximum number of generation has not been reached. A new
generation is created by fitness-proportionate reproduction using the NewGen
function. Cr ossover and Mut at i on are applied to this new generation and it then
replaces the origina population. Finally, CheckSol ut i on checks the fitnesses of
individuals. Throughout the iteration, the time taken is measured and extensive
reporting on current activity is carried out. At the end of the iteration, this time is

reported as well as the time taken for al generations thus far. The population fitness

datais saved in POP.LOG for statistical purposes and the next iteration begins.

(* Start run of algorithm*)
St art Gen: =Ti mi ng[

CheckAbort [

Appl yGen,
{Solution /. XTrans,
Sol uti onFi t ness}
|

]

Conti nueGen[ gen_]: =NModul e[ {},

MaxCener at i ons=gen;
M nFi t ness=2;
Start Gen

]
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Start Gen and Conti nueGen simply enhance the capabilities of Appl yGen.
St art Gen incorporates the ability to break out of the calculation as well as
displaying timing information and the solution at the end of the run. Cont i nueGen
continues the agorithm after the termination criterion has been met, in an attempt to

find even better solutions or aternatives.

Automatic Recovery

Although the GP agorithm works fairly well if left to run unattended, it takes
extremely long to find non-trivial results. If a computer is working on a problem for a
long period of time, it is quite possible that there could be a power failure. In such
cases, all intermediate calculations would be wasted and the algorithm would have to
be started from scratch.

To save these results, the state of the system at each stage of the calculation can be

stored in a text file by the following code fragment, for easy continuation at a later
Stage:

Save["restart.log", Popul ationSize];
Save["restart.log", ContinueCGen];

Mathematica saves the definition of Popul ati onSi ze and Cont i nueGen in the
file caled RESTART.LOG. However, since Cont i nueGen calls Appl yGen, that is
also saved. All the functions called by Appl yGen are saved as well and this process
continues recursively. Eventually, every function needed to execute the GP is stored in
thefile.

There is always the danger, abeit quite small, that the power failure may occur while
the backup is taking place. The solution to this is to make the backup in a temporary
file and only swap the files once the backup is complete. Using this technique, in the
worst case scenario where the power failure occurs during backup, the previous

backup is still secure and can be used.

Print["Saving state of system.."];
Save["restart.log", Popul ationSize];
Save["restart.new', ContinueCGen];
RenaneFil e[ "restart.log", "restart.old"];
RenaneFil e[ "restart.new', "restart.log"];
DeleteFile["restart.old"];
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This saving of data must be incorporated into both Appl yGenandl niti alize.In
order to use this data, Appl yGen must load the data from disk before going into the

processing loop. This can be accomplished simply by

Get[“restart.log”];

Mechanics of a Sample Implementation

In order to use this GP implementation, the programmer must first model the problem
domain in Mathematica. Then appropriate terminal and function sets must be chosen
along with a reasonably well-scaled fitness function. Parameters can be tweaked to
accommodate peculiarities of the problem domain; for example, a larger population

size may be needed if the function islarger.

Theinitial population is generated and processed by calling
Initialise

The GP agorithm is begun by calling

Start Gen

Thereafter the progress of the algorithm can be monitored on the screen.

After a successful GP run, it is possible to utilise the built-in features of Mathematica

to analyse the results, produce statistics and generate graphs and histograms.
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CHAPTER 3 :
SYMBOLIC REGRESSION

Statistical Analysis Techniques

A series of experiments was conducted to evaluate the effectiveness of the
implementation. These experiments were compared on the basis of time taken,
resources used, and the changes in the population as the generations progressed, the
most important changes being those in the fitness values. These fitness values were
streamed, in Mathematica expression format, to atext file during each run of the GP

algorithm.

After the algorithm terminated, it was possible to read in the complete list of fitnesses
over al generations and extract information regarding the convergence, divergence or
other shifts in the population. This data could then be displayed graphically using the
built-in graph-plotting routines in Mathematica.

ShowCur ve: =Modul e[
{t},
t=MapThread[ Li st, SolutionSet];
Li stPl ot [ MapThread[List, {Join[t[[1]],
ti[1]1],
Join[t[[2]], t[[4]]11}].
Pl ot Range- >{ {0, 51},

| {0, 1}}]

ShowCur ve displays a graph of the minimum and maximum fitnesses of each
generation. This function is general and can be applied to all problem domains. A
typical output from ShowCur ve is shown in Figure 3.1. This graph indicates
whether the algorithm is convergent or not. If there is visible convergence and no
solution has yet been found, then the algorithm can be extended over more
generations. If convergence is not reached, then the parameters of the run can be

tweaked to better suit the problem domain.
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Figure 3.1. Best and worst fitnesses per generation

In Figure 3.1, the x-axis represents the generations and the y-axis represents the

fitnesses of the best and worst individuals.

Just watching the fitnesses of best and worst individuals may not be enough. If the
best individual of the run is found in generation O, then the graph from ShowCur ve
may indicate only a horizontal line. However, the fitnesses of other individuals may
have changed drastically, making it necessary to visualise the entire popul ation instead
of just the extremities. For any given generation, every individual’s fithess can be
plotted on a graph to display the distribution of fitness values. This introduces new
difficulties since the size of the population dictates the amount of information that
needs to be contained in the graph. One approach employed throughout this study isto
divide the fitness value range into discrete intervals. Then the individuals can be split
into sub-ranges according to their fitnesses. A histogram of fitness values can be
generated from these discrete ranges. Separate histograms can be created for each
generation and animated (using built-in Mathematica functions) to display the implicit
movement of the population towards a greater average fitness.
Run[ " copy pop. | og+pop. m pop.ful /Y > nul"]

<<pop. f ul
popfit=MapThread[ List, pop][[2]]
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The first few lines of the histogram generation routines convert the raw data from the

previous run into alist, containing lists of fitness values for each generation.

Hi stogranix_, opts__ ]:=
Modul e[ {data, fl, figs},
dat a=Tabl e[ 0, {10}];
figs=Map[ Fl oor, popfit[[x+1]]*10];
figs=Map[If[#==0, 1, #]& figs];
Map[ (data[[#]] ++) & figs];
Bar Chart [ data, BarlLabel s->Table[i, {i, 0, 0.9, 0.1}],
Pl ot Range->{{0, 11}, {0, Popul ationSi ze}},
Pl ot Label ->Stri ngJoi n[ " Generation "
ToString[x]],
opt s]
]

Hi st ogr amgenerates a histogram from the fitness data for a single population. The
fitness values are divided into 10 discrete ranges, each with length 0.1. The x-axis
represents the fitness ranges and the y-axis represents the number of individuas in

each category. A typical output from Hi st ogr amis shown in Figure 3.2.

No of individuals )
Ceneration 8

250
200
150+
100+
50t
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fitness range

Figure 3.2. Fitness histogram for generation 8
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Hi st Tabl e: =Tabl e[ Hi stogranii, Di splayFunction->ldentity],
{i, 0, Length[pop]-1}]

Hi st Tabl e creates fitness histograms for all populations, without displaying them

on the screen - they are ssimply created and stored in memory.

Ani mat eHi st : =ShowAni mat i on[ Hi st Tabl e] ;

Ani mat eHi st displays an animation of the fitness histograms as created by
Hi st Tabl e. This can be used to study changes in the overall fitness of the

population as generations progress.

Experiment 1. Symbolic Regression in
Mathematica

Problem Selection

Regression is essentially the problem of fitting an equation through a set of sample
points. Statisticians use various techniques to perform different types of regression on
test data. However, in aimost all cases the form of the equation needs to be pre-
specified. For example, in the case of linear regression, it is attempted to find the
equation of a straight line that passes through the points. Knowing that a straight line
equation has the format

it is only necessary to find the values of the coefficients a and b. In quadratic

regression, coefficients a, b and ¢ need to be found in the following equation:

This is not always possible since the test data may be noisy, in which case the search

isfor an equation that produces the least overall error.

All regression techniques are calculation-intensive and try to find a solution by
minimising the error between the prospective solution and the test data. If the form of

the equation is unknown, then various forms are tried and the one with the least error
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is assumed to be the solution. This selection process is largely intuitive and becomes

more difficult as the complexity of the required equation increases.

Symbolic regression is an attempt to solve this problem, by searching for both the
form and the coefficients of the equation. This is not easily accomplished by normal
analytical and statistical techniques. A complete expression is sought and that is
precisely what GP produces. This makes GP an ideal vehicle to implement symbolic
regression. If the evolution of the expressions is directed by the error between the
actual data and that generated from the expressions, then the expressions will

gradually tend towards better-fitting equations.

Test Data

In selecting atest problem to apply GP to, it has to be decided whether to use rea data
or smulated data. Since the aim of this experiment was to test the operation of the

algorithm, data was simulated. The data was a set of 2-dimensional coordinates in the

X-y plane.
X y X y X y
20 10 -0.6 -0.3264 0.8 2.3616
-18 6.1056 -04 -2784 1.0 4.0000
-16 3.4176 -0.2 0.1664 1.2 6.4416
-14 1.6576 0 -2.7756x10°1° 1.4 9.9456
-12 0.5856 0.2 0.2496 1.6 14.8096
-1.0 4.4409x107%° 0.4 0.6496 18 21.3696
-0.8 -0.2624 0.6 1.3056 2.0 30.0000

Table 3.1. 21 pairs of x-y coordinates used as test datain Experiments 1.4-1.7

The generation of test points as shown in Table 3.1 can be either random or derived
from some known equation. With random data a solution is not guaranteed so it was
decided to use latter approach. The data in Table 3.1 was generated by selecting
equidistant points along the x-axis and determining corresponding y-values from the

given equation (Equation 3.3). This set of test data was used in Experiments 1.4-1.7.
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Experiments 1.1-1.3 generated y-coordinates from uniformly random non-equidistant
points along the x-axis in the range [-1, 1]. New sample points were generated for
each run of the experiment. These sample points are shown graphically in Figures 3.3,
3.5and 3.7.

Experiment 1.8 added 20% random noise to the sample data indicated in Table 3.1.

Thisisfurther elaborated upon in the discussion of that experiment.

The advantage of equidistant x-coordinates is that the equations generalise better to
points in between those given. In the case of non-equidistant x-coordinates, the points
may be clustered, and there would exist gaps between the clusters that are larger than
the average gap size. These large gaps can result in unnecessary fluctuations in the

equations, since there are no points to constrain the path of the curve.

Rather than generate random data, al the subsequent experiments used an equation,
that was known to converge in a reasonable amount of time, to generate test cases
[Koza, 1992].

VD AR D Gl Sl S (3.3)

During the course of the experiment, it became clear that Equation 3.3 has some
useful properties that are not found in other equations (e.g. y=x*+1, y=x*+x+1).
Firstly, the points were rarely fitted by any other equation, thus preventing
convergence to a loca minimum. Secondly, the equation can be factored in a
multitude of different ways. Thus there are many different parse trees or
representations of the equation, which means that the solution occupies a larger
portion of the search space; hence it can be found more easily. When other equations
were substituted, GP did not converge to a solution since the population size was no
longer large enough. It was decided to run all tests using Equation 3.3 so that large

populations would not be necessary.

Platform

All experiments were run on a 486 DX2-66 machine with 16 megabytes of RAM,
under Mathematicafor MS-DOS version 2.2.
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Statistics

Additional statistics, specific to this problem, were produced for each run of the

experiment.

ShowSanpl e: =Li st Pl ot [ MapThr ead[ Li st, {XPoints, YPoints}]]

ShowSanpl e displays the test datain graphical format.

ShowSol ution: =Pl ot[ Solution /. XTrans, {x, -2, 2}]

ShowSol ut i on plotsthe equation generated by the GP.

ShowFi t : =Show| ShowSanpl e, ShowSol uti on,
Pl ot Range->{{-2, 2}, {-2, 10}},
Pl ot Label ->Sol ution /. XTrans, AxeslLabel->{x, ""},
Fr ame- >Tr ue

]

ShowFi t superimposes the graphs from ShowSanpl e and ShowSol uti on to
graphically display the equation passing through the sample points. A typical graph
generated by this function in shown in Figure 3.3.
Stats[s_String]:=Mdul e[{},
Di splay[ StringJoin[s, ".sanl],
ShowSanpl e] ;
Di splay[ StringJoin[s, ".sol"],
ShowSol uti on];
Di splay[StringJoin[s, ".fit"], ShowFit];

Di splay[StringJoin[s, ".scu"],
ShowCur ve] ;
]

St at s produces al the graphs relevant to the problem and stores them on disk for

future reference.

Problem Representation and Parameters

The parameters used during the initial experiments (1.1-1.3) are indicated in Table
3.2
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Population Size 250
Max no of Generations | 51
Max initial size 5
Max size 17
Maximum compl exity 50
Min solution fitness 0.95

Mutation probability 0.05

Craossover probability 0.9

Terminal set {x}

Function set {PPlus, PMinus, PTimes, PDivide, PExp, PL og}

Table 3.2. GP Parameters for symbolic regression - Exp 1.1-1.3

Most of the parameters assume default values. The rest of this section discusses those
parameters that have been over-ridden as well as those parameters that are specific to
symbolic regression.

Mut at i onPr obabi | i ty=0.05
Mut at i onProbabi | ity is set to alow value because the termina and function

sets are not large so loss of genetic material should not be a problem.

XTrans={ PPl us- >Pl us, PM nus->M nus, PTi nmes->Ti nes,
PDi vi de->Di vi de, PLog->Log, PExp->Exp}

XTr ans defines the transformations for all functions, whether they are used in the
actua function set or not.
Functions={ PPl us, PM nus, PTines, PDivide, PExp, PLog}

The function set is defined to contain the basic operators as well as logarithms and
exponents since the form of the equation is supposedly unknown. It is also of interest

to determine if another totally different equation can fit the exact same points.
Parameters={2, 1, 2, 2, 1, 1}

Par anet er s define the arity of each corresponding function in the function set.
Ter mi nal s={x}

The terminal set contains only a single variable since the expression sought is a

function of one variable. Constants are excluded to further shrink the solution space.
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fx_ ]:=x* + x"3 + x"2 + x

f [ x] represents the perfect solution, used to generate the test data. Beyond this, it is

not again used during the course of the experiment.

NoOF Sampl es=20

NoOr Sanpl es isthe number of pointsthat are used as test data.

I nit Sanpl e: =Bl ock[{},
XPoi nt s=Tabl e[ (Randon{ ]1*2)-1, {NoOf Sanpl es}];
YPoi nt s=Map[f, XPoints];
ShowSanpl e
]

I ni t Sanpl e creates the test data from the given equation. The x-values are either
random distributed (Experiments 1.1-1.3) or equidistant (Experiments 1.4-1.7) and the

y-values are generated from the given function f .

Calc[a_, xvalue_]:=a /. XTrans /. x->xval ue

Cal ¢ returns the y-value calculated from an individual expression and a single x-

value, after transforming the function names.

RFitness[x_]:=N Appl y[Plus, Abs[( (Calc[x, #1])& / @ XPoi nts) -
YPoi nts]]]
RawFi t ness[ expr _] : =Check[ RFi t ness[ expr], 20000]

RFi t ness caculates the raw fitness of an individual. The expression is used to
generate a set of new y-values from the given x-values. These are then compared to
the original y-values and the absolute sum of the errors represents the fitness.
RawFi t ness traps computational errors like overflow and returns sufficiently a high

fitness value so that that expression is penalised.

Experiment 1.1

The range for the x-values in this experiment was [-1, 1]. The experiment was stopped

after 51 generations. The best individual found was the expression
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This expression had a fitness of approximately 0.476, which was far from the
expected fitness. However, the expression fitted the sample data quite reasonably.
Examination of the sample data and the solution curve indicated that the sample data

was not evenly spaced, which may have led to the complexity of the solution.

1.5}

0.5}

g 0.5 0.5 1 X

Figure 3.3. Fitting of solution to sample points- Exp 1.1

Figure 3.3 shows how closely Equation 3.4 fits the sample points (the dots represent
the sample data while the curve represents Equation 3.4). However, it is noted that the
fit is not perfect; the parameters can potentially be further tweaked to generate a better

solution.
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Figure 3.4. Maximum/minimum fitness curve - Exp 1.1

The graph of minimum and maximum fitnesses in Figure 3.4 indicates that the highest
fitness values are reached around generation 20. Thereafter the fithess values decrease
rapidly. There is no promise of finding further solutions as a direct consequent of the
current genetic material in the population. Since not every run of a GP is guaranteed to
find a solution, it was decided to rerun the experiment, with a different initial

population.

Experiment 1.2

The parameters were carried over from Experiment 1.1 (Table 3.2). However, this
time the distribution of points was dightly more uniform, which contributed to a
better fit asillustrated in Figure 3.5.
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o1 0.5 0.5 1

Figure 3.5. Fitting of solution to sample points- Exp 1.2

The maximum fitness reached was approximately 0.743, which was higher than the
previous result. The solution expression was also more complex, as it attempted to fit
almost every point precisaly :

2x-e*x*

e‘x+e

x* (x +log(x) log(2e* x*))(x - x(log(-x) +log(l OQ(X))))
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Figure 3.6. Maximum/minimum fitness curve - Exp 1.2

Figure 3.6 illustrates that the fitness of individuals was gradually increasing. This
implies that further generations could find better solutions, albeit more complex ones.
Although a perfect solution was not found, it appeared viable to continue aong

similar lines for further experiments.

Experiment 1.3

Using the same parameters (Table 3.2) as the previous two experiments, an even

better solution was found with afitness of approximately 0.884 :

5

X+ +E°X.100(€") i (3.6)

X +e*x
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Figure 3.7. Fitting of solution to sample points - Exp 1.3

The fit of the equation to the sample data was nearly visibly perfect (Figure 3.7). This
equation is still vastly different from the one used to generate the sample. For greater
accuracy, it was decided to use a larger range of x-values in the sample data for

subsequent runs.
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Figure 3.8. Maximum/minimum fitness values - Exp 1.3

Although the solution obtained has quite high fitness, the fitness curve (Figure 3.8)
indicates that the fitness values are not increasing steadily. Thus further improvements
would require much more computation. It was apparent that other means of finding

solutions faster should be explored beyond larger populations and more generations.

Experiment 1.4

Two improvements were added into the code to speed up convergence.

Although Mathematica is an interpreted language, it allows some functions to be
compiled to an intermediate format for faster execution. These functions may contain
only a small subset of the standard Mathematica functions within their bodies. This
subset includes the four standard arithmetic operations, making this technique
applicable to the problem of symbolic regression. The definition of RawFitness was
changed to incorporate compiled functions, asillustrated below.
RFi t ness[ expr _] : =Appl y[ Pl us,
((Conpi I e[{{x, _Real}},
Eval uat e[ expr /. XTrans]

]
/ @ XPoi nt s) - YPoi nt s) 2]
RawFi t ness[ expr _] : =Check[ RFi t ness[ expr], 200000]/20
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The operations of addition and multiplication were originally defined to take only two
parameters. However, most expressions generated thus far contained sums or products
of more than two sub-expressions. This is normally accomplished by a combination of
two functions. It is easier to form such expressions with addition and multiplication
functions of greater arity, so these were added to the function set. Addition and
multiplication functions with arity 4 resulted in much too complex expressions being

formed, but arity 3 functions sped up the evolution.

The range of x-values was broadened to [-2, 2] so that evolved expressions would be a
better fit to the original function. Also, the sample data was generated from
equidistant x-values as indicated in Table 3.1. The parameters for this experiment are
indicated in Table 3.3.

Population Size 250
Max no of Generations | 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 0.95

Murtation probability 0.05
Crossover probability 0.9

Terminal set {x}
Function set {PPlus, PPlus, PMinus, PTimes, PTimes, PDivide,
PExp, PL og}

Table 3.3. GP Parameters for symbolic regression - Exp 1.4

The experiment was run three times and each run found the perfect solution, as

illustrated in Figure 3.9.
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Figure 3.9. Fitting of solution to sample points - Exp 1.4 Run 1

Table 3.4 displays the times taken for each run of the experiment.

Run 1 1 hour 26 minutes

Run 2 44 minutes

Run 3 2 hours 10 minutes
Average 1 hour s 26 minutes

Table 3.4. Time taken for GP runs- Exp 1.4

The fluctuations in execution times occurred because of the random nature of the GP
algorithm. The initial random population might contain individuals that have high
fitnesses, resulting in faster convergence, or individuals with very low fitnesses,

resulting in slower convergence.

Experiment 1.5

Three runs were carried out to further test the stability of the agorithm and to generate
histograms of population fitnesses as the generations progressed. In order to speed up
convergence, the Exp and Log functions were removed from the function set, forcing
the expressions to be strictly polynomials. The list of parameters is shown in Table
3.5.
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Population Size 250
Max no of Generations | 51
Max initial size 5
Max size 17
Maximum compl exity 50
Min solution fitness 0.95

Mutation probability 0.05

Craossover probability 0.9

Terminal set {x}

Function set {PPlus, PPlus, PMinus, PTimes, PTimes, PDivide}

Table 3.5. GP parameters for symbolic regression - Exp 1.5

All three runs successfully found the best possible solution. In the second run the
algorithm terminated because the minimum fitness criterion was reached. This
minimum fitness was set at 0.95 in these experiments and changed to 0.99 for future

runs.
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Figure 3.10. Fitness histograms

The histograms in Figure 3.10 represent the division of individuals into the range of
fitnesses displayed. There is an obvious move towards individuals with a higher
fitness. In the initial generations, there are more individuals with lower fitnesses, but
as the generations progress, the number of individuals with higher fitnesses increases.
This is further indication that the average fithess of the population increases through

evolution.

The histogram generation functions create a list of graphs. These graphs can either be
animated or displayed individually. After extracting a subset of the graphs,
Mathematica can display them in grid format asin Figure 3.10.
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Experiment 1.6

This experiment tested the reaction of the algorithm to a reduced population size. The
population was fixed at 150 individuals instead of the normal 250, and the complexity
of expressions was reduced to 40 to promote parsimony. The parameters for this
experiment are indicated in Table 3.6.

Population Size 150
Max no of Generations | 51
Max initial size 5
Max size 17
Maximum complexity 40
Min solution fitness 0.99

Mutation probability 0.05

Crossover probability 0.9

Terminal set {x}

Function set {PPlus, PPlus, PMinus, PTimes, PTimes, PDivide}

Table 3.6. GP Parameters for symbolic regression - Exp 1.6

Six paralé runs were executed and the results are indicated in Table 3.7.

Run M ax Fitness Time Taken
hour s:minutes

1 1 3:35
2 1 3:22
3 1 3:27
4 0.469308 3:09
5 1 3:22
6 0.182729 2:55

Table 3.7. Maximum fitnesses and times taken - Exp 1.6

Two runs did not find the perfect solution because of the reduced genetic material in
the population. This smaller population size resulted in the GP agorithm searching
more complex expressions rather than expressions with greater variety. It was
concluded that the changed parameters did not allow sufficient variety to produce

solutions with high probability.
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Experiment 1.7

After tweaking the fitness function (Experiment 1.4), function set (Experiment
1.4/1.5), convergence criterion (Experiment 1.5), complexity restriction (Experiment
1.6) and population size (Experiment 1.6), the stability of the algorithm was tested in
an additional 8 parallel runs. The population size was returned to 250 and the
complexity to 50. The parameters for this experiment are indicated in Table 3.8.

Population Size 250
Max no of Generations | 51
Max initial size 5
Max size 17

Maximum complexity 50

Min solution fitness 0.99

Murtation probability 0.05

Crossover probability 0.9

Terminal set {x}

Function set {PPlus, PPlus, PMinus, PTimes, PTimes, PDivide}

Table 3.8. GP Parameters for symbolic regression - Exp 1.7

All runs were continued beyond the maximum generations limit, and every one found

the perfect solution.

Run Time Taken
hour s:minutes
3:20
0:22
0:38
0:23
1:54
0:13
2:25
4:54

O~NO UL, WN P

Table 3.9. Time taken for runs - Exp 1.7

Table 3.9 indicates the times taken for each run of the experiment. The average time
taken was 1 hour and 46 minutes. Once again it can be seen that the randomness of the

initial population has an influence on the path of evolution. Run 6 started off with
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individuals that contained desirable genetic material, so found the perfect solution
quickly. On the other hand, Run 8 took longer to find the solution because its initial

population did not contain many highly fit individuals.

Experiment 1.8

After proving the stability of the algorithm, its reaction to noisy data was tested. The
sample data was generated from the given equation in the usual manner and the y-
values were perturbed by a maximum of 20%. For each perturbation, a uniformly-
distributed random number was generated between -10 and +10 and this was then

used as a percentage by which to either increase or decrease the y-value.

It was not expected that the algorithm would end with the perfect solution as before
because of this noise. The experiment was repeated 8 times and two of these resulted
in the original equation in spite of the imperfect data. The other six runs all ended in
graphs which did not deviate much from the origina path, as shown in Figure 3.11.
This led to the conclusion that GP performs well with noisy data.
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Figure 3.11. Sample data and their fitted equations for noisy data

Figure 3.11 shows the equations generated for each run, plotted against the sample

datain each case.

Conclusion

The set of experiments 1.1-1.8 illustrates the effectiveness of the Mathematica
implementation of GP in solving simple symbolic regression problems. The execution
time is the most important concern since it affects the feasibility of such

implementations.

Memory is another factor that affects performance of the algorithm. During runs
which involved complex expressions or many generations, the Mathematica
environment frequently ran out of memory and began using disk space for temporary

storage. This had a distinctly negative impact on the speed of the operations.
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During the course of the experiments, many optimisations were applied to the origina
code to speed it up and most of these had a considerable effect. The net effect is that
the general algorithm cannot be improved on much more. So, if more complex
problems are attempted, then the computing power would need to be increased. This
increase can be either a change to a faster machine or a move towards parale

computing.

In order to further test the ability of Mathematica to solve problems using GP, the
binary multiplexer problem, as described by Koza, was modelled in Mathematica
[Koza, 1992]. GP must find an expression for a combinatorial logic circuit that
multiplexes 2" binary lines on the basis of an n-digit binary selector (where n is any
small integer). The experiment was abandoned because the computer could not handle
the complexity of expressions nor the size of populations necessary to find solutions.

This further supported the need for greater computing power.
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CHAPTER 4 :
PARALLEL GENETIC PROGRAMMING

Introduction

Suitability of Parallel Processing for GP

Relative to classic analytical algorithms, evolutionary computation techniques like
GAs and GP usually require vast computer resources in order to achieve a moderate
success rate. Ideally, evolutionary algorithms can be executed on supercomputers or
machines with comparable computational power. However, most researchers do not
have access to such equipment, especially for research in previously unexplored areas.
Attempts are made to improvise by using faster desktop machines and optimised
algorithms. Sometimesi it is possible to split up portions of the algorithm so that it can
be run on multiple desktop machines simultaneously. This ability to processin parallel
is inherent in many artificial intelligence paradigms, including evolutionary

techniques.

Genetic programming is especially well suited for parallel processing because of the
nature of the general algorithm. Most of the processing time in a GP can be attributed
to the evaluation of fitnesses of individuals. This evaluation can be done in parallel for
the simple reason that the fitness of each individua is independent of the rest of the
population. The genetic operators do not depend on each other or any other routines,
so they can safely be applied to individuals in a parallel fashion. Fitness-proportionate
reproduction needs information about the entire population to implement the roul ette-
wheel mechanism. This process cannot be sub-divided, but this doesn’t have a major
effect on the algorithm since the percentage of time taken for reproduction is

comparatively much lower than that for fitness evaluations.

Parallel processing immediately brings to mind the notion of an algorithm executing
cooperatively on multiple computers or a system supporting Symmetric
multiprocessing. This distributed model has the advantage of producing results faster,
but is not the only reason for parallelisation. Since a parallel algorithm has to be split

up into smaller execution modules, it requires less computational power at each
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workstation. This makes it feasible to work on problem domains which necessitate

large populations or large numbers of generations.

Mathematica stores all intermediate calculations in memory, filling up memory space
with unnecessary details. If it is no longer necessary to execute the compl ete algorithm
in one session, then Mathematica can be restarted at regular intervals. This prevents
extraneous swapping to disk, as memory runs out. In order for Mathematica to be
restarted, all necessary data has to be saved to disk. This makes it easier to recover

from a computer crash during a GP run.

On a philosophical plane, it can be argued that parallel processing is better suited to
GP because of the implicitly parale nature of evolution. Since evolutionary
computation techniques are based on nature and nature works in paralel, it seems
reasonable that some benefit could be derived from paralelising evolutionary
computation. This theory has been tested and found to be true in some cases, as
described later in this section.

Parallel Processing Methodologies

There exist many approaches to applying paralel processing to an algorithm. One of
the most important considerations is the programming layer at which the algorithm is
divided. If the operating system and compiler support parallel processing, then thisis
normally done at a very low level, where single machine language instructions or
high-level commands can constitute modules for parallel processing. If the computer
does not have built-in support for parallel processing, then this has to be written in by
the programmer. Built-in support for paralel processing can take advantage of finely-
tuned operating systems and compilers. Programmatic implementations, on the other
hand, alow greater freedom of choice in design of the algorithm, especially when

deciding on the size and functionality of program sub-sections.

Fine-grain parallel processing refers to those instances where the algorithm has been
sub-divided at the level of individual instructions or other similarly small program
sections. In the context of GP, the fitness of each individual can be evaluated in
paralel. This approach to parale processing has the advantage that the genera
algorithm need not be changed, beyond the delegation of fitness evaluations. The
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disadvantage of this strategy is that some parts of the algorithm will still have to be
executed in a seria fashion, most notably fitness-proportionate reproduction. Since
crossover involves more than one individual, it cannot be accomplished in parallel for
each individual. Instead, the individuals will have to be submitted for processing in

pairs.

Coarse-grain paralelism divides the problem into significantly large sub-sections. In
the context of GP, the population of individualsis divided into sub-populations (e.g. a
population of 800 is divided into 16 sub-populations, each containing 50 individuals).
GP is then applied to each of these sub-populations in paralel. The advantage of this
approach is that the entire algorithm can be executed on each sub-population
simultaneously. Thus, fitness-proportionate reproduction will not create a bottle-neck
as with fine-grain parallelism. The main disadvantage of this approach is that the
general agorithm has to be changed substantially to sub-divide the population and
coalesce the results. Since a single sub-population is too small to generate solutions
with high fitnesses on its own, it has to work together with the other sub-populations.
This interaction can be implemented in the form of either inter-population genetic
operators or movement of individuals from one sub-population to another (aptly called
migration). The latter approach is preferable since this movement can be separated

from the process of creating new generations.

In any distributed computing environment the storage of datais a critical concern. GP
requires the storage of expressions that correspond to the individuals of a population
or populations. These individuals can be stored at either the workstations or on a
central server. If the individuals are stored at the workstations, then there need be no
interaction among the workstations during the creation of new generations. If the
individuals are stored on a central server then the server has to send the individuals for
processing to appropriate workstations. The latter approach results in more interaction
among the computers (or processors in a multi-processor system), thus slowing down
execution of the algorithm. This client-server model is better suited to coarse-grain

parallelism, where interactions occur in batches rather than in a continuous sequence.
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Some Existing Implementations

Since the paralelisation of GP does not depend on the form of the individuals, the
issues surrounding its implementation are identical to the GA equivaent. Assuch, itis
useful to consider parallel implementations of GAs, since the amount of research done
inthisfield isfairly substantial [Cantu-Paz, 1995].

GALOPPS (Genetic ALgorithm Optimized for Portability and Parallelism) is a freely
available library to implement parallel GAs in a coarse-grain manner [Goodman,
1996].

Koza aso implemented parallel GP, using a network of transputers [Koza, 1995]. He
used a coarse-grain algorithm to show that an optimal migration rate can be achieved,
which would make the parallel agorithm perform relatively faster than a serial
algorithm with the same population size. It was shown that it is possible to achieve a
speedup in processing that is more than just linearly proportional to the number of
processors or computers. This potential for super-linear performance can be exploited

to speed up paralel algorithms, even if executed on a single processor.

Parallel Processing Model

Sub-populations and Migration

Coarse-grain paralelism (also known as idand paralelism) was used as the
underlying philosophy when changing the serial Mathematica algorithm into a parallél

one.

The population of individuals is first split up into a pre-specified number of sub-
populations. These populations then undergo evolution as in the serial model, possibly
on different computers. After each new generation is created, the best individuals from
each sub-population are compared to find the global solution. Statistical and recovery

information is stored and the cycle continues until an acceptable solution is found.

However, such simple operation reduces the algorithm to a number of runs using
smaller population sizes. A mechanism must be introduced to bind the populations

together so that genetic material from one population can interact with individuals
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from other populations. This is done by means of migration. After each generation has
been processed, some individuals from one population may swap places with
individuals from other populations. This migration is done on a fitness-proportionate
basis to ensure that only the better genetic material can influence other sub-

populations.

In the most general case, migration can occur between any two sub-populations. The
net effect of such migration is that an individual from one sub-population may mate
with an individual from any other sub-population during a single iteration of the
algorithm. This is not desirable since it reduces the sub-populations to the original
single population model. The advantages of the parallel model include its ability to
preserve variety by allowing different populations to co-evolve without much
interaction. This advantage is lost if there is too much migration or migration is
allowed between any two sub-populations. To preserve variety, migration must be
restricted to occur only between specified pairs of sub-populations. This is readily
accomplished if the sub-populations are distributed spatially on the surface of a 2-

dimensional grid, as shown in Figure 4.1.

1 2 3 4 5
6 7 8 9 10
1
11 124 137" 14 15
|
v

16 17 18 19 20
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Figure 4.1. Rectangular spatial distribution of sub-
populations showing migration possibilities for sub-

population 13
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Migration can be restricted to occur only between neighbouring sub-populations. This
ensures that genetic material being evolved in one region of the population grid cannot

directly affect the genetic material in other parts of the population grid.

In Figure 4.1, the possible migration partners for sub-population 13 in a 25 sub-
population grid is shown. Since sub-population 13 isin the centre of the grid, there are
8 neighbouring sub-populations. However, the sub-populations along the edge of the
grid have either 3 or 5 neighbours. In order not to bias the algorithm in favour of the
central sub-populations, the sub-populations along the edge wrap around to the
opposite ends of the grid. Thus, sub-population 6 has 1,2,7,11 and 12 as immediate
neighbours, but may also perform migration with sub-populations 5, 10 and 15. Sub-
populations at the corners wrap around to the diagonally opposite corners. This
wrapping around of edges results in the 2-dimensional grid being transformed to a

toroidal representation, where every sub-population has exactly 8 neighbours.

Although this migration strategy is used successfully to solve problems using the
Mathematica implementation, there are other strategies that are either equivalent or
better. Ryan discussed the differences between panmictic schemes (where migration
can occur between any sub-populations), the Island Model (where migration with
neighbours has a higher probability without excluding sub-populations that are further
away) and Spatial Mating, as discussed above [Ryan, 1994]. Levine used a parallel
GA with exactly one individual migrating during each iteration for implementation-
specific reasons [Levine, 1994]. Toth incorporated migration into the reproduction
operation [Toth, 1993].

An altogether different approach to migration was proposed by Punch [Punch, 1996].
He suggested that the best individuals from each sub-population be injected into a
master population. This aternative may produce better results in some problem

domains since it is geared towards the preservation of variety.

General Parallel Algorithm

initialise global variables
initialise sub-populations

check all sub-populations for global solution
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while solution not found

evolve, in parallel, new generations in each sub-population, using

reproduction, crossover and mutation
perform migration between selected sub-populations

check all sub-populations for global solution

Data Storage

During arun of the GP algorithm, population data, log files and statistical data need to
be stored and retrieved. Population data, in particular, is accessed by the processors
(or computers) that perform evolution on the population. In a multi-processing
environment, the data has to be stored on the storage devices of the computer. In a
distributed environment, however, the data can either be stored on a central server or
on the workstations. Workstation-based storage of population data necessitates regular
communication of data between workstations. This communication has to conform to
apre-specified network protocol. Since network protocols are specific to the platforms
in use, it was decided not to use this form of direct communication. Instead, the datais
stored on a central server and the directory in which the data resides is shared with all
the workstations. Thus the server and workstations have access to al the data and
communications can be handled transparently by the operating system. The
implementation is portable across computers and operating systems, as long as file
sharing is supported. The experimentsin the next chapter were successfully conducted
on the following platforms: Windows 3.1 (server), MsDos (clients), Windows 95

(clients/server), Linux (server).

Approaches to Job Control

In any environment where tasks are carried out in parallel, these tasks have to be
scheduled to execute in the correct order. For example, migration cannot be started

until all the sub-populations have been processed.
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In the parale GP, the sub-populations need to be evolved in paralel. Thereafter al
populations must be checked for a fitter global solution. Finally, migration takes place
in parallel. This sequence of steps repeats until an acceptable solution is found.

There are three distinctly different scheduling scenarios:

» the number of processorsis greater than the number of sub-populations
» the number of processorsisequal to the number of sub-populations

» the number of processorsis less than the number of sub-populations

If the number of processors is greater than the number of sub-populations then every
sub-population can be assigned to a single processor. Each processor performs
evolution on only one sub-population, with some processors lying idle - the available
resources outnumber the requirements, resulting in wastage. Migration has seemingly
more stringent requirements since, in the worst case, the number of pairs of sub-
populations is equal to 4n, where n represents the number of sub-populations. Thus
4n processors would be required for the migration. However, unless sophisticated
record locking is used, it is not possible for two processors to simultaneously access
individuals from a single population. Each sub-population would not be able to
participate in simultaneous migration with more than one of its eight neighbours.
Scheduling would be needed for this stage, to coordinate the selection of pairs of sub-
populations to which the migration operation is applied. In fact, the migration stage

requires scheduling irrespective of the ratio of processors to sub-populations.

If the number of processorsis equal to the number of sub-populations then there is no
wastage of computer resources. Once again, every processor can operate on different

sub-populations, as described above.

If the number of processors is less than the number of sub-populations then each
processor cannot evolve just one population. Scheduling is necessary to assign tasks to
the processors, be the tasks evolution or migration. Thisis the most general case since
it will not be dependent on the number of processors or sub-populations. During the
course of the experiments conducted (as outlined in the next chapter), a scheduling

system was built to cater for these requirements.
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Initially a peer-to-peer system was created, where scheduling was a cooperative
function of the processors. During initialisation, the population is partitioned and
stored in separate files. A series of lock files is created, one for each sub-population,
with appropriate names eg. POP1.LCK, POP2.LCK, etc. Each processor then starts
executing a loop, where it first searches for a lock file and then processes the
corresponding sub-population, erasing the lock file when complete. In order to
preclude the possibility of two processors evolving the same sub-population, the lock
files must somehow be flagged. Two methods of flagging were attempted. Since
Mathematica does not provide file locking mechanisms, the ability of the operating
system (in particular Windows 3.1, but applicable to most operating systems) to
disallow two processes simultaneously having write access to a file was exploited.
The code to implement this is shown below.
Lock2[ x_] : =Mbdul e[

{aFil e},

O f [ OpenAppend: : noopen] ;

O f[ CGeneral ::aofil];

aFi | e=OpenAppend[ x] ;

On[ OpenAppend: : noopen] ;

On[ General ::aofil];

[

Same aFil e, $Failed],
-1,

aFile

]
]

Lock[ x_] : =Modul e
{}
I f[

Fi | eNames[ x] =={},

-2,

Lock2[ x]

]
]

Lock attempts to lock a sub-population, as denoted by the file given as its parameter.
If the file does not exist, the function returns -2. If the file is aready locked by another
process, the function return -1. Otherwise, it opens the file for writing (using Lock2)
and returns the file handle. After the population has been processed, the file can be
deleted.

This scheme did not work since file locking has to be an indivisible operation to

support parallel processing, and that could not be guaranteed in a high-level language
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like Mathematica. A few random scheduling errors occurred because of the instability
of the platform; these were unacceptable. The aternative was not to rely on the
implicit locking of files by the operating system and Mathematica. Instead of locking
files before processing a population, the files were ssmply deleted. Thisalso failed asa
scheduling mechanism. Primarily for these reasons, it was decided to introduce a
secondary program into the agorithm for the express purpose of performing

scheduling among the processors.

This program could be run on any machine with the same shared directory as the
processing workstations. Since the only link between processors is the shared
directory, this scheduler also has to use files to signa the start and end of each job.
The scheduler only manipulates files, so it was not necessary to implement it in
Mathematica. By writing the scheduler in C++ for MS-Windows, it had the added
advantage that the scheduler could be run on a workstation simultaneously with a
Mathematica session. This obviated the need for a separate scheduling computer. It
was also possible to incorporate dynamic starting and stopping, timing of the
algorithm and continuous displaying of the state of the GP network into the scheduler.

Figure 4.2 shows a screen snapshot of the scheduler program.
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Figure 4.2. Screen snapshot of scheduler

When the algorithm is run, the first column indicates the tasks in progress, the second
indicates waiting tasks and the third completed tasks. The current generation, fitness
of best individual and total time taken are aso shown.

Scheduling

The code for the scheduler is contained in Appendix B.

The scheduler uses the same shared directory as all the processors. Communication is
performed by the creation and deletion of files in particular directories. It is assumed
that directories whose names begin with “PROC” refer to processors. The number
appended to “PROC” is the unique identification number of the processor eg. PROC4
refers to processor 4. These directories are created by Mathematica during

initialisation of the run.

Files are created in these directories to signal that the corresponding processors must
execute particular tasks. Each processor, whenever idle, constantly monitors its
directory for such signals. When afile is found, the processor interprets the task to be
performed and then deletes the file. The absence of the signal file is noticed by the
scheduler, which then attempts to allocate a new task.
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The first task allocated to processors is that of evolving new generations for each sub-
population. The signal files are named “POP”, suffixed by the number of the sub-
population. Each processor continuously processes sub-populations until all the sub-
populations have been progressed one generation. The first processor (PROCL) is then
given the task “MSTART” which signals it to check for global solutions and prepare
for migration. In preparation for migration, random pairs of neighbouring sub-
populations are selected and stored in the “POP.INF” file. This file is read in by the
scheduler and the contents are stored in a matrix, associating each sub-population with
asubset of its neighbours. A matrix is used to store these associations as efficiently as
possible; also the access time to check on a particular pair in the matrix is constant,

irrespective of the number of sub-populations.

first sub-popul ation
1 2 3 4
1 0 0 0 1
second
Sub- 2 0 0 1 0
popul ation

3 0 1 0 1

4 1 0 1 0

Figure 4.3. Matrix of migration possibilities

Figure 4.3 shows these associations for a 4 sub-population model. According to the
table, migration of members may occur between sub-population 4 and sub-population
1. Obvioudly this corresponds to the pair containing 1 and 4, resulting in a symmetric
matrixX. The storage space is reduced by using only a triangular matrix. Each position
in the matrix indicates whether or not the two associated sub-populations are eligible

for migration.
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In addition, a list of sub-populations is maintained. This list indicates whether each

sub-population is currently involved in a migration operation or not.

When a processor is free, the scheduler searches through the list of sub-populations
until it finds a pair where migration is impending, as per the matrix. Migration is
signalled by a file beginning with the letter “M” and ending with a unique number
assigned to each pair of sub-populations. The migration of that pair is cancelled in the

matrix and the state of the pair is updated in the list of sub-populations.

The interaction of the boolean-valued list and boolean-valued matrix provides a
compromise in terms of speed and efficiency in anticipation of larger search spaces

and greater numbers of sub-populations.

When all sub-population pairs are removed from the matrix, the scheduler resets itself

and begins to repeat the process of evolving sub-populations.

Mathematica Implementation

The Mathematica implementation was altered to support parallel execution of the GP
algorithm. The complete code for this implementation is found in Appendix C.
Although genetic operators are not affected, initialisation, sequencing of operations,

population manipulation and statistical routines have to be changed.

The population of individuas is first split up into sub-populations during the
initialisation stage. The number of sub-populations must be pre-specified.

NoCOf Subpopul ations = 4

Initialize:=NMdul e[
{Proc, Dellist},

(* paragraph 1 *)
Of[DeleteFile::nffil];

Del eteFil e[ "cal ced. m'];

Del eteFil e[ "pop.inf"];

Del Li st =Fi | eNanmes[ "l ogfile.*"];

| f[Del List!={}, DeleteFile[DellList]];
Del Li st =Fi | eNames["*. pl g"];

| f[Del List!={}, DeleteFile[DellList]];
Del Li st=Fi | eNanmes["*.10g"];

| f[Del List!={}, DeleteFile[DellList]];
Del Li st =Fi | eNames[ " backup. *"];

| f[Del List!={}, DeleteFile[DellList]];
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On[DeleteFile::nffil];
Map(
(Del eteDirectory[ #,
Del et eCont ent s- >True] ) &,
Fi | eNanmes[ " PROC*" ]
l;

(* paragraph 2 *)

Ceneti ¢’ Paranet ers” d obal Sol uti on=1;

Ceneti ¢’ Paranet ers @ obal Sol uti onFi t ness=0;
Geneti ¢ Paranet ers’ d obal Sol uti onSet ={};
Ceneti ¢ Paraneters Tot Ti ne=0;

(* paragraph 3 *)
Save[ " pop. | og",

Geneti ¢ Par anet ers” d obal Sol ution];
Save[ " pop. | og",

Geneti ¢’ Par anet ers’ d obal Sol uti onFi t ness];
Save[ " pop. | og",

Geneti ¢’ Paranet ers’ d obal Sol uti onSet];
Save[ "pop.log", Genetic Paraneters TotTi nej;

(* paragraph 4 *)
MakePossi bilities;

(* paragraph 5 *)
Save["cal ced. ni',

Geneti ¢c” Paraneters GPossibilities];
Save["cal ced. ni',

Geneti ¢’ Par anet ers” GPossPar anet er ] ;
Save["cal ced. ni',

Geneti ¢’ Paranet ers” GlTer nLengt h] ;
Save["cal ced. ni',

Geneti ¢’ Par anet ers” GPossLengt h] ;

(* paragraph 6 *)
I ni t Namres;

(* paragraph 7 *)
Save["cal ced. ni',

Geneti ¢’ Par anet er s” Popul ati onNanmes] ;
Save["cal ced. ni',

Geneti ¢c” Paraneters M grationPairs];

(* paragraph 8 *)

Geneti ¢’ Par anet ers” Popul ati onSi ze=
Geneti ¢’ Par anet ers” Popul ati onSi ze/
Geneti ¢’ Par anet er s” NoOf Subpopul ati ons;

(* paragraph 9 *)
d nformati on;

(* paragraph 10 *)
Map[ I nitializePop,
Geneti ¢’ Par anet er s” Popul ati onNanmes] ;

(* paragraph 11 *)

Checkd obal Sol uti ons;
]
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Initialize initialises al variables and sub-populations in preparation for the

execution of the GP agorithm.

All traces of previous runs are erased. This includes log files created and directories
used to store processor information (paragraph 1). Global variables are initialised (2)
and stored in the globa information file (3). In order to save time during the
generation of individuals, the terminal and function sets are joined during initialisation
and stored in a disk file - CALCED.M (4/5). The names of populations are generated
together with migration pairs and these are stored in the same disk file (6/7). The
population size is divided by the number of sub-populations (8) and information on
the run is displayed (10). Each sub-population is initialised with random individuals
(11), their fitnesses are evaluated and global statistics are calculated (12).

After initialising the variables, each processor must be registered for scheduling
purposes. This registration simply creates a unique directory for each processor.

Regi st er Proc[ x_] : =Mbdul e[
{proc},
proc=StringJoi n["PROC', ToString[x]];
CreateDi rectory[ proc];

]

The agorithm is started from the command-line of the operating system using a batch
file. This batch file creates a unique copy of itself for each processor and then

continuously runs the GP algorithm in Mathematica.

Cont ents of START. BAT

copy start?2. bat tenp%l. bat
tempd %4

Cont ents of START2. BAT

i st
call math -run "<<p.m Genetic Main StartRun[%]; Quit[]"
goto st

START.BAT s called with the single parameter being the number of the processor.
This parameter is passed onto the Mathematica function St ar t Run, which executes

the GP.

(* Start run of algorithm*)
Start Run[ x_]: =Modul e[
{result, log, i},
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| og=StringJoin["LOGHILE.", ToString[x]];
$Qut put =Append[ $Qut put, OpenAppend[ | og]];
Set Options[ $Qutput[[2]], Format Type->Text Fornj;

Ceneti c” Paraneters Processor=
StringJoin["PROC', ToString[x]];

CheckAbort [
Appl yGen,
0

1

Close[$Qutput[[2]]];
$Qut put =Take[ $Qut put, 1],
{i, 1, Genetic Paraneters Epoch}

]

A log file is opened at the beginning of the routine to mirror all screen output during
the session. This log file is subsequently closed at the end of the routine. The name of
the processor is gleaned from the parameter and Appl yGen iscaled. Thisis repeated
Epoch (default value = 20) times before restarting the Mathematica interpreter, to

minimise the effect of time taken to run the interpreter from disk.

(* Apply Cenetic algorithm?*)

Appl yGen : = Modul e[
{popfile, onetinme, poplog, nig, Oigbirectory},

(* paragraph 1 *)

Begi nPackage[ "Geneti c Paraneters ", "G obal ""];
Get["cal ced. n'];

EndPackage[];

(* paragraph 2 *)
Print["Waiting for processor start flag ..."];
popfi |l e=Get PopFi |l e;
Wi | e[
Sane popfile, "NOFILES'],
Pause[ 1] ;
popfil e=Get PopFi |l e
I f[
Same StringTake[ popfile, 1], "M],
M grat e[ popfil e];
Ret urn[]
1

(* paragraph 3 - process popul ation *)

Begi nPackage[ " Geneti ¢’ Parameters’", "G obal *"];
Get[ StringJoin[popfile, ".10g"]];
EndPackage[] ;

(* paragraph 4 *)
oneti me=Ti m ng[
Print[popfile, "-G', Generation, ": mating pool
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Ti m ng[ newpop=Cr eat eNewCener ati on[ Popul ation]]1[[1]]];

Print[popfile, "-G', Generation, ": crossover ,
Ti m ng[ newpop=Cr ossover[newpop] ] [[1]]1];
Print[popfile, "-G', Generation, ": nutation

Ti mi ng[ newpop=Map[ Mutate, newpop] J[[1]]];
Gener ati on++;
Popul at i on=newpop;

Print[popfile, "-G', Generation, ": fitnesses A
Print[popfile, "-G', Generation, ": done
Ti m ng[ CheckSol uti on[ Generati on, newpop,
popfilel1[[1]]];

Print[popfile, "-G', Generation, ": best-of-run =",
Sol uti onFi t ness] ;

110115

Ti me[ oneti ne, popfile, "-G',

CGeneration, ": time for gen ="];

(* paragraph 5 *)
Ti meTaken+=onet i ne;
Save[ StringJoin[popfile, ".new'], Population];

Save[ StringJoin[popfile, ".new'], Fitnesses];
Save[ StringJoin[popfile, ".new'], Generation];
Save[ StringJoin[popfile, ".new'], TinmeTaken];
Save[ StringJoin[popfile, ".new'], Solution];
Save[ StringJoin[popfile, ".new'], SolutionFitness];
Save[ StringJoi n[popfile, ".new'], SolutionSet];
RenameFi | e[ StringJoi n[popfile, ".10g"],

StringJoin[popfile, ".old"]];
RenameFi | e[ StringJoi n[popfile, ".new'],

StringJoin| 11

[ “11

popfile, ".log"
d

Del eteFil e[ StringJdoin[popfile, ".ol

(* paragraph 6 *)
popl og=OpenAppend[ Stri ngJoi n[ popfile, ".plg"]];
WiteString[poplog, ","];
Wite[popl og, {CGeneration, Fitnesses}];
d ose[ popl og] ;
Print[popfile, "-G', Generation, ": systemsaved ..."];
(* paragraph 7 *)
OigDirectory=Directory[];
Set Directory[ Geneti ¢ Paraneters Processor];
Del et eFi | e[ popfile];
SetDirectory[OrigDirectory];
]

First the complete function and terminal sets are loaded from the disk file, where they
were saved during initialisation (paragraph 1). Then the processor goes into a loop,
waiting for a signa file to be created by the scheduler (2). If the name of this file
begins with “M” then it is assumed that migration is intended and the relevant
function is called. If evolution is intended, then the normal genetic operators are
applied (4). Since the interpreter exits after every task, the sub-population is loaded
from disk before evolution (3) and saved afterwards (5). Statistical information is
stored (6) and the signal file is deleted to inform the scheduler that the task is
complete (7).
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(* performmgration based on paraneters *)
M gr at e[ popf _]: =Modul e
{Origbhirectory, FullNum firstpop,
secondpop},

I f[
Same( St ringDrop[ popf, 1], "START"],
Checkd obal Sol uti ons;
I f[

Geneti ¢’ Paramet ers” d obal Sol uti onFi t ness
>=M nFi t ness,
OigDirectory=Directory[];
SetDirectory]

Geneti ¢’ Par aneters’ Processor];
Save["DONE", M nFitness];
SetDirectory[OigDirectory]

],
Ful I NumeToExpr essi on]
StringDrop[ popf, 1]];

firstpop=Fl oor|
Ful I Numi NoOF Subpopul ati ons] +1;
secondpop=Mod[ Ful | Num
NoOf Subpopul ati ons] +1;
M gr at ePop[ Stri ngJoi n[ " POP",
ToString[firstpop]],
StringJoi n[ " POP",
ToStri ng[ secondpop]]]
l;
OigDirectory=Directory[];
Set Directory[
Geneti ¢’ Par anet ers’” Processor];
Del et eFi | e[ popf];
SetDirectory[OrigDirectory];
]

M gr at e handles all tasks except evolution of generations.

If the signal fileis “MSTART” then CheckSol ut i ons is called to extract the best
solution from all the sub-populations. Otherwise, the names of the populations to
participate in migration are generated and the M gr at ePop is called with these as
parameters. Finaly, the signa file is deleted to inform the scheduler that the task is

complete.

M gr at ePop performs migration between two sub-populations. They are loaded
simultaneously into memory and random individuals are swapped. Thereafter the
populations are saved over the original data. Individuals are selected for migrationin a
fitness-proportionate manner, using the roulette-wheel technique as discussed earlier.
The average number of individuals to migrate are specified by

M grati onPercent age (default = 0.1). The actual number of individuals is
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generated by a Gaussian-distributed random number with M gr at i onPer cent age

asamean and a standard deviation of M gr at i onDevi at i on (default = 0.05).

In order to speed up the algorithm, migration is not performed between every possible
pair of sub-populations during each iteration of the agorithm. The probability that
migration occurs between any two sub-populations is defined by
M grati onProbability (defaultislin 4).

Sequence of Function Calls

In order to use the parallel implementation, the parameters for the run must be defined
in a text file in Mathematica input format (with a default name of “P.M”). Function
and terminal sets and the fitness function are mandatory but the other parameters will
be assigned default values if not defined.

All computers working on the problem must be networked and a shared directory

created, containing the parallel GP program and datafiles.

Mathematica should be started on a single computer in order to I niti al i ze the
populations. Thereafter each processor must be registered with the Regi st er Pr oc

function.

The algorithm can be started on each processor by running the START.BAT batch
file, supplying the number of the processor as the single parameter. All the processors

will go into aloop, waiting for tasks to be assigned to them.

The scheduler, GPNET.EXE, must then be run and, by clicking on the Start button,
the scheduling operations begin. The various processors will then cooperatively

evolve new generations and perform migration whenever necessary.
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CHAPTER 5 :
APPLICATIONS OF PARALLEL GP

Statistical Analysis Techniques

Statistics in a parallel GP can be produced to analyse the performance of either the
entire population or the individual sub-populations. The entire population indicates
globa trends while a study of the sub-populations can ensure differences in the

composition of the population at different points on the population grid.

As before, graphs can be generated to indicate the convergence or divergence of the

algorithm by plotting the maximum and minimum fitnesses of each generation.

d obal Curve: =Modul gf
{t, MaxG M nG AveG,

Begi nPackage[ " Genetic” Paraneters "] ;
Get["pop.log"];
EndPackage[ ] ;

t =MapThr ead] Li st
Geneti ¢’ Paranet ers” @ obal Sol uti onSet];

MaxG=Li st Pl ot [ MapThr ead[ Li st ,

{tl[1]], t[[2]1}],

Pl ot Range->{{0, Max[t[[1]]]1},
{0, 1}},

Pl ot Styl e->{ R@Col or[ 1, 0,0]},

Frame->Tr ue,

FranmeLabel - >{

"Generation Fit(ness): red=nax green=m n bl ue=ave",
"Fit"},

Pl ot Label - >
"d obal Fitness Curve",

Pl ot Joi ned- >Tr ue,

Di spl ayFuncti on->ldentity];

M nG=Li st Pl ot [ MapThr ead[ Li st ,

{t[[1]], t[[411}],

Pl ot Range->{{0, Max[t[[1]]1]1},
{0, 1}},

Pl ot Styl e->{ R@Col or[ 0, 1, 0] },

Frame->Tr ue,

FranmeLabel - >{

"Generation Fit(ness): red=nax green=m n bl ue=ave",
"Fit"},

Pl ot Label - >
"d obal Fitness Curve",

Pl ot Joi ned- >Tr ue,

Di spl ayFuncti on->ldentity];

Page 97



AveG=Li st Pl ot [ MapThr ead] Li st

{t[[1]], t[[6]]1}],

Pl ot Range->{{0, Max[t[[1]]1]1},
{0, 1}},

Pl ot Styl e->{ R@Col or[ 0, 0, 1] },

Frame->Tr ue,

FranmeLabel - >{

"Generation Fit(ness): red=nax green=m n bl ue=ave",
"Fit"},

Pl ot Label - >
"d obal Fitness Curve",

Pl ot Joi ned- >Tr ue,

Di spl ayFuncti on->ldentity];

Show [{MaxG M nG, AveG,

Di spl ayFuncti on->$Di spl ayFuncti on];
]

The global statistical information saved during the run is read in by G obal Curve
and three different graphs are generated in memory, one each to display the maximum,
minimum and average fitnesses. Eventually, the three graphs are superimposed and

displayed on the screen.

d obal Fitness Curve

0. 8f
0.6

Fi t ness

r ed=max

green=min

bl ue=ave
0.2

1 2 3 4 5 6

CGeneration

Figure 5.1. Output from Global Curve, displaying maximum, minimum and average fitnesses of

generations

A typica output from A obal Curve is shown in Figure 5.1. The maximum,

minimum and average fitnesses are drawn in red, green and blue respectively to
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enhance clarity. In this graph, as in most fitness curves, the average fitness is amost
equal to the minimum. This is not critical because the maximum fitness is of greater

importance.

Similar statistics can be generated for individual sub-populations. In order to cater for
all sub-populations simultaneously, the graph can be promoted to a 3-D format with
the number of the sub-population being the third dimension. This is not desirable
since the sub-populations would have to be re-arranged in a linear fashion.
Peculiarities in the population grid are more obvious if the statistics are arranged in a
grid corresponding to the sub-populations. However, since this is already a two-
dimensional structure, only one piece of information can be displayed. For example, a
3-D surface can be used to indicate the maximum fitnesses in generation 0 in all sub-
populations. A series of such graphs can then indicate maximum fitnesses of

subsequent generations.
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Max of Ceneration 30

Figure 5.2. Typical maximum fitness histogram

Figure 5.2 shows a typical histogram for individual sub-populations. The horizontal
plane indicates the position of each population in the population grid while the heights
of the bars represent the maximum fitnesses for that generation. All the experimentsin
this chapter resulted in similar graphs, where there is not much difference in fitness
among the various sub-populations. This is because the small number of sub-
populations used did not promote variety of individuals. Few sub-populations were

used in order to minimise the ratio of communication time to actual computation time.

Similar graphs can be generated for the average fitnesses. Graphs such as these are
produced by the Cal cHi st ogr amfunction, using Mathematica s existing 3-D graph
capabilities.

Cal cHi st ogram =Modul e[

{t, data, popfit, figs, gen,
popsi ze=0, nungen,
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popfiles, first=1, maxes, popnunber,
inFile, outFile},

popfil es=Fi | eNanmes[ " pop*. pl g"];
popfil es=Sort [
popfil es,
(Less[ Get PopNunber [ #1],
Get PopNunber [ #2]]) &

l;
Hi st ogr anBDMax=Tabl e[ O,
{Lengt h[ popfiles]}];
Hi st ogr amnBDAve=Tabl e[ O,
{Lengt h[ popfiles]}];

Map(

(Print["copying file ", #];

i nFi | e=OpenRead[ "popl.pl g"];

out Fi | e=CpenWite["pop.ful"];

Whi | e[

i =Read[inFile, String];

Not [ Same i, EndOFile]],
WiteString[outFile, i, "\n"]
l;
Close[inFile];
WiteString[outFile, "}"];
Cl ose[outFile];

Print["reading in data"];
Begi nPackage|

"Genetic Paraneters "];
Get["pop.ful"];
EndPackagel[ ] ;

Print["separating data"];
popfit=MapThread[ Li st,
Geneti ¢  Paraneters pop][[2]];
nurmgen=Max[ MapThr ead[ Li st
Genetic  Paraneters pop][[1]]1];

I f[
first==1,
dat a=Tabl e[ Tabl e[ 0, {10}],
{nungen}] ;
first=0
13

Print["discretizing data"];

Do
fi gs=Map[ Fl oor,
popfit[[gen]]*10];
figs=Map[If[#==0, 1, #]& figs];
Map[ (data[[gen, #]]++)& figs],

{gen, 1, nungen}

l;

Print["extracting maxi muns"];
maxes={};
Do
maxes=Append[ naxes,
Max[ popfit[[gen]]]],
{gen, 1, nungen}
l;
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popnunber =ToExpr essi on|
StringDrop[StringDrop[#, 3], -4]1;
Hi st ogr anBDMax|[ [ popnunber]] =maxes;

Print["extracting averages"];
maxes={};
Do

maxes=Append[ naxes,

Appl y[ Pl us,
popfit[[gen]]]/Length[popfit[[gen]]]
1,
{gen, 1, nungen}

Hi si ogr anBDAve[ [ popnunber] ] =naxes;
popsi ze+=Lengt h[ popfit[[1]]]) &

popfiles
l;

Print["generating gl obal graphs”];
Hi st ogr anDat a=
Tabl e[
Bar Chart[data[[gen]],
Bar Label s->Tabl e[i, {i, O,
0.9, 0.1}],
Pl ot Range->{{0, 11},
{0, popsize}},
Pl ot Label - >Stri ngJoi n[
"d obal Ceneration ",
ToString[gen]],
Di spl ayFuncti on->ldentity],
{gen, 1, nungen}
l;

Print["generating maxi mum graphs"];
Hi st ogr anBDMax=MapThr ead[ Li st
Hi st ogr an8DMax] ;
Hi st ogr anBDVax=Map[ Partiti on[ #,
Sqgrt[Lengt h[ popfiles]]]&,
Hi st ogr an8DMaxX] ;
Hi st ogr anBDMVax=
Tabl e[
Bar Chart 3D[ Hi st ogr anBDvax[ [ gen] ],
Pl ot Range- >{ Aut omati c,
Automatic, {0, 1}},
Pl ot Label - >Stri ngJoi n[
"Max of Ceneration ",
ToString[gen]],
Vi ewPoi nt - >{4, 1, 4},
Di spl ayFuncti on->ldentity],
{gen, 1, nungen}
l;

Print["generating average graphs"];
Hi st ogr anBDAve=MapThr ead][ Li st
Hi st ogr anBDAve] ;
Hi st ogr anBDAve=Map[ Partiti on[ #,
Sqgrt[Lengt h[ popfiles]]]&,
Hi st ogr anB8DAve] ;
Hi st ogr anBDAve=
Tabl e[
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Bar Chart 3D[ Hi st ogr anBDAve[ [ gen]],
Pl ot Range- >{ Aut omati c,
Automatic, {0, 1}},
Pl ot Label - >Stri ngJoi n[
"Ave of Ceneration "
ToString[gen]],
Vi ewPoi nt - >{4, 1, 4},
Di spl ayFuncti on->ldentity],
{gen, 1, nungen}
l;
]

Cal cHi st ogr amgenerates these 3-D graphs for the maximum and average fitness
values. As a result of the function, two lists of graphs are created:
Hi st ogr anBDMVax contains the maximum fitness graphs and Hi st ogr anBDAve
contains the average fitness graphs. In addition, the set of global histograms is
generated and stored in Hi st ogr anDat a. Although the routines to generate the
globa histograms were aready available in the origina seria agorithm, it was
decided to incorporate all graph generation activity into one loop to prevent repetitive

preprocessing of the fitness data.

The population data file corresponding to each sub-population is read in and
processed. First the unnecessary information is pruned from the data, then the data is
divided into discrete batches for the globa histograms. Finaly, the maximum and

average values are calculated and the graphs are created in memory.

Mathematica's built-in animation capabilities were exploited to animate this
information, thus overcoming the requirement for an additional dimension in
representing the data. In the absence of animation capabilities, it is still possible to

display multiple graphs on a single page, as shown in Figure 3.10.

These various graphical statistics display the trends that manifest themselves in the
population data as generations progress. The globa fithess curve and the 3-D
histograms indicate the nature of convergence or divergence of the algorithm. The
globa histogram shows the implicit shifts in fitness of the entire population. These
were used extensively during the modelling of experiments in order to optimise

parameters to increase the probability of acceptable solutions.

Page 103



Experiment 2: Parallel Symbolic Regression

In order to evaluate the effectiveness of the parallel GP algorithm in Mathematica, the
symbolic regression problem (Experiment 1) was revisited. This time, the population
was divided into 9 sub-populations and the computations were distributed among a set
of workstations. The number of workstations was varied in order to assess its impact

on the ratio of computation time to communication time.

Test Data

The equation used to generate sampl e points was once again
VD A b e TR (5.1)

The range of x-values from -1 to 1 was divided into 10 adjacent sections, with 11
boundary points. Y-values were generated for each of these eleven boundary points

using Equation 5.1. The x-values and corresponding y-values are shown in Table 5.1.

oy
1 0
45 -164/625
315 -204/625
215 -174/625
15 -104/625
0 0
15 156/625
25 406/625
35 816/625
45 1476/625
1 4

Table5.1. Sample points - Exp 2

All values are stored as fractions to retain a high degree of accuracy when calculating
the fitnesses. These sample values were used for al iterations of Experiment 2. As
was done previoudly, the x-values are equidistant to promote the generation of a more

parsimonious equation.
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Experiment 2.1

The first iterations of the experiment attempted to compare the performances of
various configurations of workstations/processors. The parameters for the run were

consistent at the valuesindicated in Table 5.2.

For this experiment, migration took place on a single computer after each generation

was evolved i.e. one computer performed migration on the entire set of sub-

populations.
Population Size 450
No of Sub-populations | 9
Max no of Generations | 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 1
Murtation probability 0.1
Crossover probability 0.9
Terminal set {x}
Function set {PPlus, PPlus, PTimes, PTimes, PMinus, PDivide}

Table5.2. Parameters for parallel symbolic regression - Exp 2.1

As shown in the table, the number of sub-populations is 9, implying that the sub-
populations were distributed on a 3x3 grid. Although this does not assist is preserving
variety of the population, it does make it possible to execute the algorithm in parallel,

which was the primary focus of this experiment.

The experiment was repeated 15 times, 5 times each using 1 processor, 3 processors
and 9 processors. In al instances the perfect solution, as indicated by Equation 5.1,

was evolved. The times taken to achieve these results are shown in Table 5.3.
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No of TimeTaken | Generations Time Taken to Process
Processor s to find Processed Single Generation
Solution ©)
(h:m:s)

1
1
1
1
1
3
3
3
3
3
9
9
9
9
9
9 |

Table5.3. Time taken to run parallel symbolic regression on multiple processors

First the algorithm was run on a single machine (Run1A-RunlE) and this found the
solution in an average time of 2 hours, 2 minutes and 45 seconds. When the algorithm
was run on a network of 3 computers, it took only an average of 41 minutes and 55
seconds to find the solution. When 9 processors were used, the increase in speed was

minimal and the average time taken was reduced to only 41 minutes and 30 seconds.
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2:09:36 p

1:55:12

1:40:48

1:26:24

Time  1:12:00
(h:m:s)  0:57:36
0:43:12

0:28:48

0:14:24

0:00:00

1 3 9
No of Processors

Figure5.3. Graph showing overall time taken vs. no of processors - Exp 2.1

Figure 5.3 illustrates the differences in time taken during the three runs. There is a
substantial decrease in time when the number of processors is increased to 3 but not
much improvement gained from increasing the number of processorsto 9. Thisis due
to the seria nature of migration. When 9 processors were used, the time taken for
evolution was small compared to the time taken for migration. At this point it was

decided to parallelise the migration operation as well.

Although the time taken for a complete evolutionary run is significant, it is not the
best metric for comparative analysis since the length of each run is most probably
different. Thus, when comparing the time taken to reach a solution with different
numbers of processors, it is more accurate to use the average times taken to evolve

each new generation. Using this data, Figure 5.4 was generated.
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Figure 5.4. Graph showing time taken per generation vs. no of processors - Exp 2.1

It can be seen that the total time taken for each run is related almost proportionately to

the time taken for evolution of a single generation.

However, if one compares the average total time taken for 1 processor (2h 02m 45s) to
that of 3 processors (41m 45s), it superficially seems that the latter case achieves
greater than linear speedup. This is, of course, not the case, since migration and
collation of results were still serial operations, resulting in lower than optimal
increases in speed. Thus the 3 processors ought to have achieved less than linear
speedup of execution. Now, if the average time taken to evolve single generations is
used instead, then comparisons can be made between different numbers of processors.
The average time taken to process one generation was 485 seconds for 1 processor and

220 seconds for 3 processors. Thisratio isbelow 3:1, as was expected.

Experiment 2.2

In order to prove that the parallel algorithm really does speed up the execution of the
algorithm, a single-population model was aso tested with al parameters being the

same except the number of sub-populations, asindicated in Table 5.4.
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Par ameter Value

Population Size

No of Sub-populations
Max no of Generations
Max initial size

Max size

Maximum compl exity
Min solution fitness
Mutation probability
Craossover probability
Terminal set

Function set

450
1
51
5
17
50
1
0.1
0.9

{x

{PPlus, PPlus, PTimes, PTimes, PMinus, PDivide}

Table 5.4. Parameters for parallel symbolic regression - Exp 2.2

The times taken for each run of the experiment isindicated in Table 5.5.

Run No No of TimeTaken | Generations Time Taken to Process
Processor s to find Processed Single Generation
Solution (9
(h:m:s)
A 1 0:43:33 15 172
B 1 0:29:28 10 177
C 1 0:27:45 10 167
D 1 0:40:07 12 201
E 1 0:39:40 13 183
Average 1 0:36:00 12 180

Table5.5. Time taken to run single-population symbolic regression on single processor

It was expected that the single-population algorithm would be outperformed by both
the 3-processor and 9-processor models. However, the results of the single-population
model surpass all models of the parallel algorithm. This occurred primarily because of

the seria nature of migration, taking a substantial percentage of the total computation

time.
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Experiment 2.3

Migration was completely parallelised before these experiments were run. Using 3
processors, Experiment 2.1 was repeated (Run 2A-2E), reverting to the usage of 9

sub-populations. The times taken for these experiments are indicated in Table 5.6.

Run No No of TimeTaken = Generations  Time Taken to Process
Processor s tofind Processed Single Gener ation
Solution (9
A 3 0:04:55 3 98
B 3 0:14:07 7 121
C 3 0:27:21 12 137
D 3 0:26:15 12 131
E 3 0:11:28 6 115
Average 3 0:16:45 8 120

Table 5.6. Time taken to run parallel symbolic regression on 3 processors with parallelised

migration operation

The average time taken to process a single generation was 120 seconds, which is
significantly lower than both the single-population case (experiment 2.2 - 180

seconds) and the serial migration multi-population case (experiment 2.1 - 220s).

Conclusion

Mathematica can successfully be utilised to execute a GP in parallel on a network of
workstations. The primary advantage of the paralel implementation is that the
restriction on population size and generation numbers is removed. The restrictions of
the physical computer can be overcome by appropriately-sized parameters for the

paralel algorithm.

In addition, speed-of-execution improvements can be obtained by performing both the
evolution and migration operations in parallel. These will be affected by the speed of
the server and the ratio of computation time to communication time, as dictated by the

number of sub-populations and their sizes.
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Experiment 3: CSTR Controller

A Continuous Stirred Tank Reactor (CSTR) is a chemical reactor that was modelled
in Mathematica for a simple exothermic reaction [Hajek, 1994]. For some reactions, it
is desirable to attain a particular state of the reactor, in terms of the temperature,
concentration of reactant and other parameters. With optimal control of the reaction,
the chemical reactor may produce maximal yield. It was attempted to control the
reactor, by means of changes in coolant and reactant inflow. Hajek applied fuzzy
logic, optimised by a genetic algorithm in order to generate equations to control the
reactor towards a known unstable steady state. The Mathematica model for this reactor
was obtained by personal contact with the author and GP was applied in an attempt to
find controlling equations that achieve the objective with as little control deviation as

possible.

The fitness function was pre-specified to be the sum of differences between the
desired set points and the control variables, temperature and reactant concentration,
over a set of discrete time intervals. This summation included four scenarios of the
experiment with different starting points (temperature and reactant concentration).
Thisisdiscussed further in [Hajek, 1994].

The function set contained only the four standard arithmetic operators (Plus, Minus,
Times, Divide), to streamline the genetic processes. The terminal set contained the
two control variables, temperature (x) and concentration of reactant (y), as well as

some constant values. The parameters used for the GP run are indicated in Table 5.7.
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Population Size 360
No of Sub-populations | 9
Max no of Generations | 51

Max initial size 5
Max size 17
Maximum compl exity 50
Min solution fitness 1

Murtation probability 0.1
Craossover probability 0.9

Terminal set {X XXX XY, Y Y, Y, Y, 1000, 100, 10, 1,
0.01, 0.001, 0.0001}
Function set {PPlus, PPlus, PTimes, PTimes, PMinus, PDivide}

Table5.7. GP Parameters for CSTR

The constants in the terminal set were introduced in order to allow greater scaling of
the variables i.e. to increase the range of values spanned by the control variables.
Many copies of the control variables (x and y) were included in the terminal set in
order to increase the probability of selection of the variables relative to the constants

in the same set.

Since two eguations were sought, the genetic operators were modified to cater for this.
Each individual was generalised to be a list of expressions rather than a single
expression. Then, al operations could be applied to the lists. Crossover on a list of
expressions was extended to operate on a single expression from the list, chosen with
uniform randomness - the corresponding expression is chosen from another
individual. Mutation was changed similarly to operate on one of the expressions
within the list.

Experiment 3.1

Raw fitness criteria were compared to a supplied heuristic estimate for the control
functions, which produced a value of 25337.2. This criterion corresponds to the
cumulative error so lower values are indicative of better solutions. The GP agorithm

produced comparatively better criteria
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Figure5.5. Control path for CSTR functions obtained by GP - Exp 3.1

Figure 5.5 shows the control trajectory achieved (top left graph) as well as the values
of the control function during the each time interval (coolant inflow on the left and
reactant inflow on the right). The criterion was 18613.4, which corresponded to afitter

solution. The control functions generated were:
coolant (X,y,qc) =10+ 3Xx + 10y + OC  .ceecvevrvevrvrreienen, (5.2)
reactant (X,y,q) = 0.0001 + 0  .coccevvvrvrrieeneeeeee e (5.3)

where x represents the temperature differential, y represents the concentration
differential and qc and q are the values of the control functions during previous

iterations.

From the graphs of control functions, it is obvious that the control of coolant inflow is
not a convergent function but rather an oscillatory one (bang-bang control). The
controller does not stabilise the reactor during the course of the experiment. If the
reaction is continued, there is no guarantee that it will stabilise - the criterion will

continue to increase.
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Experiment 3.2

The GP algorithm was repeated in order to search for functions which have low fitness

in the window of the experiment and generally stabilise the controller as well.

Crit. = 18950.5
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Figure 5.6. Control path for CSTR functions obtained by GP - Exp 3.2

Figure 5.6 indicates such a case, where the criterion is low but the control functions

are not oscillatory in nature. The equations generated were:
coolant (x,y,qc) =0.001 ( 1.001 + x + 3y + 0.02xy ) + gc (5.4)
reactant (x,y,q) = 0.0000001 + g .ccooveverrrreveereeseesieenn, (5.5)

The variables have the same meanings as discussed above.

Conclusion

In both experiments, the coolant inflow control function is non-linear - it depends on
the values of the current concentration as well as the current temperature. Since there
are no anaytica methods that guarantee the generation of optima non-linear

controllers, GP can be applied to evolve near-optimal controllers. In addition, the
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Mathematica implementation is useful in situations such as these where existing
problems have already been modelled and aternative solution methodologies are

sought.

Experiment 4: PID Controller

A Proportional, Integral, Differential (PID) Controller is another example of a
derivative controller for a chemical reactor. The Mathematica model of this controller
was obtained by personal contact from M. Hajek. This class of controllers takes as
input the current and previous two control deviations (i.e. the differences between the
required values and those obtained during the reaction). In order to speed up the
generation of equations, only one previous control deviation is used, effectively
reducing the controller to a PI controller. The goal of the optimisation was to find a

controller that followed a given trgjectory, as indicated below.

Desired trajectory

10 . .
8t
6+t

c
41
2t
360 380 400 420 440
T

Figure5.7. Desired control tragjectory of PID controller

Figure 5.7 shows the desired trgjectory. The horizontal axis represents the temperature
while the vertical axis represents the concentration in the reactor. The reaction starts

in an initial condition that corresponds to the upper left corner of the given path. The
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control equations must thereafter control the reactor so that it follows this path as

closely as possible.

GP was applied to this problem using the parameters as indicated in Table 5.8.

Population Size 960
No of Sub-populations | 16
Max no of Generations | 51
Max initial size 5
Max size 17
Maximum complexity 50
Min solution fitness 1
Murtation probability 0.1
Crossover probability 0.9

Terminal set

Function set

{dt1, dt1, dt2, dt2, dx1, dx1, dx2, dx2, ec, ec, ec,
ec, 100, 10, 1, 0.01, 0.001}
{PPlus, PPlus, PTimes, PTimes, PMinus, PDivide}

Table 5.8. GP Parameters for PID Controller

In the terminal set, the variables dtl and dt2 correspond to the current and previous
temperature deviations while dx1 and dx2 correspond to the current and previous
concentration deviations. ec is a placeholder to introduce random constants into the
algorithm. It is used when generating expressions, and immediately replaced with a
random value at each occurrence when the expression is complete. The population

sizeislarger than usual to cater for a sufficient variety of random coefficients.

A pair of given heuristic equations to control the reaction had a criterion of 464.09.
These given equations were:

temperature (dt1, dt2, dx1, dx2) =-0.0111792 dx1 + 0.00882075 dx2 (5.6)

coolant (dt1, dt2, dx1, dx2) = 0.000637217 dt1 - 0.000502783 dt2 .... (5.7)

GP attempted to find sets of equations with asmaller criterion.
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Experiment 4.1

The GP agorithm was executed and, after 79 generations, a solution with criterion
1319.15 was found. This solution is not fitter than the given one, but attempts to
follow the tragjectory by changing the direction of control if the error is large. This

results in coarse oscillatory control, and a non-convergent criterion.

Crit. = 1319.15
10
8
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0.00257 0. 008 | "
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Figure 5.8. Control path for PID controller functions obtained by GP - Exp 4.1

Figure 5.8 indicates the oscillatory nature of the coolant inflow function (bottom left)

aswell asthe discrete trajectory formed by the generated equations (top | eft).
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Figure5.9. Global fitness curve for PID controller - Exp 4.1

Figure 5.9 indicates the global fitness curve for this experiment. It seems from the
pattern of evolution that the discovery of a much fitter solution is very unlikely.
Repetition of this experiment produced similarly unsatisfactory results, necessitating

modification of the parameters.

Experiment 4.2

Since the aim of this experiment was to optimise the control functions, it was decided
to incorporate the heuristic functions (Equations 5.6 and 5.7) into the initial

population, by seeding each sub-population with the pair.

The resulting evolved equations had a noticeably lower criterion than the given
equations. Figure 5.10 indicates the control trgjectory and control actions for the set of

control functions.

Page 118



Crit. = 51.7333
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Figure 5.10. Control path for PID controller functions obtained by GP - Exp 4.2 Run 1

The generated controller had a criterion of 51.7333, which is much lower than that of

the given equations (Equation 5.6 and 5.7). The functions produced by GP were:

temperature = 0.0013 dt1 - 0.0005 dt2 ........ccccevemiririiriieieieneeene (5.8)

— ~ dt1 _
coolant = _ 00111 x dxL— 0.011(— 13971x10™° - 0.011 x dx1 + 30823 x dx1(0.4012 + ~86981x10" (00001 + dxz)D

dx2

These functions were obviously non-linear and, while still producing a control action
similar to the given equations (with no oscillations), incurred less error in the
criterion. The experiment was repeated twice and both times the resulting criterion
was similar to the first run. Table 5.9 shows the criteria obtained during the 3 runs of

this experiment.

Page 119



| Run | Criterion

l
' 1 | 517333 |
| 2 | 549929 |
| 3 | 553069 |

Table5.9. Criteriafor PID

controllers

The similarity of the criteria for different runs suggests that the solutions obtained are
near-optimal for the given problem domain. The global fitness curve for Run 2 is
indicated in Figure 5.11.
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Figure5.11. Global fitness curve for PID controller - Exp 4.2 Run 2

This global fitness curve is amost identical for all runs of the experiment. The trend
suggested by this graph is that the fitness of the best equations will not improve

significantly in the following generations.
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Experiment 4.3

In afinal attempt to further optimise the equations, the initial population was seeded
with the given individuals as well as those generated during the three runs of

Experiment 4.2. However, thisdid not result in much improvement in the criterion.

After 73 generations the best individual had a criterion of 49.8443, which is not
comparatively much smaller than the criteria from the previous experiment. It is not
expected that further runs of the experiment will result in major improvements in the
criterion, unless the parameters are changed or the sizing restrictions are relaxed to

allow searching of awider range of solutions.

Conclusion

The non-linear PID controller generated by GP had a lower criterion than the given
heuristic equations. GP can be used successfully to take existing equations and evolve
better solutions from them. Although GP does not need this problem-specific
information, it helps to speed up evolution if as much known information as possible

isincorporated into the modelling of the problem domain.

Experiment 5: The Magic Star

Discussion

A magic square is a matrix of numbers with specific properties for its elements e.g.
the sum of numbers along each row or column could be equal to the same constant. In
terms of a star, similar rules can be applied. Consider the case of a 6-point star, as
indicated in Figure 5.12.
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Figure5.12. Six-point magic star configuration

Figure 5.12 shows the layout of a 6-point star, with each node of the star being
assigned a label. One classic magic star problem is to assign the first twelve positive
whole integers to the nodes of the star such that the sum of the values at the pointsis
equa to the sum of the values along each line. This can be written as a series of
equations, solvable by Gauss-Jordan elimination or similar technigues. The equations

would be:
1+2+...+12 = S1+S2+...+S12

S1+82+S5+S8+S11+S12 =Sum

S1+S4+S7+S11 = Sum
S1+S3+S6+S8 = Sum
S8 + S9+ S10 + S11 = Sum
S2+S3+A4+S5 = Sum
S2 + S6+ SO + S12 = Sum
S5 + S7 + S10 + S12 = SUM oo, (5.10)

For some such problems, it may be known that solutions exist and analytical methods
can be employed to find the solution. For other problems, anaytica methods may

exist but the existence of a solution is not guaranteed. A third class of puzzles has the
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property that no solution methods exist. The normal approach to solve such problems
would be to identify which class they fall in. Then the solution can be derived

analytically, if one exists.
GP was used as an aternative to row-reduction to solve the problem described above.

The problem was modelled in Mathematica, using the paralel GP algorithm as its
basis. Since GP produces expressions or programs and the solution being sought was a
list of numbers, a conversion of representations was needed. It was decided to model
the individuals as permutations that could be applied to alist of 12 numbers. In order
to generate the list of numbers represented by an individual, the permutation is applied
to (1,2,3,4,5,6,7,8,9,10,11,12) and the resulting list is the solution. Permutations were
accomplished by sequences of single-element swaps. These swapping operations were

stored in the individual in the form of atree, that was flattened at evaluation time.

SBl ock[ expr___]:=Test Case[[ 1] ]

Swap[a_, b_]:=Mdul e
{t},

t=Test Case[[a]];

Test Case[[a] ] =Test Case[[Db] ];
Test Case[[b] ] =t;

Test Case[ [ 12] ]

]

The function set is composed of Swap, which swaps two elements in the list, and
SBI ock, which contains alist of swapping operations. The terminal set contains only

random numbers in the range 1-12. The complete list of parametersis listed below in
Table 5.10.
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Population Size 1600
No of Sub-populaions | 16
Max no of Generations | 51

Max initid size 5
Max size 17
Maximum complexity 50
Min solution fithess 1

M utation probability 0.1
Crossover probability 0.9

Termina set {ec, ec, ec, ec}
Function set {sblock, shlock, sblock, sbl ock, swap, swap, swap,
swap}

Table5.10. GP Parameters for Magic Star

The fitness function is the only other necessary parameter in order to run the GP

algorithm.

RawFi t ness[ ex_]: =Modul e[
{summai n, sum diff=0},
Test Case=Mai nCase;
ex /. XTrans;
sumrai n=Appl y[ Pl us,
Test Case[[{1, 2,5,8,11,12}]]];
sumeAppl y[ Pl us, TestCase[[{1,3,6,8}]]1];
di f f +=Abs[ summai n- suni ;
sunm=Appl y[ Pl us,
Test Case[[{8, 9, 10, 11}]11;
di f f +=Abs[ summai n-suni ;
sum=Appl y[ Plus, TestCase[[{1,4,7,11}]11;
di f f +=Abs[ summai n- suni ;
sumeAppl y[ Pl us, TestCase[[{2,3,4,5}]11];
di f f +=Abs[ summai n- suni ;
sum=Appl y[ Plus, TestCase[[{2,6,9,12}]11;
di f f +=Abs[ summai n- suni ;
sunm=Appl y[ Pl us,
Test Case[[{5, 7,10, 12}]11;
di f f +=Abs[ summai n- suni ;
diff
]

The raw fitness was calculated by first adding together the values at the points of the
star, denoted by sunmai n. The values along each line are added and these values are
then subtracted from summai n. The differences are gathered together to form the raw
fitness. Thus, the fitness function checks an individual to see if it satisfies the criteria
of the problem as specified by Equations 5.10, and deviations from a perfect solution

are penalised proportionately.
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The aim of this experiment was to ascertain if GP could solve such a problem with
minimum problem-specific information. The GP agorithm was run on a network of 7

486-DX33 computers (6 clients and 1 server).

One run of the algorithm terminated after 72 hours and 237 generations with the

perfect solution, which was

sbl ock[ 4, swap[ sbl ock[sbl ock[4, swap[5, 8], 2, 6, 12], 4, 4,
sbl ock[ sbl ock[ 6, sblock[7, 6, 6, 9], 6, sblock[10, 6, 2],
swap[4, 2]],

1, 6, sblock[4, 5, sblock[12, 6, 9, 6], 6]]], 6],

swap[ swap[ 11, 4], 6]]

When this expression is evaluated, it transforms the Test Case list into the required

set of numbersto assign to the nodes of the star, namely:
{S1,2,...,S12} = {6,4, 3,11, 8,12, 7,5, 9, 10, 2, 1}

The solution is not symmetric so does not lend itself to simple analytical solution
methods. Although such methods do exist, it may be easier in some circumstances to
model the problem in a prototyping language like Mathematica and execute a GP on
it.

Conclusion

All the experiments in this chapter demonstrate the applicability of GP to real-world
problems. The advantages of Mathematica modelling are exploited to decrease the

setup time and concentrate on the finding of solutions.

Parallelisation of the GP agorithm has the primary advantage of eliminating the
constraints that GP placed on memory and computer processing capacity. Thus the
sizes of evolved expressions and populations are no longer critical parameters of the
GP agorithm. Also, a paralledl GP agorithm can be run cooperatively on multiple
computers, achieving near-linear speedup of execution. In general, parallelisation of
the GP algorithm makes it feasible to solve real-world problems in a prototyping

environment like M athematica.
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CONCLUSION

It has been confirmed that Genetic Programming can be useful to solve rea-world
problems where no analytical solution methodology exists. Symbolic regression is a
prime example of such problems and was modelled in both a serial and paralél

environment during this study.

Mathematica, already an established mathematical modelling language, was used to
implement GP. This implementation took advantage of the extensive function libraries
and programming paradigms of Mathematica. It was found that Mathematica is
unsuitable for calculations of indeterminate length and time, like GP, due to its
internal and temporary storage strategies. Also, Mathematica, being an interpreted
language, could never achieve the speed of execution of compiled code. In order to
overcome some of these problems, the implementation was parallelised i.e. the GP
algorithm was broken into smaller computational segments. The paralel agorithm
does not have the restrictions on program parameters which is found in the serial
model. Also, speed of execution can be improved in orders of magnitude by executing
the algorithm on a network of workstations. This parallel implementation was

successfully used to solve some benchmark and real-world optimization problems.

The Mathematica GP implementation is useful because it can be applied to problem
domains already modelled in Mathematica. Other problem domains can be modelled
in Mathematica with much greater ease than in standard 3GL compiled languages like
C++. Although languages like C++ can execute a GP faster than Mathematica,
modelling of complex problem domains can be a time-consuming and complicated
task. Thus the Mathematica implementation of GP takes advantages of the modelling
capabilities of the language. In a non-prototyping production environment, where
speed is an important factor, compiled languages would have obvious preference over
Mathematica

Future Directions

Further work could be done on porting the Mathematica implementation to other

platforms. Although the functions are platform-independent, the session management
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is still based on MS-DOS and compatible operating systems. The scheduler, currently
a C++ application, can be written in Java or Mathematica to achieve platform-
independence. Scheduling can aso be integrated into the algorithm at periodic
intervals so that it may optionally be run on a single computer without the need for

multi-tasking.

If the code is portable then the algorithm can be executed in paralel on multiple
computers networked via the Internet. Data can be shared using Internet-based file
system protocols like NFS. Results can be displayed continuously on WWW browsers
in the form of Java applets.

The GP algorithm is itsedf being constantly improved. The Mathematica
implementation can be readily extended to cater for changes in GP operators or flow
of control. New features like Automatically Defined Functions (ADFs), as discussed
exhaustively by Koza, can be easily incorporated since the implementation already

caters for multiple sub-expressions within each individual [Koza, 1994].
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APPENDIX A : SERIAL ALGORITHM

xtradefs.m

ClearAttributes[Di vide, Protected]
Divide[_, 0]:=1
Set Attri butes[Divide, Protected]

ClearAttributes[Log, Protected]
Log[ 0] : =0

Log[ x_ /; x<0]:=Log[-x]

Log[ E*x_] : =x

Set Attri butes[Log, Protected]

ClearAttributes[ Power, Protected]
Power[0, -1]:=1
Set Attri but es[ Power, Protect ed]

time.m

Ti me[ x_ Second /; x>=3600, Stuff__ ] :=

Modul e[{h, m s}, s =x; h = Floor[s/3600]; s -= h*3600; m= Floor[s/60];
s -= nf60; Print[Stuff, h, " Hours, ", m " Mnutes, ", s, " Seconds"]]

Ti me[ x_ Second /; x>=60, Stuff__ ] :=
Modul e[{m s}, s = x; m= Floor[s/60]; s -= nt60;
Print[Stuff, m " Mnutes, ", s, " Seconds"]]

Ti me[ x_ Second, Stuff__ ]:=
Print[Stuff, x, " Seconds"]

genprog.m

Get["tinme. ']
Get["xtradefs. ni']

(* Terminals *)
(* Functions *)
(* Parameters *)

MaxConpl exi t y=50

(* Generate random expression *)
Gener at eNor mal [ d_] : =Mbdul e[
{r, Poss, PossPar},
[
d>1
Poss=Joi n[ Functi ons, Term nal s];
PossPar =Par anet er s
Poss=Ter m nal s;
PossPar ={}

]
Whi | e[
Lengt h[ PossPar ] <Lengt h[ Poss],
PossPar =Append[ PossPar, 0]

r:Rangbn{Integer, {1, Length[Poss]}];
Swi t ch[

PossPar[[r]],

0,

Poss[[r]],
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Poss[[r]][Generate[d-1]],

2,

Poss[[r]][CGenerate[d-1], Generate[d-1]],
3

Pbss[ [r]1][CGenerate[d-1], Cenerate[d-1],
Generate[d-1]]

]

Gener at e[ d_] : =Mbdul e[

{y},

y=Gener at eNor nal [ d] ;

Whi | e[

Leaf Count [ y] >MaxConpl exi ty,
y=Gener at eNor nal [ d]
1
y

|

Crossover Probability=0.9

(* Get list of all indices of internal points in expression *)
RenpveZero[x_]:=If[Position[x, 0]=={}, x, {}]
Poi nt s[ x_] : =Uni on[ Map[ RenbveZero, Position[x, _]], {}]

Getlnternal [{x___}]:=x

(* Perform crossover operation on two expressions *)

Crossl[x_, y_]:=Modul e[
{spot1, spot2, pointl, point2, tenpl, tenp2},
I f[

Randon{ ] <Cr ossover Probabi lity,
poi nt 1=Poi nt s[ x] ;
spot 1=Randon{ I nteger, {1, Length[pointl]}];
poi nt 2=Poi nt s[y] ;
spot 2=Randonf I nt eger, {1, Length[point2]}];
tenpl=x[[GetlInternal [point1l[[spot1]]]]];
tenp2=y[[GetlInternal [point2[[spot2]]]]];
{ 1f]
poi nt 1[ [ spot 1] ] =={},
temp2,
Repl acePart[x, tenp2, pointl[[spotl]]]
If[
poi nt 2[ [ spot 2] | =={},
tenpl,
Repl acePart[y, tenpl, point2[[spot2]]]
]
{x, vy}
]
]

Mut at i onPr obabi | ity=0.1
MaxSi ze=17

(* Performnutati on operation on an expression *)
Mut at e[ x_] : =Mbdul e
{spotl, pointl, y, xold},
xol d=x;
I f[
Randon{ ] <Mut ati onProbability,
y=Cener at e[ MaxI niti al Si ze];
poi nt 1=Poi nt s[ x] ;
spot 1=Randonf I nteger, {1, Length[pointl]}];
If[
poi nt 1[ [ spot 1] ] =={},

Y,
Repl acePart[x, y, pointl[[spot1]]]

1,
]
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((Dept h[ x] <MaxSi ze) &&
(Leaf Count [ x] <MaxConpl exi ty)),
Xol d
]
]
]

(* RawFi tness *)
St andar di zedFi t ness[ x_] : =RawFi t ness[ x]
Adj ust edFi tness[x_]: =N 1/ (1+St andar di zedFi t ness[ x] )]

(* List of fitnesses of expressions in current generation *)
Fi t nesses={}

(* Make cunul ative fitnesses vector *)
Cal cFi t nessSum =Modul e[ {},
Fi t SunmeTabl e[ Appl y[ Pl us, Take[Fitnesses, i]], {i, 1, Length[Fitnesses]}];
Fit Sumrl nsert[FitSum 0, 1];

]

(* Bisection algorithmsearch for roulette wheel fitness choice *)
Search[x_] :=
Modul e[ {M d, Start=1, Stop=Length[FitSuni},
VWil e[Start+1 = Stop,
Md = Floor[(Start+Stop)/2];
If[FitSun{[Md]] > x,
St op=M d,
Start=Md
]
1
Start
]

(* Create new generation from previous one *)

NewGen[ x_] := Modul e[
{maxwheel , newgen, | enx},
newgen={};

maxwheel =Appl y[ Pl us, Fitnesses];
| enx=Lengt h[ x] ;
Cal cFi t nessSum
Do
Modul e[
{spot, index, isunt,
spot =Randoni ] * maxwheel ;
i ndex=Sear ch[ spot];
newgen=Append[ newgen, Xx[[index]]]

(i, 1, lenx}
1
newgen

]

(* Performcrossover on all expressions in new generation *)
Crossover[x_] := Modul e[
{newx, oldx, n2, leno, origlen},
ol dx=x;
newx={};
| eno=Lengt h[ ol dx] ;
ori gl en=l eno;
Whi | e[
| eno>0,
[
| eno==1,
newx=Append[ newx, First[ol dx]];
ol dx=Rest [ ol dx],
n2=Cross1[ol dx[[1]], oldx[[2]]];
If[((Depth[n2[[1]]]<=MaxSi ze) && (Leaf Count[n2[[1]]]<=MaxConplexity)),
newx=Append[ newx, n2[[1]]],
newx=Append[ newx, ol dx[[1]]]
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| f][;((Dept h[n2[[2]]] <=MaxSi ze) && (Leaf Count[n2[[2]]]<=MaxConplexity)),

newx=Append[ newx,
newx=Append[ newx,

1
ol dx=Drop[ ol dx, 2];

n2[[2]]1],
ol dx[[2]]]

| éno:Lengt h[ ol dx]
1
newx

]

MaxGener at i ons=51
Popul ati onSi ze=250
Sol uti onSet *)

(* Sol ution, SolutionFitness,

(* Update best-of-run individual *)
CheckSol ution[gen_, x_]:=Modul e[
{m nf, maxf},
Fi t nesses=Adj ust edFi t ness / @x;
m nf =Posi ti on[ Fitnesses, Mn[Fitnesses]][[1,1]];
maxf =Posi ti on[ Fi t nesses, Max[Fitnesses]][[1,1]];
I f[
Sol uti onFi t ness<Fi t nesses[ [ maxf]],
Sol uti on=x[ [ maxf]];
Sol uti onFi t ness=Fi t nesses[ [ maxf]]
1
Sol ut i onSet =Append[ Sol uti onSet,
{gen, Fitnesses[[maxf]], x[[maxf]],
Fitnesses[[minf]], x[[mnf]]}];
Print["G', gen, ": max ", Fitnesses[[nmaxf]],
" mn ", Fitnesses[[mnf]]];
]
M nFi t ness=0. 99
(* Generation, Population, TotTinme *)
XTrans={}
(* Apply Genetic algorithm¥*)
Appl yGen : = Modul e[
{onetime, popl og},
O f[ Get:: noopen];
Get["restart.log"];
On[ Get : : noopen] ;

newpop=Popul ati on;
Print["G', Generation,
Print["G', Generation,

*)

calculating fitnesses ..."]; *)
done ... ", Timng[CheckSol ution[Generati on,

(*
(*
newpop] J [[1]]];
Whi | e[
(Sol uti onFitness<M nFitness) && (Generati on<MaxGenerati ons),
onet i me=Ti m ng

Print["G', Ceneration, creating mating pool "1;
Print["G', Ceneration, ": done ... ",
Ti mi ng[ newpop=NewGen[ newpop] [ [[1]]];
Print["G', Generation, ": performng crossover "1;
Print["G', CGeneration, ": done ... ",
Ti m ng[ newpop=Cr ossover [ newpop] 1[[1]]1];
Print["G', Ceneration, " performng mutation ..."];
Print["G', Generation, done ... ", Ti m ng[newpop=Map[ Mut at e,
newpop] [ [1]11
CGener ati on++;
Popul at i on=newpop;
Print["G', Ceneration, calculating fitnesses ..."];
Print["G', Ceneration, done ... ", Timng[CheckSol ution[Generati on,
newpop] I [[1]]1; | |
Print["G', Ceneration, best-of -run fitness so far = ",
Sol uti onFi t ness] ;

JRNRARE
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Tine[onetime, "G', Generation, ": total time for Generation change = "];
Tot Ti me+=onet i ne;
Time[Tot Time, "G', Generation, ": total time so far = "];

Print["Saving state of system.."];
Save["restart.l og", Popul ationSize];
Save["restart.new', ContinueGen];
RenaneFile["restart.log", "restart.old"];
RenaneFil e["restart.new', "restart.log"];
DeleteFile["restart.old"];

popl og=CpenAppend[ " pop. | 0g”] ;
WiteString[poplog, ","];
Wite[poplog, {CGeneration, Fitnesses}];
Cl ose[ popl og] ;
Print["Finished saving state of system.."];
1
{Solution /. XTrans, Sol utionFitness}

|
Maxl nitial Si ze=6

(* Initialise Genetic algorithm?*)
Initialize: =Bl ock[
{ popl og},
Popul ati on=Tabl e[ Generat e[ MaxI niti al Si ze],
{Popul ati onSi ze}];
Sol uti onFi t ness=0;
Sol uti onSet ={};
Cener at i on=0;

Tot Ti me:O;
Print["G', Generation, ": calculating fitnesses ..."];
Print["G', Generation, ": done ... "

Ti i ng[ CheckSol uti on[ Generat i on Popul ation]]J[[1]1]1];
Print["G', Generation, ": best- of-runfltness so far = ",

Sol ut i onFi t ness] ;

Of[DeleteFile::nffil];
Del eteFiIe["pop.Iog]
DeleteFile["restart. Iog 1;
DeleteFile["restart.new'];
DeleteFile["restart.old"];
On[Del eteFile::nffil];

popl og=CpenAppend[ " pop. | 09" ] ;
WiteString[popl og, "pop={"];
Wite[poplog, {CGeneration, Fitnesses}];
Cl ose[ popl og] ;

Save["restart.l og", Popul ationSize];
Save["restart.log", ContinueGen];

I nformati on[ Popul ati on];
d nformation;

]

(* Start run of algorithm?®)
St art Gen: =Ti mi ng[
CheckAbort [
Appl yGen,
{Solution /. XTrans, Sol utionFitness}
]
]

Cont i nueGen[ gen_] : =Mbdul e[ {},
MaxCGener at i ons=gen;
M nFi t ness=2;
Save["restart.lo
Save["restart.lo
Start Gen

MaxGener ati ons] ;

g",
g", MnFitness];
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G nf ormati on: =Mbdul e[ {},
Pri
Pri
Pri
Pri
Pri
Pri
Pri
Pri

Crossover Probabi lity];
Pri
Pri

]

stats.m

ShowSanpl e: =Li st Pl ot [ MapThr ead][ Li st

ShowCur ve: =Modul e[
{t},

]

ShowSol uti on: =Pl ot [ Sol ution /.

ShowFi t : =Show{ ShowSanpl e

Pl ot Range- >{{-2, 2},
Pl ot Label - >Sol ution /.

Frame->Tru

]

Stats[s_String]:=Mdul e[{},

hist.m

<<Graphi cs” Graphi cs”
<<Graphi cs” Ani mati on’

Run[ " copy pop. | og+pop. m pop. f ul

<<pop. f ul
popfit=MapThr ead[ Li st,

Hi stogran{x_, opts__ ]:=

Modul e[ {data, fI, figs},

dat a=Tabl e[ 0, {10}];

fi gs=Map[ Fl oor

figs=Map[ | f[#==0,
Map[ (data[ [#]] +4) &

nt["e];
nt[ " Popul ation Size : ", Popul ationSi ze];
nt["Max no of Generations : ", MaxCenerations];
nt["Max initial size , Maxlnitial Size];
nt["Max size , MaxSi ze] ;
nt["Mn solution fitness , M nFitness];
nt["Mitation probability : ", MitationProbability];
nt["Crossover probability : ",
nt["Term nal set , Term nal s];
nt["Function set , Functions];

{XPoi nts, YPoints}]]

t=MapThread[ Li st, Sol utionSet];
Li st Pl ot [ MapThread[ List, {Join[t[[1]], t[[1]]],
Join[t[[2]], t[[4]]1}].
Pl ot Range->{{0, 51}, {0, 1}}]
XTrans, {x, -2, 2}]
, ShowSol uti on,
{'2! 10}}!

XTrans, AxesLabel ->{x, ""},
e
Di spl ay[ StringJoin[s, ".sanl], ShowSanple];
Di splay[ StringJoin[s, ".sol"], ShowSolution];
Di splay[ StringJoin[s, ".fit"], ShowFit];
Di splay[ StringJoin[s, ".scu"], ShowCurve];

/'Y > nul"]
pop] [[2]]
. popfit[[x+1]]*10];
1, #]& figs];
figs];
{i, 0, 0.9, 0.1}],

Bar Chart[data, BarlLabel s->Table[i,
Pl ot Range- >{ {0,

11},

Pl ot Label - >StringJoi n[ "Generation ",

opt s]
]

Hi st Tabl e: =Tabl e[ Hi stogranf i,

{i, o,

Lengt h[ pop] - 1}]
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ToString[x]],

Di spl ayFuncti on->ldentity],



Ani mat eHi st : =ShowAni mat i on[ Hi st Tabl €] ;

restart.m

<<xtradefs.m
<<stats.m

<<restart.|og
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APPENDIX B : SCHEDULER

#defi ne WN31
#i ncl ude <dir. h>
#i ncl ude <ow . h>

N R \\
/1 O ass declaration for a general itemof data in a |linked Iist

cl ass Thing

{
publi_c:

Thing () {};

Thi ng *Next, *Prev;
}

e e LT T \\
/1 C ass declaration and definition for a general linked |ist

cl ass Thi ngLi st

1

public:
Thi ngLi st ();
void AddThing ( Thing *p );
Thing *PopThing ();

pr ot ect ed:
Thi ng *Head, *Tail;
b
Thi ngLi st:: Thi ngLi st ()
Head=NULL,;
Tai | =NULL;
}
voi d ThingLi st:: AddThing ( Thing *p )
{

p- >Prev=Tail ;
i f (Head==NULL)
Head=p;
el se
Tai | - >Next =p;
p- >Next =NULL,;
Tai | =p;

Thing *Thi ngLi st:: PopThing ()
i f (Head==NULL)

return NULL;
i f (Head==Tail)

{
Thi ng *p=Head;
Tai | =Head=NULL;
return p;
}
el se
it _
Thi ng *p=Head;
Head=Head- >Next ;
Head- >Pr ev=NULL;
return p;
}
}
R e \\

/] Declaration and definition for a list of job

class Job : public Thing
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-
public:
Job ( char *n );
char *Get Nane ();
pr ot ect ed:
char Narme[ 80] ;
b

Job::Job ( char *n)
I strcpy (Name, n);
char *Job:: Get Nane ()

{

}

N R
/1 Declaration and definition for a list of jobs

return Nane;

cl ass JobList : public ThingList

{

public:
JobLi st ( PTDi al og ptd );
JobList ( PTDialog ptd, int );
void Refresh ();
void AddJob ( Job *p );

pr ot ect ed:
PTDi al og Par ent ;
b
JobLi st::JobList ( PTDialog ptd, int )
{
Par ent =pt d;

JoblLi st::JobList ( PTDialog ptd )

struct ffblk ff bl k;
i nt done;

Par ent =pt d;

done = findfirst("*.*", & fblk, FA D REC);
whil e (!done)

if ((ffblk.ff_nane[0]=="P') &&
(ffblk.ff_nane[ 1] == O) &&
(ffblk.ff_nang[2]=="P') &&
(ffblk.ff_nane[lstrlen (ffblk.ff_nane)-3]=="L") &&
(ffblk.ff_nane[lstrlen (ffblk.ff_nane)-2]=="0) &&
(ffblk.ff name[lstrlen (ffblk.ff_pnane)-1]=="G) &&
(ffblk.ff_name[3]!'="."))

ffbl k. ff_nanme[lstrlen (ffblk.ff_name)-4]=0;
Job *p=new Job (ffblk.ff_name);

AddJob (p);
}
done = findnext (&ffblk);
}
Refresh ();

voi d JobList::Refresh ()

{
Job *p=(Job *) Head;

Par ent - >SendDl gl tenivsg (102, LB _RESETCONTENT, 0, 0);
whi | e (p!=NULL)
{
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if (p!=NULL)
Par ent - >SendDl gl t enivsg (102, LB _ADDSTRING 0, (long)(p->CGetNane()));
p=(Job *)p->Next;

}
voi d JobList:: AddJob ( Job *p )

AddThi ng (p);

N e e R \\
/1 Declaration and definition for a list of migration jobs

class M gratedoblLi st
{
public:
M grateJobList ( PTDialog ptd, int nos );
~M gr at eJobLi st ();
voi d AddJob ( char *s );
void Refresh ();
char *GetJob ();
BOCOL MoreJobs ();
void ClearJob ( char *s );
pr ot ect ed:
unsi gned char *Matri x, *List;
PTDi al og Par ent ;
unsi gned | ong Si ze;
char t Job[ 256] ;
unsigned long GetPos ( int r, int ¢ );

I

M grat eJobList:: M grateJobList ( PTDi alog ptd, int nos )
{

Par ent =pt d;

Si ze=nos;

Mat ri x=new unsi gned char [GetPos (nos-1, nos)+1];

nenset (Matrix, 0, GetPos (nos-1, nos)+1);

Li st =new unsi gned char [nos];

nmenset (List, 0, nos);

}
M gr at eJobLi st::~M grat eJobLi st ()

del ete Matri x;
del ete List;

}
unsi gned long MgratedobList::GetPos ( int r, int c)

unsi gned | ong Pos, ril1=r, cl=c;
Pos=(((r1-1)*(2*(Size-1)-r1+2))/2)+cl-r1-1;

return Pos;
}
voi d M gratedobList::AddJob ( char *s )
{
S++;
unsi gned | ong Code=atol (s);
unsi gned long r=(Code / Size)+1;
unsi gned | ong c=(Code % Si ze) +1;
Matri x[ Get Pos (r, c¢)]=1;
}

char *M grateJdobList:: GetJob ()
for ( int a=l; a<Size; a++ )
for ( int b=a+l; b<=Size; b++)
if ((List[a-1]==0) && (List[b-1]==0) && (Matrix[CetPos (a, b)]==1))
{

Li st[a- 1] =1;
Li st[b-1] =1;
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Mat ri x[ Get Pos (a, b)]=0;

char u[ 256] ;

I strcpy (tJob, "M);

ultoa ((a-1)*Size+(b-1), u, 10);
| strcat (tJob, u);

return tJob;

}
return NULL;
}

BOOL M grateJdoblLi st:: Moredobs ()

if (menchr (Matrix, 1, GetPos (Size-1, Size)+1)==NULL)
return FALSE;

el se
return TRUE;

}

void MgratedobList::CearJob ( char *s )
{

S++;

unsi gned | ong Code=atol (s);
unsi gned long r=(Code / Size)+1;
unsi gned | ong c=(Code % Si ze) +1;
Li st[r-1]=0;

Li st[c-1] =0;

voi d M grateJdobList::Refresh ()

{
Par ent - >SendDl gl tenivsg (102, LB _RESETCONTENT, 0, 0);
for ( int a=l; a<Size; a++ )
for ( int b=a+l; b<=Size; b++)
if (Matrix[GetPos (a, b)]==1)
{
char u[ 256] ;
Istrcpy (tJob, "M);
ultoa ((a-1)*Size+(b-1), u, 10);
Istrcat (tJob, u);
Par ent - >SendDl gl t emVsg (102, LB _ADDSTRING, 0, (long)tJob);
}
}
N e

/] Declaration and definition for a processor
cl ass Processor : public Thing

1

public:
Processor ( char *n );
char *GetJob ();
void SetJob ( char *s );
char *Get Nanme ();
char *GetCurrentJob ();
void KillCurrentJob ();

pr ot ect ed:
char Nane[ 80] ;
char aJob[ 80] ;
char TenpJob[ 80] ;
b

Processor:: Processor ( char *n)

I strcpy (Name, n);

char *Processor:: GetJob ()
struct ffblk ffblk;

i nt done;
char attr[256];
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Istrcpy (attr, Name);

I strcat (attr, "\\* *");

done = findfirst(attr, & fblk, 0);
I strcpy (TenpJdob, ffblk.ff_nane);

if (done)
return NULL;
el se
return TenpJob;

voi d Processor::SetJob ( char *s )
char t[ 100] ;
Istrcpy (t, Nane);
I strcat (t, "\\");
I strcat (t, s);
HFILE f=_lcreat (t, 0);
_lclose (f);

I strcpy (adJob, s);
}

char *Processor:: GetNanme ()

return Nane;

}
char *Processor::GetCurrentJob ()
{
return alob;
}

voi d Processor::Kill CurrentJob ()
I strcpy (aJob, "idle");
R R e \\
/] Declaration and definition for a list of processors
cl ass ProcessorList : public ThinglList
{
public:
ProcessorList ( PTDialog ptd );

void Start ();
voi d Refresh ();

BOCOL RunConpl et e, GenConpl et e;
pr ot ect ed:
PTDi al og Par ent ;
voi d AddProcessor ( Processor *p );
JobLi st il
M grateJobList *nl;
enum { Processing, Checking, Mgrating } RState;

voi d RefreshProcessing ();
void RefreshMgrating ();
voi d RefreshChecking ();

I

/1 find all processors, initialise job list and start processing
ProcessorList::ProcessorList ( PTDialog ptd )

struct ffblk ff bl k;
i nt done;

GenConpl et e=RunConpl et e=FALSE;
Par ent =pt d;

done = findfirst("*.*", & fblk, FA D REC);
whil e (!done)
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}

}

((ffblk.ff_attrib & FA DI REC)>0) &&
(ffblk.ff_name[0]=='P') &&
(ffblk.ff_name[1]=='R) &&

(ffblk.ff _name[2]=="0) &&

(ffblk.ff _name[3]=='C))

Processor *p=new Processor (ffblk.ff_name);
AddProcessor (p);

done = findnext (&f fblk);

j1=new JobLi st (Parent);

Start ();

/] create job lists and assign tasks to each processor
voi d ProcessorList::Start ()

{

Pr ocessor *p=(Processor *)Head;
Job *aJob;

char t[256] ;

char Generation[10];

char Sol uti onFi t ness[ 256] ;
i nt NoCf M grati onPai rs;

i nt NoOF Subpopul at i ons;

char M grationPair[20];

Par ent - >SendDl gl teniVsg (101, LB _RESETCONTENT, 0, 0);
Par ent - >SendDl gl tenivsg (102, LB _RESETCONTENT, 0, 0);
Par ent - >SendDl gl t enivsg (103, LB _RESETCONTENT, 0, 0);

whi l e (p!=NULL)
{

}

aJob=(Job *)jl->PopThing ();
i f (aJob!=NULL)

{

p- >Set Job (aJob->GetNane ());
I strcpy (t, p->GetNane ());
Istrcat (t, "::");
I strcat (t, aJob->GetNane ());
Par ent - >SendDl gl tenivsg (101, LB ADDSTRING 0, (long)t);
p=(Processor *)p->Next;
del et e aJob;

el se

p=NULL;

j1->Refresh ();
RSt at e=Pr ocessi ng;

f
f
f
f
f

m

for (

{

}

>>
>>
>>
>>

streamf ("pop.inf", ios::in);

Cener ati on;

Sol uti onFi t ness;
NoOF Subpopul ati ons;
NoOf M grati onPai rs;

=new M grat eJobLi st (Parent, NoOf Subpopul ations);

f

int a=0; a<NoOfFM grationPairs; a++ )

>> MgrationPair;

m ->AddJob (M grationPair);

Par ent - >SendDl gl teniVsg (301, VWM SETTEXT, 0, (long)Generation);
Par ent - >SendDl gl t eniVsg (302, WM SETTEXT, 0, (I ong)Sol utionFitness);
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/1
VOi

{

/1
VOi

/1
VOi

refresh job status for each processor
d ProcessorlList::Refresh ()

i f (RState==Processing)
RefreshProcessing ();

el se i f (RStat e==Checki ng)
Ref reshChecking ();

el se
RefreshM grating ();

add processor to list
d ProcessorlList:: AddProcessor ( Processor *p )
AddThi ng (p);

refresh evolution jobs for each processor and update display
d ProcessorlList:: RefreshProcessing ()

Pr ocessor *p=(Processor *)Head;

char *aJobNane;

BOCOL Stil | Computi ng=FALSE, JobChange=FALSE;
char t[256] ;

Job *aJob;

Par ent - >SendDl gl tenivsg (101, LB _RESETCONTENT, 0, 0);
whi l e (p!=NULL)
{

aJobNane=p- >Get Job ();
i f (aJobNane! =NULL)

Stil | Computi ng=TRUE;
I strcpy (t, p->GetNane ());
I strcat (t, "::");
Istrcat (t, p->GetCurrentJob ());
Par ent - >SendDl gl tenivsg (101, LB ADDSTRING 0, (long)t);

el se

aJob=(Job *)jI->PopThing ();
i f (aJob!=NULL)

{
Par ent - >SendDl gl t emVsg (103, LB_ADDSTRING 0, (Iong)(p-

>Get CurrentJob ())):

p- >Set Job (aJob->GetNane ());
Istrcpy (t, p->GetNane ());
Istrcat (t, "::");
Istrcat (t, aJob->GetNane ());
Par ent - >SendDl gl tenVsg (101, LB ADDSTRING, 0, (long)t);
del et e aJob;
JobChange=TRUE;
Still Conputi ng=TRUE;
}

el se
if (Istrcnp (p->GetCurrentJob (), "idle")!=0)
Par ent - >SendDl gl t enivsg (103, LB _ADDSTRI NG 0, (I ong)(p-

>Get CurrentJob ())):

p->Ki |l | CurrentJob ();

}

I'strepy (t, p->GetName ());

| strcat (t, "---idle");

Par ent - >SendDl gl temVsg (101, LB ADDSTRING, 0, (long)t);

}

p=(Processor *)p->Next;
}
i f (JobChange)

j1->Refresh ();
if (!Still Conputing)
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}

}

((Processor *)(Head))->SetJob ("MSTART");

Istrcpy (t, ((Processor *)(Head))->GetNanme ());
Istrcat (t, "::MSTART");

Par ent - >SendDl gl temVsg (101, LB _RESETCONTENT, 0, 0);
Par ent - >SendDl gl tenVsg (101, LB _ADDSTRING 0, (long)t)
delete jl;

RSt at e=Checki ng;

/'l check for best solution
voi d ProcessorList:: RefreshChecking ()

}
11

char *Curr Job;
CurrJob=((Processor *)(Head))->GetJob ();

i f (CurrJob==NULL)

RSt at e=M gr at i ng;
m - >Refresh ();

}
else if (Istrcmpi (CurrJob, "DONE")==0)

}

delete nml;
RunConpl et e=TRUE;

’

refresh mgration jobs for each processor and update displ ay
voi d ProcessorList::RefreshMgrating ()

Pr ocessor *p=(Processor *)Head;

char *aJobNane;

BOCOL Stil | Computi ng=FALSE, JobChange=FALSE;
char t[256] ;

char *aJob;

Par ent - >SendDl gl tenivsg (101, LB _RESETCONTENT, 0, 0);
whi l e (p!=NULL)
{

aJobNane=p- >Get Job ();
i f (aJobNane! =NULL)

Stil | Computi ng=TRUE;
I strcpy (t, p->GetNane ());
Istrcat (t, "::");
Istrcat (t, p->GetCurrentJob ());
Par ent - >SendDl gl tenivsg (101, LB _ADDSTRING 0, (Il ong)

el se
{
if (Istrcnp (p->GetCurrentJob (), "idle")!=0)
m - >Cl earJob (p->GetCurrentJob ());
aJob=m ->CGet Job ();
if (aJob!=NULL)

if (Istrcnpi (p->GetCurrentJob (), "idle")!=0)
Par ent - >SendDl gl tenivsg (103, LB_ADDSTRI NG 0,

>Get CurrentJob ())):

p- >Set Job (aJob);

Istrcpy (t, p->GetNane ());

Istrcat (t, "::");

I strcat (t, alJob);

Par ent - >SendDl gl tenVsg (101, LB ADDSTRING, 0, (lo
JobChange=TRUE;

Still Conputi ng=TRUE;

el se

if (Istrcnmp (p->GetCurrentJob (), "idle")!=0)
{
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Par ent - >SendDl gl t enivsg (103, LB _ADDSTRING O, (I ong)(p-
>CGet CurrentJob ()));
p->Ki |l | CurrentJob ();

}

Istrcpy (t, p->GetNane ());

| strcat (t, "---idle");

Par ent - >SendDl gl tenVsg (101, LB ADDSTRING, 0, (long)t);

}

p=(Processor *)p->Next;

}
i f (JobChange)

m - >Refresh ();
if (!Still Conputing)

{
if (m->Mredobs ()==FALSE)
delete m;
GenConpl et e=TRUE;
}
}
}
e e T \\

/1 Declaration and definition of Wndows |nterface
class Mbialog : public TDi al og

{

public:

MDi al og ( PTW ndows(Obj ect AParent, LPSTR ANane, PTModul e AModul e=NULL );
virtual void ldleAction ();

pr ot ect ed:
BOOL St opped;
DWORD Tot Time, StartTine;

virtual LPSTR GetC assNane () { return "GPNetDial og"; };
virtual void Handl eExit ( RTMessage ) = [ IDFIRST + 201 ];
virtual void Start ( RTMessage ) = [ IDFIRST + 202 ];
virtual void Stop ( RTMessage ) = [ IDFIRST + 203 ];
Pr ocessor Li st *pl;
void MakeTine ( DWORD t, char *s );
b
MDi al og: : MDi al og ( PTW ndowsCbj ect AParent, LPSTR ANane, PTModul e AMbdul e)
TDi al og (AParent, ANanme, AMdul e)

pl =NULL;
St opped=FALSE;
Tot Ti me=0;

b

voi d MDial og::IdleAction ()
i f (pl!=NULL)
{

pl - >Refresh ();
i f (pl->GenConpl et e==TRUE)
{

Tot Ti me+=Get Ti ckCount ()-StartTi ne;
del ete pl;
i f (Stopped==FALSE)

{

Start Ti mne=Get Ti ckCount ();
pl =new ProcessorList (this);

}

el se
pl =NULL;

}
else if (pl->RunConpl et e==TRUE)
{
Tot Ti me+=Get Ti ckCount ()-StartTi ne;

del ete pl;
pl =NULL;
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}

el se
{
char s[ 256] ;
DWORD t=Tot Ti me+( Get Ti ckCount ()-StartTine);

MakeTinme (t, s);
SendDl gl tenmVsg (303, WM SETTEXT, 0, (long)s);
}
}
}

voi d MDi al og:: Handl eExit ( RTMessage )

Cl oseW ndow () ;
}

void MDialog::Start ( RTMessage )
i f (pl==NULL)
{

Start Ti mne=Get Ti ckCount ();
pl =new ProcessorList (this);
St opped=FALSE;
}
}

void Mdial og:: Stop ( RTMessage )

if (pl!=NULL)
St opped=TRUE;

voi d MDial og:: MakeTinme ( DAWORD t, char *s )
{

DWORD secs, mns, hours;

t =t/ 1000;

hour s=t/ 3600;

t - =hour s*3600;

m ns=t/ 60;

t -=m ns*60;

secs=t;

wsprintf (s, "H %u M %u S %u", hours, mns, secs);

e e e e T \\
/] Declaration and definition of Application container

class MApplication : public TApplication

{
public:

MAppl i cation ( LPSTR AName, H NSTANCE Anl nstance, H NSTANCE
APr evl nst ance,

LPSTR ACndLi ne, int ACndShow )
TAppl i cati on (ANane, Anlnstance, APrevlnstance, ACndLi ne, ACndShow) {};

pr ot ect ed:

virtual void InitMinWndow ();

virtual void ldleAction ();

DWORD Ti ckTi nmer;

b
void MApplication::InitMinWndow ()

Mai NnW ndow = new MDi al og (NULL, "GPNetDial og");
Ti ckTi mer =Get Ti ckCount () ;

}
void MApplication::ldleAction ()

if ((GetTickCount ()-TickTiner)>=1000)
((MDi al og *) (Mai nNW ndow) ) - >l dl eAction ();
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Ti ckTi mer =CGet Ti ckCount ();

}
}
N \\
e e R \\
/1 Main program body
e \\

int PASCAL WnMiin ( H NSTANCE hl nst ance, H NSTANCE hPrevl nst ance,
LPSTR | pCndLi ne, int nCndShow )

MApplication M ("GPNet", hlnstance, hPrevlnstance, |pCndLi ne, nCrdShow);

M Run ();
return M St atus;
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APPENDIX C : PARALLEL GP

time.m

(* Genetic Progranming *)
(* Tine output routines *)

(* H Suleman *)
(* 24 Cctober 1995 *)

Begi nPackage[ "Genetic Tine "]

Tinme::usage = "Tine[x] outputs the tine taken in seconds, mnutes and hours.
Tine[x, Stuff] outputs Stuff followed by tinme taken."

Begi n[" Private "]
Ti me[ x_ Second /; x>=3600, Stuff__ ] :=
Modul e[{h, m s}, s = x; h = Floor[s/3600]; s -= h*3600; m= Floor[s/60];
s -= n¥60; Print[Stuff, h, " Hours, ", m " Mnutes, ", s, " Seconds"]]
Time[ x_ Second /; x>=60, Stuff__ ] :=
Modul e[{m s}, s = x; m= Floor[s/60]; s -= nt60;
Print[Stuff, m " Mnutes, ", s, " Seconds"]]

Ti me[ x_ Second, Stuff__ ]:=
Print[Stuff, x, " Seconds"]

End[]
Prot ect [ Ti ne]

EndPackage] ]

xtradefs.m

(* Genetic Progranmng *)
(* Extra definition routines *)

(* H Suleman *)
(* 24 Cctober 1995 *)

Begi nPackage[ " Geneti c” ExtraDefinitions "]
EndPackage] ]

ClearAttributes[Divide, Protected]
Divide[_, 0]:=1
Set Attributes[Divide, Protected]

ClearAttributes[ Md, Protected]
Mod[ _, 0]:=0
Set Attributes[ Mod, Protected]

ClearAttributes[Log, Protected]
Log[ 0] : =0

Log[x_ /; x<0]:=Log[-x]

(* Log[ Erx_]:=x *)

Set Attributes[Log, Protected]

Cl earAttri but es[ Power, Protected]

Power [0, x_ /; x<0]:=1
Set Attribut es[ Power, Protected]
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Clear Attributes[Unequal, Protected]
Unequal [ _String, EndOFile]:=True
Set Attri but es[ Unequal , Protected]

default.m

(* Genetic Progranmng *)

(* Default paraneters and user-defined functions *)

(* H Suleman *)
(* 9 June 1996 *)

Begi nPackage[ " CGeneti c” Paraneters "]
MaxConpl exity = 50
Popul ati onSi ze = 40

Maxlnitial Si ze

5

NoCf Subpopul ations = 4
MaxCener ations = 51

MaxSi ze = 17

M nFitness = 0.99
CrossoverProbability = 0.9

Mut ati onProbabi ity

0.1

M gr ati onPer cent age 0.1
M grati onDevi ati on = 0.05
M grati onProbability = 4
Epoch=20

Lengt hOf Menmber = 1

XTrans={ PPl us- >Pl us, PM nus->M nus, PTi nmes->Ti nes,
>Mbd}

Functi ons={ PPl us, PTines, PM nus, PDivide}
Parameters={2, 2, 1, 2}

Ter m nal s={ ec}

ReTouch[ expr _]: =expr /. ec:>Randoni{ Real, {1, 10}]
RawFi t ness[expr_]:=N ((expr /. XTrans)-Sqgrt[2])"2]
St andar di zedFi t ness[ expr_] : =RawfFi t ness[ expr]

Adj ust edFi t ness[ expr _] : =Modul e[
{answer},

PDi vi de- >Di vi de,

PMod-

answer =N[ 1/ ( 1+St andar di zedFi t ness[ expr])];
Adj ust edFi t ness[ expr] =answer ;

answer

]
EndPackage] ]
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operator.m

(* Genetic Progranmng *)
(* Genetic operator routines *)

(* H Suleman *)
(* 9 June 1996 *)

(* Get paraneters *)
Needs[ " Genetic’ Paraneters ", "default.ni]

Begi nPackage[ " Geneti c” Operators™"]

Crossl::usage = "Crossl[x, y] performs crossover on x and y to produce {x1,
yl}.ll

Crossover::usage = "Crossover[x] perfornms crossover on the population in
list x."

Mit at e: : usage = "Miutate[x] randomy nutates expression x."

Begin[" Private "]

(* Get list of all indices of internal points in expression *)
RenmoveZero[ x_]:=If[Position[x, 0]=={}, x, {}]

Poi nt s[ x_] : =Uni on[ Map[ RenobveZero, Position[x, _1], {}]
Getlnternal [{x___}]:=x

(* Performcrossover operation on two expressions *)

Crossl[x_, y_]:=Modul e[
{spot1l, spot2, pointl, point2, tenpl, tenp2},
I f[

Randon{ ] <Geneti ¢ Par anmet ers” Cr ossover Probabi lity,
poi nt 1=Poi nt s[ x] ;

spot 1=Randonf I nteger, {1, Length[pointl]}]

poi nt 2=Poi nt s[ y] ;

spot 2=Randonf I nteger, {1, Length[point2]}]
tenpl=x[[CGetlInternal [point1l[[spotl1]]]]];
tenp2=y[[CetlInternal [point2[[spot2]]]]1];
I f

poi nt 1[ [ spot 1] ] =={},

tenp2,

Repl acePart[x, tenmp2, pointl[[spotl]]]

If[

poi nt 2[ [ spot 2] ] =={},

tenpl,

Repl acePart[y, tenpl, point2[[spot2]]]
]

{x, vy}
]
]

(* performcrossover on corresponding elenents in lists *)
Crossl[x_ /; Head[x]==List, y_/; Head[y]==List]:=
Modul e[

{z, pos, xnew, ynew},
pos=Randoni I nteger, {1, Length[x]}];
z=Crossi[x[[pos]], y[[pos]]];
XNew=x;
ynew=y;
xnew [ pos] ] =z[[
ynew [ pos] ] =z[[
{xnew, ynew}

]

(* Performmutation operation on an expression *)
Mut at e[ x_] : =Modul e[

1]]
2]]

{spotl, pointl, y, xold, xnew},
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xol d=x;
XNEeW=X;
I f[
Randoni ] <Geneti c’ Paranet ers” Miut ati onProbability,
y=CGenetic Initialization Generate[RandoniInteger, {1,
Genetic Paraneters Maxlnitial Size}]];
poi nt 1=Poi nt s[ xnewj ;
spot 1=Randon{ I nteger, {1, Length[pointl]}];
xnew=l f [
poi nt 1[ [ spot 1] ] =={},

Y,
Repl acePart[x, y, pointl[[spot1]]]

[ '
((Dept h[ xnew] <=Geneti c’ Paranet ers” MaxSi ze) &&

(Leaf Count [ xnew] <=Ceneti ¢ Par anet er s MaxConpl exi ty)),
Xnew,
xol d
!,
xol d
]
]

(* performnutation on an elenment within a list *)
Mitate[ x_ /; Head[x]==List]:=

Modul e[
{z, xnew},
z=Randoni I nteger, {1, Length[x]}];
XNEeW=X;
xnew [z] ] =Mutate[x[[z]]];
xnew

]

(* Performcrossover on all expressions in new generation *)
Crossover[x_] := Modul e[
{newx, oldx, n2, leno, origlen},
ol dx=x;
newx={};
| eno=Lengt h[ ol dx] ;
ori gl en=l eno;
Wi | e[
| eno>0,
If[
| eno==1,
newx=Append[ newx, First[ol dx]];
ol dx=Rest [ ol dx],
n2=Crossl[ol dx[[1]], oldx[[2]]];
If[((Depth[n2[[1]]] <=CGeneti c" Paraneters MaxSi ze) &&
(Leaf Count[n2[[1]]] <=Geneti c" Par anet ers” MaxConpl exity)),
newx=Append[ newx, n2[[1]]],
newx=Append[ newx, ol dx[[1]]]

1
If[((Depth[n2[[2]]] <=Ceneti c” Paraneters MaxSize) &&
(Leaf Count[n2[[2]]] <=Geneti c" Paraneters’ MaxConpl exity)),
newx=Append[ newx, n2[[2]]],
newx=Append[ newx, ol dx[[2]]]

l;
ol dx=Drop[ ol dx, 2];
| éno:Lengt h[ ol dx]
1

newx

]
End][ ]

Protect[ Crossl, Crossover, Mitate]

EndPackage] ]
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Initial.m
(* Genetic Progranmng *)
(* I'nitialization routines *)

(* H Suleman *)
(* 9 June 1996 *)

(* Get time routines *)

Needs["CGenetic Tinme ", "tinme.ni]

(* Get extra definitions for basic arithmetic operations *)

Needs[ " CGenetic ExtraDefinitions ", "xtradefs.ni]

(* Get paraneters *)

Needs[ " Genetic’ Paraneters™", "default.ni]

(* Get file locking routines *)

Needs[ " Genetic’ Shares™", "shares. ni']

Begi nPackage[ "CGenetic Initialization ", {"Genetic Parameters "}]

Gener ate: :usage = "Cenerate[x] generates a random expression of depth x."
Initialize::usage = "Initialize initialises the various paraneters and
popul ations."

G nformation::usage = "G nformation[] lists informati on about the current
paraneters.”

GPopl nformati on: : usage = "GPopl nf ormati on[ popnanme] |ists information about
the state and best individual in the current popul ation."

CheckSol ution: :usage = "CheckSol ution cal cul ates fitnesses and checks for
sol utions."

Checkd obal Sol utions: : usage = "Checkd obal Sol uti ons checks if the |ocal

solution betters the global one."

InitNames::usage = "InitNames initialises the table of name prefixes of
popul ations."

Begin[" Private "]
(* Make lists of terminals+functions, paraneters, etc. *)
MakePossi bi i ties: =Modul e[
{},
Genetic” Paranmeters GPossi bilities=Join[Termn nal s,
Functi ons];
Geneti ¢’ Paranet ers” GPossPar anet er =Joi n[
Tabl e[ 0, {Length[Term nals]}],
Par aneters

1

Geneti ¢’ Paranet ers’ GPossLengt h=Lengt h[ Geneti ¢’ Paranmeters GPossi bilities];
Geneti ¢’ Paranet ers” Gler mLengt h=Lengt h[ Ter mi nal s] ;

]

(* Generate random expression *)
Cener at eNor mal [ d_] : =Mbdul e[
{r},
I f[
d>1,
r=Randoni | nt eger, {1,
Geneti ¢’ Paranet ers’ GPossLengt h}],
r=Randoni | nt eger, {1,
Geneti ¢’ Paranet ers” GlernLengt h}]

1;
Swi t ch
Geneti ¢’ Paranet ers” GPossParanmeter[[r]],
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0,
Genetic Paraneters  GPossibilities[[r]],
1,

Genetic Paraneters GPossibilities[[r]][GenerateNornal [d-1]],
2

Genetic Paraneters GPossibilities[[r]][GenerateNornal [d-1],
GenerateNormal [d-1]],
3,

Genetic Paraneters GPossibilities[[r]][GenerateNornal [d-1],
Gener at eNor nal [ d- 1],
Gener at eNormal [d-1]],
4,

Genetic Paraneters GPossibilities[[r]][GenerateNormal[d-1],
Gener at eNor nal [ d- 1],
Gener at eNor nal [ d- 1],
Gener at eNormal [ d-1]],

5,

Genetic Paraneters GPossibilities[[r]][CGenerateNormal[d-1],
Gener at eNor nal [ d- 1],
Gener at eNor nal [ d- 1],
Gener at eNor nal [ d- 1],
Gener at eNor mal [ d- 1]]

]

(* Generate an expression of given depth and maxconplexity *)
Gener at e[ d_] : =Modul e[

{y}.
y=Gener at eNor mal [ d] ;
Whi | e[
((Depth[y]<d) || (LeafCount[y]>MaxConplexity)),
y=Gener at eNor nal [ d]
l;
ReTouch[ y]

(* Update best-of-run individual and fitnesses in population *)
CheckSol ution[gen_, x_, popnane_]:=Mdul e[
{m nf, maxf, AverageFitness},
Ceneti c” Paraneters’ Fitnesses=Adj ust edFitness / @Xx;
m nf =Posi ti on[ Geneti c” Paranet ers’ Fi t nesses,
M n[ Genetic Paraneters  Fitnesses]][[1, 1]];
maxf =Posi ti on[ Geneti c” Paranet ers’ Fi t nesses,
Max[ Genetic” Paraneters” Fitnesses]][[1, 1]];
Genetic’ Paraneters” Sol uti on=x[[maxf]];

Geneti ¢’ Paraneters” Sol uti onFi t ness=Genetic’ Paraneters” Fitnesses[[maxf]];

Aver ageFi t ness=Appl y[ Pl us,
Genetic’ Paraneters” Fitnesses]/Popul ati onSi ze;

Geneti ¢’ Paranet ers” Sol uti onSet =Append[ Geneti ¢’ Par anet ers” Sol uti onSet,
{gen, Genetic Paraneters’ Fitnesses[[maxf]],

x[[maxf]],
Genetic Paraneters” Fitnesses[[m nf]],
x[[minf]],
Aver ageFi t ness}];
Print[popnane, "-G', gen, ": mn=",
Genetic Paraneters’ Fitnesses[[m nf]],
ave=",

Aver ageFi tness, " max=",
Genetic Paraneters” Fitnesses[[maxf]]];

(* Check gl obal popul ations *)
Checkd obal [ popnane_] : =Modul e[
{info},
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"d obal ""];

Genetic Paraneters’

info[[2]]];

Cenetic’ Paraneters’

Cenetic’ Paraneters’

info[[4]]];

Cenetic’ Paraneters’

Cenetic’ Paraneters’

Cenetic’ Paraneters’

(* Check for global

Print["** checking ", popnane];

(* process popul ation *)
Begi nPackage[ "CGeneti c” Paraneters™ ",

Get[ StringJoi n[ popnane, ".log"]];
EndPackage[];

i nf o=Last [CGenetic” Paraneters Sol utionSet];
I f[

GvaxSol uti onFi tness<info[[2]],
Geneti c’ Paraneters” GvaxSol ution=info[[3]];

Print["** found better solution : ",

GvaxSol uti onFitness=info[[2]];
Geneti ¢’ Paranet ers” GvaxSol ut i onPop=popnane;

1
]

GM nSol utionFitness>info[[4]],
Genetic’ Paraneters” GM nSol ution=info[[5]];

Print["** found worse solution : ",

GM nSol utionFitness=info[[4]];
Geneti ¢’ Paranet ers” GM nSol ut i onPop=popnang;

1;
GAveSol utionFitness+=info[[6]];
Tot Ti me+=Geneti ¢’ Paraneters” Ti neTaken;

Geneti ¢’ Paranet ers” NoOf | ndi vi dual s+=
Lengt h[ Geneti ¢’ Paranet ers” Popul ati on];

sol utions anong all popul ations *)

Checkd obal Sol uti ons: =Modul e[

Cenetic’ Paraneters’

{f, np},
Print["** Checking gl obal status"];

Begi nPackage[ " Geneti ¢ Paraneters™", "d obal ""];
Get [ "pop. | 0g"];
EndPackage[];

Ceneti ¢’ Paranet ers” GvaxSol uti on=1;
Ceneti ¢’ Paranet ers” GvaxSol uti onFi t ness=0;
Geneti ¢’ Par anet ers” GvaxSol ut i onPop="pop";

Ceneti ¢’ Paraneters” GM nSol uti on=1;
Cenetic” Paraneters” GM nSol uti onFi t ness=1;
Geneti c’ Paranet ers” GM nSol uti onPop="pop";

Cenet i c” Paranet ers” GAveSol uti onFi t ness=0;
Ceneti ¢’ Paranet ers” NoOf | ndi vi dual s=0;

Map[ Checkd obal ,
Popul at i onNanes] ;

Cenetic’ Paraneters” GAveSol uti onFit ness=
N[ Geneti c” Par anet ers” GAveSol ut i onFi t ness/
Geneti ¢’ Paranet ers” NoOf | ndi vi dual s];

1]

Ceneti ¢’ Paranet ers” GvaxSol uti onFi t ness>
Ceneti c” Paranet ers” @ obal Sol uti onFi t ness,
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Geneti ¢’ Paranet ers” d obal Sol uti onFitness=
Ceneti ¢’ Paranet ers” GvaxSol ut i onFi t ness;
Geneti ¢’ Paranet ers” d obal Sol uti on=
Ceneti ¢’ Paranmet er s GvaxSol uti on;

1

Cenetic’ Paraneters” d obal Sol uti onSet =

Append[ Geneti ¢” Par anet ers” d obal Sol uti onSet,

{Genetic’ Paraneters’ Generation,
Ceneti ¢’ Paranmet er s” GvaxSol ut i onFi t ness,
Ceneti ¢’ Par anmet er s GvaxSol ut i on,
Ceneti ¢’ Paraneters” GM nSol uti onFi t ness,
Ceneti ¢’ Paranmeters” GM nSol uti on,
Geneti c’ Paraneters” GAveSol uti onFi t ness}];

Del et eFi |l e[ "pop.10g"];
Save[ "pop. | og", Genetic’ Paraneters’ TotTi ne];
Save[ "pop. | og",
Geneti ¢’ Paraneters” d obal Sol uti onSet];
Save[ "pop. | og",
Geneti ¢’ Paraneters” d obal Sol ution];
Save[ "pop. | og",
Geneti ¢’ Paranet ers” d obal Sol uti onFi t ness];

O f[DeleteFile::nffil];
Del et eFil e[ "pop.inf"];
On[DeleteFile::nffil];

np=Sel ect [
Genetic Paraneters M grationPairs,
(Randoni I nt eger,

1

f=CpenWite["pop.inf"];
Wite[f, Genetic Paraneters’ Generation];
Wite[f,
CFor n{ Geneti ¢’ Paranet ers™ d obal Sol uti onFi t ness]];
(* Wite[f,
CForn{ Geneti c’ Paraneters™ M nFi tness]]; *)
Wite[f,
CFor n{ Geneti c” Par anet er s” NoOf Subpopul ati ons]];
Wite[f, Length[np]];
Mepl o
(Wite[f, TextForn{StringJoin["M,

M grati onProbability] ==0)&

ToString[#]11]) &
np

clo]sia[f];

Print["** Finished gl obal checks"];
]

(* Initialise a population *)
I'nitializePop[popname_]: =Bl ock[
H’?pl og, i, j},

Lengt hOf Menber ==1,
Geneti ¢’ Paranet er s” Popul ati on=Tabl e[
Gener at e[
Mod[
I,
Genetic Paraneters” Maxlnitial Si ze
1+1

{f , 1, Genetic Paraneters’ Popul ationSi ze}
1.
Geneti ¢’ Paranet ers” Popul ati on=Tabl e[
Tabl e[
Gener at e[
Mod[
I,
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Genetic Paraneters Maxlnitial Si ze
1+1
1,
{j, 1, Genetic Paraneters’ Lengt hOf Merber}

{i , 1, Genetic Paraneters Popul ationSi ze}

]
|

Genetic Paraneters” Population[[1]]=
{ PPl us[ PTi nes[ Eval uat e[ Geneti ¢” Par anet ers” gq0] ,
Genetic’ Paraneters”dt1],
PTi mes[ Eval uat e[ Geneti ¢ Paraneters” gql],
Genetic Paraneters dt2]],
PPl us[ PTi nes[ Eval uat e[ Geneti c” Par anet ers” gq0x] ,
Geneti ¢’ Paraneters” dx1],
PTi mes[ Eval uat e[ Geneti c” Paranet ers” gqlx],
Genetic’ Paraneters  dx2]]};
Ceneti c” Paranet ers” Sol uti onFi t ness=0;
Geneti ¢’ Paranet ers” Sol uti onSet ={};
Ceneti ¢’ Paranet ers” Generati on=0;
Ceneti ¢’ Paraneters’ Ti neTaken=0;

Print[ popnane, "-G', Cenetic Paraneters Generation, ":
calculating fitnesses ..."];
Print[ popnanme, "-G', Cenetic’ Paraneters Generation, ":

done ... ",
Ti m ng[ CheckSol uti on[ Geneti ¢’ Paranet ers” Generati on,
Geneti ¢’ Paranet ers” Popul ati on, popnane]]

[1]]
Print] bopname, "-G', Genetic Paraneters Generation, ":

best-of -run fitness so far =",
Geneti ¢’ Paranet ers” Sol uti onFit ness];

Of[Del eteFile::nffil];

Del et eFi l e[ Stri ngJoi n[ popnane, ".plg"]];
Del et eFi | e[ Stri ngJoi n[ popnane, ".l10g"]];
Del et eFi | e[ Stri ngJoi n[ popnane, ".new']];
Del et eFi | e[ Stri ngJoi n[ popnane, ".old"]];

On[Del eteFile::nffil];

popl og=CpenAppend[ Stri ngJoi n[ popnare, ".plg"]1];

WiteString[popl og, "pop={"];

Wite[poplog, {Cenetic’ Paraneters Generation,
Genetic Paraneters’ Fitnesses}];

Cl ose[ popl og] ;

Save[ Stri ngJoi n[ popnane, ".log"],
Geneti ¢’ Paranet ers” Popul ation];

Save[ Stri ngJoi n[ popnane, ".log"],
Genetic’ Paraneters’ Fitnesses];

Save[ StringJoi n[ popnane, ".log"],
Geneti ¢’ Paraneters’ Generation];

Save[ Stri ngJoi n[ popnane, ".log"],
Geneti ¢’ Paraneters’ Ti mneTaken] ;

Save[ Stri ngJoi n[ popnane, ".log"],
Geneti ¢’ Paraneters” Sol ution];

Save[ Stri ngJoi n[ popnane, ".log"],
Geneti ¢’ Paranet ers” Sol uti onFi t ness];

Save[ Stri ngJoi n[ popnane, ".log"],

Genetic” Paraneters” Sol utionSet];

I nformation[ Geneti ¢’ Paranet ers” Popul ati on];
GPopl nformati on [ popnane];

]
(* Initialise table of name prefixes, mgration pairs *)
I ni t Names : = Modul e[
{dim rowl, row2, row3, coll1, col2, col3, nanes={},
popnos, pop, mgt, mglen},

Geneti ¢’ Par anet er s Popul ati onNames=Tabl e[
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StringJoi n["pop", ToString[i]],
{i. 1,

Geneti ¢’ Paranet er s” NoOf Subpopul ati ons}

]

I f[
Geneti ¢’ Paranet ers” NoOf Subpopul ati ons==1,
Genetic’ Paraneters™ M grationPairs={};

Ret urn[]

l;

Genetic Paraneters™ M grati onPai rs=Tabl e[
di meSqrt [ Geneti ¢’ Paranmet er s° NoOf Subpopul ati ons];
r ow2=Fl oor [ (pop-1)/dini;
col 2=Mbd[ (pop-1), din;
rowl=Mod[row2-1, dini; rowd=Md[row2+1, dinj;
col 1=Mbd[ col 2-1, dinj; col 3=Mbd[ col 2+1, dinj;
popnos={rowl*di m-col 1+1, rowl*di mrcol 2+1,

rowl*di mrcol 3+1,

row2*di mrcol 1+1,

row2*di mrcol 3+1,

row3*di mrcol 1+1, row3*di mrcol 2+1,

row3d*di mcol 3+1};

(* Initial
Initialize
Initialize
Initialize
Initialize

Map[ ({pop, #})& popnos], ‘
{pop, 1, CGenetic’ Parameters’ NoOf Subpopul ati ons}

(*Print[Genetic Paraneters™ M grationPairs];*)
Cenetic’ Paraneters™ M grati onPairs=
Fl atten[ Genetic Paraneters M grationPairs, 1];
(*Print[Genetic Paraneters™ M grationPairs];*)
Cenetic’ Paraneters” M grati onPairs=
Map[ Sort, Genetic Paraneters M grationPairs];
(*Print[Genetic Paraneters™ M grationPairs];*)
Cenetic” Paraneters” M grati onPairs=
Uni on[ Geneti ¢ Paraneters M grati onPairs];
(*Print[Genetic Paraneters™ M grationPairs];*)
m gt =CGeneti ¢ Paraneters™ M grati onPai rs;
Cenetic’ Paraneters” M grati onPairs=
Map[ ((#[[1]]-1)*
Geneti ¢’ Paranet ers” NoOf Subpopul ati ons+
#[2]1-1)8&,
m gt
1
]

ise all paraneters and popul ati ons *)
::nofunc="a list of Functions nust be defined first"
::noternF"a list of Terminals nust be defined first”
::nopern¥"a list of the no of Paranmeters in each function nust
be defined"
: =Mbdul e[
{Proc, DellList},
| f [ Name " Functions"],,
Message[ I nitialize::nofunc];
Return[]];
| f[ NameQ " Term nal s"],,
Message[Initialize::noternj;
Return[]];
| f[ Name( " Paraneters"],,
Message[ I nitialize::noparni;
Return[]];

O f[DeleteFile::nffil];

Del et eFil e[ "cal ced. m'];

Del et eFil e[ "pop.inf"];

Del Li st =Fi | eNanes[ "l ogfile.*"];

I f[Del List!={}, DeleteFile[DellList]];
Del Li st =Fi | eNanes["*.pl g"];

f[Del List!={}, DeleteFile[DelList]];
Del Li st =Fi | eNanes["*.10g"];

f[Del List!={}, DeleteFile[DelList]];
Del Li st =Fi | eNanes[ "backup. *"];
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Cenetic’ Paraneters’

]

d nf or mat i on: =Modul

Genetic Paraneters’
Genetic Paraneters’
Genetic Paraneters’
"1
Genetic Paraneters’
Genetic Paraneters’
Genetic Paraneters’
Genetic Paraneters’
Genetic Paraneters’
Genetic Paraneters’
Genetic Paraneters’
Genetic Paraneters’

Cenetic’ Paraneters’

I f[Del List!={}, DeleteFile[DellList]];
On[DeleteFile::nffil];

Map[
(Del eteDirectory[#, DeleteContents->True]) &,

Fi | eNames[ " PROC*"]

1

Ceneti ¢’ Paranet ers” d obal Sol uti on=1;

Ceneti ¢’ Paranet ers” d obal Sol uti onFi t ness=0;

Geneti c’ Paraneters” d obal Sol uti onSet ={};

Ceneti ¢’ Paranet ers” Tot Ti me=0;

Save[ "pop. | og", Genetic Paraneters @ obal Sol ution];

Save

"pop. | og",

d obal Sol uti onFi t ness];

Save[ "pop. | og", Genetic’ Paraneters d obal Sol uti onSet];
Save[ "pop. | og", Genetic Paraneters’ TotTi ne];
MakePossi bilities;

Save[ "cal ced. nf', Genetic Parameters GPossibilities];
Save[ "cal ced. nf', Genetic” Paraneters GPossParaneter];
Save[ "cal ced. nf', Genetic’ Paranmeters GlernLength];
Save[ "cal ced. nf', Genetic’ Paraneters GPossLength];

| ni t Nanes;

Save[ "cal ced. nf', Genetic” Paraneters’ Popul ati onNanes] ;
Save[ "cal ced. nf', Genetic’ Parameters M grationPairs];

Geneti ¢’ Paranet ers” Popul ati onSi ze=
Geneti ¢’ Paranet ers” Popul ati onSi ze/
Geneti ¢’ Paranet ers” NoOFf Subpopul at i ons;

A nformati on;

Map[ I nitializePop, Genetic” Paraneters Popul ati onNanes];

Checkd obal Sol uti ons;

e[{},
$Qut put =Append[ $Qut put,
Set Options[$Qutput[[2]],
Print[""];
Print["Popul ation Size S
Popul ati onSi ze*

OpenWite["params.txt"]];
For mat Type- >Text Fornj ;

NoCOf Subpopul ati ons];

Print["No of Subpopulations : ",
NoOf Subpopul ati ons];

Ti ne[ Genetic Paraneters  Tot Time, "Total time taken

Print["Max no of Generations : ",
MaxGener ati ons] ;

Print["Max initial
Max! ni tial Si ze];

Print["Max size ",
MaxSi ze] ;

Print["Maxi mum conpl exity D,
MaxConpl exi ty];

Print["Mn solution fitness : ",
M nFi t ness] ;

Print["Mitation probability : ",
Mut ati onProbability];

Print["Crossover probability : ",
Crossover Probabi lity];

si ze o,

Print["Term nal set ",
Term nal s];

Print["Function set ",
Functi ons] ;

Print[""

O ose[ $Qut put[[2]]];
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$Qut put =Take[ $Qut put, 1];

]
GPopl nf or mat i on[ popnane_] : =Modul e[ {},
Print[""];
Print["Popul ati on nane : ", popnane];

Print["Current generation ",
Geneti c’ Paraneters” Generation];

Print["Current best fitness : ",
Geneti c’ Paraneters” Sol uti onFi tness];

Print[""];

Print["Current best individual ***"]

Print[ Genetic’ Paraneters Sol ution];

Print[""];

]

End[]
EndPackage] ]

genmain.m

(* Genetic Progranmng *)
(* Main routines *)

(* H Suleman *)
(* 28 May 1996 *)

(* Get normal distribution functionality *)
Needs["Statistics Normal Distribution™"];

(* Get time routines *)
Needs["Cenetic Tinme ", "tinme.ni]

(* Get extra definitions for basic arithmetic operations *)
Needs[ " CGenetic  ExtraDefinitions ", "xtradefs.ni]

(* Get paraneters *)
Needs[ " Genetic’ Paraneters™", "default.ni]

(* Get initialization routines *)
Needs["Genetic Initialization ", "initial.n{]

(* Get file locking routines *)
Needs[ " Genetic’ Shares™", "shares. ni']

(* Get genetic operators *)

Needs[ " Genetic Operators™", "operator.ni]

Begi nPackage[ "CGenetic Main™", {"Cenetic Paraneters ",
"CGenetic lnitialization ",
"Genetic Cperators™",
"Statistics Normal Distribution "}]

Creat eNewGener ati on: : usage = "Creat eNewGenerati on[ ol dgen] creates a new
generation fromthe old generation using fitness-proportionate
repr oduction. "

StartRun::usage = "Starts the run of the genetic algorithm"
Regi sterProc::usage = "Registers a processor."
Begin[" Private "]

(* Make cunul ative fitnesses vector *)
Cal cFi t nessSum =Modul e[ {fitsum i},
fitsum=Tabl e[ Appl y[ Pl us, Take[Fitnesses, i]],
{i, 1, Length[Fitnesses]}];
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fitsumelnsert[fitsum 0, 1];
fitsum

]

(* Bisection algorithmsearch for roulette wheel fitness choice *)
Search[x_, fitsum] :=
Modul e[ {M d, Start=1, Stop=Length[fitsun]},
VWi le[Start+1 = Stop,
Md = Floor[(Start+Stop)/2];
[f[fitsun[[Md]] > Xx,
St op=M d,
Start=Md
]

Start
]

(* Create new generation from previous one *)

Creat eNewGeneration[ x_] := Modul ¢[
{maxwheel , newgen, lenx, fitsum i},
newgen={};

maxwheel =Appl y[ Pl us, Fitnesses];
| enx=Lengt h[ x] ;
fitsumeCal cFitnessSum

Do
Modul e[
{spot, index},
spot =Randon{ ] * maxwheel ;
i ndex=Sear ch[ spot, fitsuni;
newgen=Append[ newgen, Xx[[index]]]
],
{i, 1, lenx}
1
newgen

]

(* Get a sub-population fil ename *)
Get PopFi | e: =vbdul e[
{OrigDirectory, t},
OigDirectory=Directory[];
Set Directory[ Geneti c” Paraneters” Processor];
t =Fi | eNames[];
SetDirectory[OrigDirectory];
I f[
Lengt h[ t] ==0,
" NOFI LES",
If[
Same@ t[[1]], "DONE'],
" NOFI LES",
]t[[1]]

]
]

(* performmgrati on between source and dest popul ati ons *)
M gr at ePop[ source_, dest_]: =Modul e[
{maxwheel 1, fitsunl, Fitnessesl, Popul ationl,
Ti meTakenl, Sol utionSet1, Sol utionl,
Sol uti onFi t ness1l, maxwheel, fitsum noofx,

fname, i},
Print["Mgrating pops ", source, " & ", dest];
(* | f[ Randon{ I nteger, M grationProbability]!=0,

Ret urn[]
1

Begi nPackage[ "Geneti c” Paraneters™"
Get[ StringJoin[source, ".log"]];
EndPackage[];

*)
, "dobal " "];

Popul at i on1=Popul ati on;
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Fi t nesses1=Fi t nesses;

Ti mneTakenl=Ti neTaken;

Sol uti on1=Sol uti on;

Sol uti onFi t ness1=Sol uti onFi t ness;
Sol ut i onSet 1=Sol uti onSet ;

maxwheel 1=Appl y[ Pl us, Fitnesses];
fitsunml=Cal cFitnessSum

Begi nPackage[ " Genetic Paraneters™", "d obal ""];
Get[StringJoin[dest, ".l0g"]1];
EndPackage[];

maxwheel =Appl y[ Pl us, Fitnesses];
fitsumrCal cFit nessSum

noof x=Randon{
Nor mal Di stri bution]

M gr ati onPer cent age,
M grati onDevi ati on
]
I

(* noof x=Randon{ Real , M grati onDevi ati on*

M gr ati onPer cent age*2];
noof x- =M grati onDevi ati on*M gr ati onPer cent age;
noof x+=M gr ati onPer cent age; *)

| f [ noof x<0, noof x=0];

| f [ noof x>1, noof x=1];

noof x*=Lengt h[ Popul ati onl];
noof x=Fl oor [ noof x] ;

Do[
Modul e[
{spot 1, indexl, spot, index, tenp},
spot 1=Randon{ ] * maxwheel 1;
i ndex1=Sear ch[spot1, fitsuml];
spot =Randon{ ] * maxwheel ;
i ndex=Sear ch[ spot, fitsun;

t enp=Popul ation[[i ndex]];

Popul ati on[[index]]=Popul ati on1[[index1]];
Popul ati onl1[[i ndex1]] =t enp;

t enp=Fi t nesses[[i ndex]];
Fi t nesses[[index]] =Fi tnesses1[[i ndex1]];
Fi t nesses1[[i ndex1]] =t enp;

{i, 1, noofx}

]

fname=Stri ngJoi n[dest, ".new'];
Save[ f name, Popul ation];

Save[ f nane, Fitnesses];

Save[ f name, CGeneration];

Save[ f nane, Ti meTaken];

Save[ f nane, Sol ution];

Save[ f name, Sol uti onFitness];
Save[ f name, Sol utionSet];

RenaneFi | e[ StringJoi n[dest, ".l0g"],
StringJoin[dest, ".old"]];
RenaneFi | e[ f nane, StringJoin[dest, ".l0g"]];

Del et eFil e[ StringJoi n[dest, ".old"]];

Popul at i on=Popul ati onl;

Fi t nesses=Fi t nesses1;

Ti meTaken=Ti neTaken1;

Sol uti on=Sol uti oni;

Sol uti onFi t ness=Sol uti onFi t ness1;
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Sol ut i onSet =Sol ut i onSet 1;

fname=StringJoi n[ source, ".new'];
Save[ f name, Popul ation];

Save[ f nane, Fitnesses];

Save[ f name, Generation];

Save[ f nane, Ti meTaken];

Save[ f nane, Sol ution];

Save[ f name, Sol uti onFitness];
Save[ f name, Sol utionSet];

RenaneFi | e[ StringJoi n[ source, ".l0g"],
StringJoi n[source, ".old"]];
RenaneFi | e[ f nane, StringJoin[source, ".l0g"]];

Del et eFil e[ StringJoi n[source, ".old"]];
]

(* M gratePop[pairs_]:=Mdul e[

Print["Mgrating popul ations ", pairs];
Map[

(M grateMenbers[ #1[[1]], #1[[2]] 1) &
pairs

1
*)

(* performmgrati on based on paraneters *)
M gr at e[ popf _] : =Mbdul e[
{OrigDirectory, FullNum firstpop, secondpop},

I f[
Sanme( St ringDrop[ popf, 1], "START"],
Checkd obal Sol uti ons;
I f[

Ceneti ¢’ Paranet ers” @ obal Sol uti onFi t ness>=M nFi t ness,
OigDirectory=Directory[];
Set Directory[ Geneti c” Paraneters” Processor];
Save[ "DONE", M nFitness];
SetDirectory[OrigDirectory]

1
Ful | NumeToExpr essi on[ Stri ngDrop[ popf, 1]1;
firstpop=Fl oor[ Ful | Numf NoOf Subpopul ati ons] +1;
secondpop=Mod[ Ful | Num NoCOf Subpopul ati ons] +1;
M gr at ePop[ Stri ngJoi n["POP", ToString[firstpop]],
StringJoi n["POP", ToString[secondpop]]]
1

OigDirectory=Directory[];
Set Directory[ Genetic” Paraneters” Processor];
Del et eFi | e[ popf];
SetDirectory[OrigDirectory];

]

(* Apply Genetic algorithm¥*)
Appl yGen : = Modul e[
{popfile, onetime, poplog, mg, OigDrectory},

Begi nPackage[ " Geneti ¢ Paraneters™", "d obal *"];
Get["cal ced. nf'];
EndPackage[];

Print["Waiting for processor start flag ..."];
popfi | e=Get PopFi | e;
Wi | e[

Sanme( popfile, "NOFILES"],

Pause[ 1] ;

popfi | e=Get PopFi | e

’
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If[
Same StringTake[ popfile, 1], "M],
M gr at e[ popfile];

Ret urn[]
1
(* process popul ation *)
Begi nPackage[ "CGeneti c” Paraneters ", "d obal ""];
Get[StringJoin[popfile, ".10g"]];
EndPackage[];
onet i me=Ti m ng[
Print[popfile, "-G', Generation, ": mating pool ... ",
Ti m ng[ newpop=Cr eat eNewGener ati on[ Popul ation]][[1]]];
Print[popfile, "-G', Generation, ": crossover oo,
Ti m ng[ newpop=Cr ossover [ newpop] 1[[1]]11];
Print[popfile, "-G', Generation, ": nutation
Ti mi ng[ newpop=Map[ Mut ate, newpop] J[[1]]];

Cener at i on++;
Popul at i on=newpop;

Print[popfile, "-G', Generation, ": fitnesses N
Print[popfile, "-G', Generation, ": done oo,
Ti m ng[ CheckSol uti on[ Generati on, newpop, popfile]ll[[21]]];
Print[popfile, "-G', CGeneration, ": best-of-run =",
Sol uti onFi t ness] ;
111]7; , | |
Ti ne[ onetine, popfile, "-G', CGeneration, ": tine for gen = "];

Ti mreTaken+=onet i ne;

Save[ StringJoin[popfile, ".new'], Population];

Save[ StringJoin[popfile, ".new'], Fitnesses];

Save[ StringJoin[popfile, ".new'], Generation];

Save[ StringJoin[popfile, ".new'], TimeTaken];

Save[ StringJoin[popfile, ".new'], Solution];

Save[ StringJoin[popfile, ".new'], SolutionFitness];

Save[ StringJoin[ popfile, ".new ] Sol uti onSet];

RenaneFi | e[ Stri ngJoi n[ popf| le, ".log"], StringJoin[popfile,
".old"]];

RenameFi | e[ StringJoi n[popfile, ".new'], StringJoin[popfile,
".log"]];

Del eteFil e[ StringJoi n[popfile, ".o0ld"]];

popl og=CpenAppend[ Stri ngJoi n[ popfile, ".plg"]1];
WiteString[poplog, ","];

Wite[poplog, {CGeneration, Fitnesses}];

Cl ose[ popl og] ;

Print[popfile, "-G', CGeneration, ": systemsaved ..."];

OigDirectory=Directory[];
SetDirectory[ Geneti c” Paraneters” Processor];
Del et eFi | e[ popfile];
SetDirectory[OrigDirectory];

]

(* Start run of algorithm?*)
St art Run[ x_] : =Mbdul e[
{result, log, i},

Do[
| og=StringJoi n["LOGFILE.", ToString[x]];
$Qut put =Append[ $Qut put, OpenAppend[ | og]];
Set Options[$Qutput[[2]], Format Type->Text Forni;

Geneti c’ Paraneters” Processor=StringJoi n[ " PROC',
ToString[x]];

CheckAbort [
Appl yGen,
0

I
C ose[$Qutput[[2]1];
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$Qut put =Take[ $Qut put, 1],
{i, 1, CGenetic Paranmeters Epoch}

]

]
Regi st er Proc[ x_] : =Modul e[
{proc},
proc=StringJoi n["PROC', ToString[x]];
CreateDirectory[proc];

]
End][ ]

EndPackage] ]

stats.m

(* Genetic Progranmng *)
(* Statistics routines *)

(* H Suleman *)
(* 30 Cctober 1996 *)

Needs[ " Graphi cs™ Graphics™ "];

Needs[ " Graphi cs™ Ani mation "];

Begi nPackage[ "CGenetic  Stats ", {"G aphics Gaphics™ ",
"G aphi cs” Ani mation ",
"G aphi cs” Graphi cs3D " }]

G obal Curve: : usage = "d obal Curve[] shows the global fitness curve."

G obal H st ogram : usage = "d obal Hi st ogram produces a set of
hi stogranms for the entire popul ation."

MaxHi st ogram : usage = "MaxH st ogram produces a set of 3-D histograns
showi ng the progress of the solution fitness
in each subpopul ation."

AveHi st ogram : usage = "AveH st ogram produces a set of 3-D histograns
showi ng the average fitness in each subpopul ation."

Cal cHi stogram :usage = "Cal cH stogram cal cul ates the gl obal histograns
and 3D hi stograns."

Hi st ogr anDat a={};

Hi st ogr anBDVax={};
Hi st ogr anBDAve={};

Begin[" Private "]

G obal Curve: =Modul e[
{t, MaxG M nG AveG,

Begi nPackage[ " Geneti ¢ Paraneters "] ;
Get [ "pop.l0g"];
EndPackage[];

t =MapThread[ Li st, Genetic’ Paraneters” d obal Sol utionSet];

MaxG=Li st Pl ot [ MapThread[ List, {t[[1]], t[[2]]1}].
Pl ot Range->{{0, Max[t[[1]]]}, {O, 1}},
Pl ot Styl e->{R@Col or[ 1,0, 0]},

Frame- >Tr ue,
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FranmelLabel - >{" Gener ati on Fit (ness):
red=max green=nin bl ue=ave",
"Fit"},
Pl ot Label ->"d obal Fitness Curve",
Pl ot Joi ned- >Tr ue,
Di spl ayFuncti on->ldentity];

M nG=Li st Pl ot [ MapThread[ List, {t[[1]], t[[4]]}],
Pl ot Range->{{0, Max[t[[1]]]}, {0, 1}},
Pl ot Styl e->{ RGBCol or[ 0, 1, 0]},
Fr ame- >Tr ue,
FranmelLabel - >{" Gener ati on Fit (ness):

red=max green=nin bl ue=ave",
" Fi t II} ,
Pl ot Label ->"d obal Fitness Curve",
Pl ot Joi ned- >Tr ue,
Di spl ayFuncti on->ldentity];

AveG=Li st Pl ot [ MapThread[ List, {t[[21]], t[[6]]}],
Pl ot Range->{{0, Max[t[[1]]]}, {0, 1}},
Pl ot Styl e- >{ RGBCol or[ 0, 0, 1]},
Fr ame- >Tr ue,
FranmelLabel - >{" Gener ati on Fit (ness):

red=max green=nin bl ue=ave",
"Fit"},
Pl ot Label ->"d obal Fitness Curve",
Pl ot Joi ned- >Tr ue,
Di spl ayFuncti on->ldentity];

Show [ {MaxG M nG AveG,
Di spl ayFuncti on->$Di spl ayFuncti on];
]

Get PopNunber [ x_] : =ToExpr essi on[ Stri ngTake[ x, {4, StringLength[x]-4}]]

Cal cHi st ogram =Modul e[
{t, data, popfit, figs, gen, popsize=0, nungen,
popfiles, first=1, maxes, popnunber, inFile,
out Fi l e},

popfi |l es=Fi | eNanmes[ " pop*. pl g"];
popfil es=Sort[

popfil es,

(Less[ Get PopNunber [ #1],

I
H st ogr anBDVax=Tabl e
H st ogr anBDAve=Tabl e

Get PopNunber [ #2]]) &

——

0, {Length[popfiles]}];
0, {Length[popfiles]}];
Mepl o
(Print["copying file ", #];

(* cndl i ne="copy ";

cndl i ne=StringJoi n[cndl i ne, #];

cndl i ne=StringJoi n[cndline, "+pop.mpop.ful /Y
> nul"];

Run[ crmdl i ne] ; *)

i nFi | e=OpenRead[ "popl.plg"];
out Fi | e=CpenWite["pop.ful"];
Whi | e[
i =Read[inFile, String];
Not [ SareqQ i, EndOFile]],
WiteString[outFile, i, "\n"]

l;
Close[inFile];
WiteString[outFile, "}"];
Close[outFile];

Print["reading in data"];

Begi nPackage[ "Geneti c” Paraneters™ "];
Get["pop. ful "];

EndPackage[];

Page 163



Print["separating data"];

popfit=MapThread][ Li st,
Genetic Paraneters pop][[2]];

nungen=Max[ MapThr ead[ Li st
Genetic Paraneters pop][[1]]1];

I f[
first==1,
dat a=Tabl e[ Tabl e[ 0, {10}], {nungen}];
first=0
1

Print["discretizing data"];

Do[
fi gs=Map[ Fl oor, popfit[[gen]]*10];
figs=Map[ | f[#==0, 1, #]& figs];
Map[ (data[[gen, #]]1++)& figs],

{gen, 1, nungen}

1

Print["extracting maxi nuns"];

maxes={};

Do[
maxes=Append[ naxes, Max[popfit[[gen]]]],
{gen, 1, nungen}

I
popnunber =ToExpr essi on[
StringDrop[StringDrop[#, 3], -4]

Hi st ogr anBDVax| [ popnun’oér] ] =maxes;

Print["extracting averages"];
maxes={};
Do[
maxes=Append[ naxes,
Appl y[ Pl us,
popfit[[gen]]]/Length[popfit[[gen]]]

{gen, 1, nungén}
1
Hi st ogr anBDAve[ [ popnunber] ] =naxes;
popsi ze+=Length[ popfit[[1]]]) &

popfil es
1

Print["generating gl obal graphs"];
Hi st ogr anDat a=
Tabl e[
Bar Chart[data[[gen]],
Bar Label s->Table[i, {i, 0, 0.9, 0.1}],
Pl ot Range->{{0, 11}, {0, popsize}},
Pl ot Label - >Stri ngJoi n[ " d obal
Ceneration ",
ToString[gen]],
Di spl ayFuncti on->ldentity],
{gen, 1, nungen}

’

Print["generating maxi mum graphs"];
Hi st ogr anBDVax=MapThr ead[ Li st, Hi st ogran8DVax] ;
Hi st ogr anBDVax=Map[ Partiti on[ #,
Sqrt[ Lengt h[ popfiles]]]&,

Hi st ogr anBDMax] ;

H st ogr anBDVax=
Tabl e[
Bar Char t 3D[ Hi st ogr anB8DVvax[ [ gen]],
Pl ot Range- >{ Aut omati c, Automati c,

{0, 1}},
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Pl ot Label - >Stri ngJoi n[ " Max of

Ceneration ",
ToString[gen]],
Vi ewPoi nt->{4, 1, 4},
Di spl ayFuncti on->ldentity],
{gen, 1, nungen}
Print["generating average graphs"];
Hi st ogr anBDAve=MapThr ead[ Li st, Hi st ogranB8DAve];
Hi st ogr anBDAve=Map[ Partiti on[ #,
Sqrt[ Lengt h[ popfiles]]]&,
Hi st ogr anBDAve] ;
Hi st ogr anBDAve=
Tabl e[
Bar Char t 3D[ Hi st ogr anB8DAve[ [ gen]],
Pl ot Range- >{ Aut omati c, Automati c,
{0, 1}},

Pl ot Label - >Stri ngJoi n[ "Ave of
Ceneration ",
ToString[gen]],
Vi ewPoi nt->{4, 1, 4},
Di spl ayFuncti on->ldentity],
{gen, 1, nungen}

’

My OpenTempCount er =1;

MyOpenTenpor ar y: =Mobdul e[
{front="TF"},
front=StringJoin[front,

ToSt ri ng[ MyOpenTenpCount er ++] ] ;
OpenWite[front]

M/Rast er Functi on = Modul e[

{fname = MyOpenTenpor ary},
Di spl ay[ f name, #];
Cl ose[ f nane]

1&

d obal Hi st ogr am =Modul e

{1
| f[Hi stogranData=={}, Cal cH stograni;

ShowAni mat i on[ Hi st ogr anDat a,

Rast er Funct i on- >MyRast er Funct i on]

MaxHi st ogr am =Modul e[

{}
| f [ Hi stogranmBDVax=={}, Cal cHi stograni;

ShowAni mat i on[ Hi st ogr anBDVax,

Rast er Funct i on- >MyRast er Funct i on]

]

AveHi st ogr am =NMbdul e
{}
| f [ Hi stogranmBDAve==(}, Cal cHi stograni;

[
ShowAni mat i on[ Hi st ogr anBDAve,
Rast er Funct i on- >MyRast er Funct i on]

]

Stats[s_String]:=Mdul e[{},
Di spl ay[ StringJoin[s, ".scu"], d obal Curve];

End[]
EndPackage[ ]
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