
Designing Protocols in Support of Digital Library
Componentization

Hussein Suleman and Edward A. Fox

Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
{hussein,fox}@vt.edu

http://www.dlib.vt.edu/

Abstract. Reusability always has been a controversial topic in Digital Library
(DL) design. While componentization has gained momentum in software
engineering in general, there has not been broad DL standardization in
component interfaces. Recently, the Open Archives Initiative (OAI) has begun
to address this by creating a standard protocol for accessing metadata archives.
We propose that the philosophy and approach adopted by the OAI can be
extended easily to support inter-component protocols. In particular, we propose
building DLs by connecting small components that communicate through a
family of lightweight protocols, using XML as the data interchange mechanism.
In order to test the feasibility of this, a set of protocols was designed based on
the work of the OAI. Components adhering to these protocols were
implemented and integrated into production and research DLs. The
performance of these components was analyzed from the perspective of
execution speed, network traffic, and data consistency. On the whole, this work
has shown promise in the approach of applying the fundamental concepts of the
OAI protocol to the task of DL component design and implementation.

1 Background and Motivation

As computers across the globe become part of the ever-expanding Internet, the
communities of users and providers of information both grow. The providers of
information contribute to increasing the body of information available to users, while
the users, knowing this information exists, desire focused and instantaneous access to
relevant information. The need to carefully manage collections of information
contributed to the emergence of digital libraries (DLs), while the need to merge
together collections to serve the needs of users has prompted the development of
interoperability standards.

Special attention recently has been focused on the latter issue of interoperability
with the emergence of the Open Archives Initiative (OAI) and its Protocol for
Metadata Harvesting (PMH) [24]. The former issue of designing digital libraries to
manage information has not received as much attention from the perspective of
standardization. We propose in this paper that the philosophy and basic technical
approach of the OAI can be applied to the design and construction of standardized
components within digital libraries. Examples of such components include search
engines, browsing services, annotation tools, peer review systems, and

recommendation systems. When connected together in a loosely coupled network to
store data and provide services, such a collection of components constitutes an Open
Digital Library (ODL), with many advantages over conventional DL architectures,
notably: simplicity, reusability, and flexibility [22]. An example of such an ODL
architecture is illustrated in Figure 1.

Browse

Metadata Repository

Search Recommend

Resource Discovery

User Interface

OAI/ODL component

OAI/ODL protocol

Data Input

Fig. 1. Example ODL network of components

In keeping with current practices in software engineering, it long has been argued
that DLs may benefit from software models based on object-oriented technology in
general and componentization in particular [9]. Any such approach relies on an
underlying component framework or set of application programming interfaces that
are well defined and commonly known. Prior efforts have looked at various such
mechanisms for inter-component communication.

Dienst [11] is a protocol (and software package) that used HTTP, and eventually
XML, to provide for inter-component communication. Members of the Networked
Computer Science Technical Reference Library [13] used earlier versions of Dienst
for many years as the basis of their DL architecture and interoperability solution.
(Dienst was one of the projects that served as a precursor to the current OAI-PMH.)
The FEDORA project [17] further developed the Dienst repository architecture by
defining abstract interfaces to structured digital objects, initially implemented over a
CORBA communications medium.

The University of Michigan Digital Library Project [2] built DLs as collections of
autonomous agents, with protocol-level negotiation to perform tasks collaboratively.
The Stanford InfoBus project [1] wrapped its components into objects, with remote
method invocation for communication.

All of these component models are built upon popular syntactic layers, such as
HTTP and CORBA, and define additional semantics where necessary. This need for
a common communications mechanism also is a driving force behind interoperability
protocols such as the OAI-PMH, which we investigated as the basis for an alternative
glue to bind together components in a DL.

2 Components and Requirements

One of our aims was to define a set of simple components that could be composed
into production DL systems with minimal effort. To illustrate proof-of-concept,
components were designed and developed to support the following common DL
tasks:
• Submitting – adding an item to the system
• Searching – retrieving a list of items that correspond to a keyword query
• Browsing – retrieving a list of items that correspond to a set of categories
• Merging – combining multiple collections into one
• Annotating – adding comments and additional information to an item
• Recommending – retrieving a list of suggested items
• Rating – assigning a quantitative value to an item
• Reviewing – collaborative screening of items

In keeping with the OAI and ODL philosophies, these components were designed
to be simple to deploy rather than complete according to a formal definition of their
intended purposes. This approach also is taken by other interoperability protocols
such as SDLIP [16], which wraps search systems with a common syntactic layer.
However, SDLIP addresses only searching, which is just one aspect of the multitude
of available services in modern DLs.

Each of the listed components needs to have a well-defined interface to
communicate with other components. Table 1 lists gross requirements of some of the
components in terms of their interfaces with other components.

Table 1. List of requirements for some ODL components

Component Requirements
Search Retrieve a list of items that match the supplied query.

Add items to the search engine indices.
Browse Retrieve a list of items that match a given set of criteria.

Add items to the classification scheme.
Rating Add a numerical rating for an item.

Retrieve the numerical ratings, averages, and associated
information for an item.

Annotate Add an annotation to an item.
Retrieve a list of annotations for an item.

The similarities in requirements suggest that a simpler model could be developed

to factor out common features and incorporate those into a lower-level layer. The
most basic operations needed for such a layer are the abilities to submit, retrieve, and
delete items from a component or archive, as defined by Kahn and Wilensky [10] in
their Repository Access Protocol. The ability to retrieve items is already provided by
the OAI Protocol for Metadata Harvesting, so the approach taken was to first analyze
this protocol and determine what needed to be modified or added in order to support
the full range of functions needed for the identified DL components.

3 The OAI Protocol for Metadata Harvesting

The development of the OAI-PMH was a direct response to the need for simple
interoperability standards [12], and this simplicity has led to adoption of the standard
by many existing and new archives.

The OAI-PMH, commonly referred to as the OAI protocol, is a client-server
protocol that is used to transfer XML-encoded records over an HTTP transport layer,
with mechanisms to facilitate periodic updating. Table 2 lists the 6 service requests of
this protocol that can be issued to obtain archive- or record-level metadata.

Table 2. OAI-PMH service requests and expected responses

Service Request Expected Response
Identify Description of archive: standards and

protocols implemented
ListMetadataFormats List of supported metadata formats
ListSets List of archive sets and subsets
ListIdentifiers List of record identifiers, optionally

corresponding to a specified set
and/or date range

GetRecord Single metadata record corresponding
to a specified identifier and in a
specified metadata format

ListRecords List of metadata records corresponding
to a specified metadata format and,
optionally, a set and/or date range

Archives that function as data providers implement the server end of this protocol

and respond to these service requests, while those which wish to import or harvest
data from data providers implement the client logic. These two pieces fit together to
support simple metadata-transfer interoperability between archives.

4 Extensibility of the OAI Protocol

The OAI protocol is specifically aimed at the transfer of metadata among network-
accessible devices. The mission of the OAI does not extend to supporting fine-
grained inter-component interaction so the protocol was not designed with this in
mind. However, since many of the requirements for such component protocols are
already met by the OAI-PMH, it is possible and desirable to design new protocols
based on the OAI-PMH, but with different purposes and somewhat different
semantics. In keeping with this philosophy of reuse, we have looked into the
development of new protocols as extensions of the OAI-PMH for inter-component
communication.

The OAI-PMH already defines a specialized set of simple semantics for data
access. Building on these semantics has the potential for greater impact on system

developers because the baseline OAI-PMH semantics are becoming increasingly well
known in the DL community [14].

In order to design DL component interaction protocols based on the OAI-PMH it
was first necessary to analyze the features that made this feasible or infeasible. Table
3 lists protocol features that were identified as supporting extension, those that need
to be added to support extension, and those that inhibit extension. This list of features
applies only to v1.1 of the OAI-PMH - later versions such as v2.0 address some of
these. Further discussion of these features can be found in [23].

Table 3. Features of OAI protocol that affect extensibility

Supporting Missing Inhibiting
1 Set organization
2 GetRecord access
3 Metadata containers
4 Identification containers

5 Response-level
containers

6 Submission

7 Harvesting granularity
8 DC requirement

Taking these into account, we propose a new protocol [23] to act as the underlying

layer for component interaction protocols. This new protocol, the Extended OAI-
PMH (XOAI-PMH), is an extension to v1.1 of the OAI-PMH, to exploit its inherent
extensibility and attempt to overcome the stated limitations. XOAI-PMH involves
four general syntax changes and one service request addition to OAI-PMH - a
PutRecord analogue to the GetRecord request. XOAI-PMH is thus a different
protocol from OAI-PMH, with a different purpose and different semantics. We do
not propose XOAI-PMH as a replacement for OAI-PMH, but rather as an independent
protocol for inter-component communication.

5 Open Digital Libraries

This new protocol fulfils the role of a baseline Repository Access Protocol, as
defined by Kahn and Wilensky [10], in each component of the DL. More specific
semantics then can be layered upon this to support the differing individual
requirements of each component as discussed earlier. Ultimately, the components can
be integrated into a configurable Open Digital Library of loosely connected and
independent data and service providers, such as is shown in Figure 1.

Individual protocols were defined, as specialized versions of the XOAI-PMH, to
meet the requirements of each component. Brief summaries of some of these
specialized protocols follow.

5.1 The ODL-Search Protocol

Queries are encapsulated in ListRecords and ListIdentifiers service requests, with
the list of keywords encoded into the set parameter along with the query language and
bounds for the range of results to be returned. An example of such a query is:

…verb=ListIdentifiers&set=odlsearch1/computer
science/1/10

In order to acquire records to be indexed, the component may harvest records using
OAI-PMH or XOAI-PMH.

5.2 The ODL-Browse Protocol

Just as in ODL-Search, ListRecords and ListIdentifiers are used to obtain lists of
records, with the set parameter encoding the categories and sort order. An example of
a query is:
…verb=ListIdentifiers&set=odlbrowse1/type(Computer)sort
(Year)/11/20

ListSets returns a list of all categories that may be used in browsing queries.
A Browse component also may harvest records using OAI-PMH or XOAI-PMH.

5.3 The ODL-Rate Protocol

PutRecord is used to add a rating for an item in the form of a metadata record
encapsulating the numerical rating and the item identifier. An example of this record
is:
<odl_rating>
 <subject>oai:People:a@b.com </subject>
 <object>oai:VTETD:12345</object>
 <rating>12</rating>
</odl_rating>

“subject” identifies the person submitting the rating while “object” identifies the
item being rated.

Thereafter, GetRecord may be used to retrieve the individual ratings or an average
value by specifying the “odl_rating_average” metadataPrefix for an item. An
example of the metadata returned is:
<odl_rating_average>
 <average>12</average>
 <count>1</count>
</odl_rating_average>

When retrieving individual ratings, the set parameter is used to specify the item for
which to return records.

5.4 The ODL-Annotate Protocol

PutRecord is used to add arbitrary annotations to the component, with the identifier
of the item being annotated supplied as the set parameter (where that item could itself
be a prior annotation). ListRecords and ListIdentifiers then list all annotations for an

item in reverse date order, with proper ordering maintained by the component – the
set parameter is used to specify the item for which the “set of annotations” is
requested as well as the range of entries to return. An example of such a request is:

…verb=ListIdentifiers&set=21/25/oai:VTETD:12345
In this case, the subset of annotations, starting at the 21st entry and ending at the

25th entry, is returned for the item identified by “oai:VTETD:12345”.
Additional information about the item is provided using “about” containers for

each record.

6 ODL Experimental Applications

In order to test the feasibility of the proposed componentized architecture for DLs
using real world scenarios, a suite of components was implemented to support basic
DL services.

6.1 Methodology

Components were implemented in accordance with the following protocols:
• ODL-Union, to merge together data from multiple OAI-compliant sources
• ODL-Filter, to filter OAI sources for illegal characters and non-unique identifiers
• ODL-Search, to index words in the metadata and permit search operations
• ODL-Browse, to sort and categorize data and permit browse operations
• ODL-Recent, to keep track of recently added items
• ODL-Annotate, to attach comments to an item
• ODL-Review, to keep track of peer-review workflow
• ODL-Submit, to accept submissions of items

The Union, Search, Browse, Filter, and Recent components were integrated into a
simple user interface for the NDLTD system as shown in Figures 2 and 3, using
metadata corresponding to Electronic Theses and Dissertations [21]. Figures 4 and 5
similarly display the user interface and architecture of the Browse component that
was incorporated into the legacy DL system of the Computer Science Teaching
Center (CSTC) [6].

Fig. 2. User interface of NDLTD ODL

Browse

Union
Archive

Search Recent

User Interface Virginia Tech

PhysNet

Humboldt

Duisburg

CalTech

Dresden

MIT Filter

MIT

User Interface
OAI/ODL component
OAI/ODL protocol

Fig. 3. Architecture of the NDLTD ODL

Fig. 4. User interface for the browsing function of CSTC

OAI
Interface

Browse

User Interface

Existing
CSTC

System

User Interface
OAI/ODL component
OAI/ODL protocol

Fig. 5. Architecture of the CSTC system, incorporating Browse ODL component

For early testing, these prototype components were all derived from the original
OAI protocol rather than the XOAI protocol, to allow for the use of existing testing
and validation tools like the Repository Explorer [20]. Thus, using response-level
containers, such information was embedded into other unused fields in the responses.
Later tests involving the Annotate and Review components were fully conformant
with the respective protocols. Figure 6 is an architectural overview of a general-
purpose threaded discussion board based on the ODL-Annotate protocol. Figure 7
illustrates the back-end component architecture of a peer-review system originally

under development for the ACM Journal of Educational Resources in Computing.
This component is generally useful for e-journal publishing and is currently being
adapted for integration into the CSTC system.

Annotate

User Interface

Legacy system

User Interface
OAI/ODL component
OAI/ODL protocol

Fig. 6. ODL architecture of annotation system

Review
Engine

Review
Archive

Reviewing

Rejected
Resources

Archive

Resources
under Review

Archive

Accepted
Resources

Archive
User Interface
OAI/ODL component
OAI/ODL protocol U

se
r A

cc
es

s
Su

bm
is

si
on

Fig. 7. ODL architecture of peer review system

6.2 Component Composition

The sequence of interactions corresponding to a typical use of a Search component
is illustrated in Figure 8. The simplified ODL network consists of a source of data in

the form of an OAI-compliant archive and a Search component. The user interface
layer is made up of a client’s Web browser and the Web server, with scripts to
generate HTML pages and forward requests to the ODL network.

ODL Network User Interface
Web Server Web Browser ODL-Search OAI Archive

Periodic indexing
of data stream

Harvest:
ListRecords

requests

Data is formatted
and sent to client

User submits
query

Records are
extracted and
merged

ODL request is
formulated and
sent to ODL-
Search

User loads search
query page

Search is
conducted and
records are
requested from
the source
archive

HTML Page

Submit query

Submit
ODL-Search

request
(ListRecords)

GetRecord
request

<GetRecord>
response

<ListRecords>
response

HTML Page

. . .
. . .

Perform
search

IN
D

EX

SE
AR

C
H

<ListRecords>
responses

Fig. 8. Interface and component interaction during indexing and search operations

There are two functions performed: incremental indexing of the data and searching.
In the former case, the Search component harvests data from the source archive using
a typical harvesting algorithm, such as periodic ListRecords requests with the date
range used to obtain only new or updated records. As new records are observed, they
are added to the index.

To perform a search, the user submits a query by filling in a form on an HTML
page. This query is then sent to the Web server, which invokes a script (or handler) to
process it. The script extracts the parameters, formulates an ODL-Search ListRecords
request and submits this to the Search component. Upon receiving the request, the
Search component performs a search using its internal indices and then proceeds to
obtain each metadata record from the source OAI archive. The metadata records are
merged together and returned to the script as a single ListRecords response. The
script then formats this response for display and it is sent back to the user in the form
of a “search results” HTML page.

7 Harvesting and Propagation of Data

Interacting components inherit some of the performance characteristics of the OAI
protocol, but also incur additional penalties that stem from the chaining together of
components where each behaves asynchronously and, perhaps, remotely. We
explored some of the concerns and related solutions.

For components that required an input stream of records from an OAI/XOAI
archive or component, we chose the least network-intensive harvesting algorithm -
using the ListRecords service request instead of the combination of ListIdentifiers and
GetRecord. While the latter is arguably more robust, the former approach is faster,
and within the context of a single system (located on a single machine or machines
which are located in the same physical environment), speed is more important than
network robustness.

Consistency of data also is an important issue and in this regard networked
components suffer from the same problems as hierarchical Open Archives. By using
a finer timestamp granularity in the baseline XOAI-PMH, we have decreased the
effects of this problem. However, if metadata in one component changes and a
downstream component does not synchronize immediately then there will be
temporary inconsistencies. We are currently investigating ways of minimizing these
inconsistencies using additional communication among components.

8 Component Speed Enhancements

While the aim of componentization is to make development simpler and
repeatable, this cannot be at the expense of reduced functionality or efficiency. The
time taken for inter-component communication can be reduced either by reducing the
number of network requests or by changing the types of requests to maximize
network utilization.

Various approaches were investigated to increase speed without sacrificing the
advantages of a componentized system. The most successful and promising solutions
found to maximize network utilization and minimize the processing delay normally
associated with executing Web applications are discussed below.

8.1 Caching

Using caching at various levels within the experimental systems resulted in speed
improvements. For example, the Browse component cached the results from the
Union component, thus minimizing the number of recurring requests. Secondly, the
user interface cached the responses to most requests; thus speeding up the process of
browsing through a list of returned items. Together, these had a noticeable effect on
system performance. One problem that manifested itself was that of stale data in a
cache. It is still being investigated – there are ways to force a refresh from the Web
browser to propagate to the server’s scripts, but this apparently only works for
Netscape browsers and works differently in each version.

8.2 FastCGI

FastCGI [4] is an add-on kit that provides persistent script capabilities to a Web
server, independently of the programming language. Scripts need to be modified
slightly by encapsulating them in a simple loop but this is relatively minor and for
some components it was possible to create both regular and FastCGI versions without
much change. FastCGI provides an add-on server module that loads a script on
demand and keeps it persistent, with support for dynamic reloading and dynamic load
balancing. This was tested for some components. There were additional security
problems that needed to be resolved since FastCGI enforced a higher level of security
than regular scripts, but better programming discipline and security is good for
component development, so this can be seen as another advantage.

8.3 SpeedyCGI

Without modification to the Web server, it is possible for a component to stay
resident in memory and be glued into the Web server whenever necessary by a much
smaller program. This is the approach taken by the SpeedyCGI toolkit [19], which
improves performance without any modification of the source code. Unlike the other
approaches, this toolkit only worked with the Perl language, but the technique is
generally applicable to any development environment.

8.4 Batch Requests

At a protocol level it is possible to reduce the number of requests by combining
responses. In the ODL-Review protocol, the reviewable items visible to an editor are
listed using GetRecord – the response is an XML container that contains within it
many individual records. Similarly, the ODL-Union protocol may be extended in the
future to support requesting multiple records with a single ListRecords request that
specifies a combined list of identifiers encoded within a single set parameter.

9 Future Work and Conclusions

9.1 Development and Refinement of Component Libraries and Protocols

We have developed sample protocol designs for many existing digital library use
cases, including searching, browsing, threaded discussions, peer review,
recommendation, and rating systems. These and additional components will be
integrated into existing and new DL systems to test for reusability and portability.

This set of designs will be re-evaluated in light of recent developments in the OAI-
PMH. Some of the issues that currently need to be addressed by the XOAI protocol
may be irrelevant if they are incorporated into a future OAI protocol, as we have
suggested by way of our involvement in the OAI technical and steering committees.

In addition, we will attempt to integrate our work with emerging standards in web-
based services such as SOAP [3] and WSDL [15], which are expected to provide a
general syntactic layer for high-level application protocols.

Our prototyping work has demonstrated some feasible component designs. These
will be extended to other components, with additional generality introduced wherever
possible. Further work will be done on separating instances of components from
configuration information – ultimately allowing for the possibility of a suite of
components servicing multiple DLs, and visual composition of components.

The VIDI protocol [25] for connecting visualization components to digital libraries
is being independently developed to co-exist with and build upon ODL components.

9.2 Component Testing and Validation

Testing of the OAI protocol is largely supported by the Repository Explorer [20],
which we developed specifically for the purposes of validation of requests and
responses and standardization of implementations.

This software will be extended to support the additional functionality of the ODL
protocols by building in support for the XOAI protocol. This tool would then support
the development of components using the ODL protocols. Particular support for
individual ODL protocols is also an option if the software can be specialized to test
for more specific semantics based on specifications.

9.3 Evaluation

Further evaluation of the feasibility of building Digital Libraries as networks of
extended Open Archives will be carried out in terms of their equivalence to
monolithic systems, extensibility of components, and usability of the component
model. Performance evaluation is an ongoing process, and further work is being done
on:
• Communications and protocol overhead incurred by OAI/XOAI/ODL protocols.
• Stability of the communications protocols relative to the datestamp granularities –

evaluation of the trade-off between duplication of records and the possibility of
missing records.

• Speed of the ODL networks compared with monolithic systems.
• Storage required for components and the effects of data duplication.
• Consistency among various copies of data stored on different nodes.
• Harvesting algorithms and their efficiencies in terms of speed and network

utilization.

9.4 Conclusions

It is hoped that the ongoing results of this work will change the way people build
digital libraries, so they can utilize simple and reusable component models based on
already established standards. In particular, we hope our work will help lead to

“ODL-in-a-box” solutions that can be tailored to classes of applications, such as the
National STEM Digital Library (www.nsdl.nsf.gov). Unlike other “DL-in-a-box”
solutions like Eprints [8] and Repository-in-a-Box [18], ODL-based systems will be
trivially extensible.

Building upon this foundation of extensibility, it then will be possible to work on
providing more interesting services to users, thus bridging the wide gap between
current research and production systems, and ultimately making information more
accessible to people.

10 Acknowledgements

Thanks are given for the support of NSF through its grants: IIS-9986089, IIS-
0002935, IIS-0080748, IIS-0086227, DUE-0121679, DUE-0121741, and DUE-
0136690.

References

1. Baldonado, M., Chang, C. K., Gravano, L., and Paepcke, A. The Stanford Digital Library
Metadata Architecture, in International Journal on Digital Libraries 1, 2 (1997), 108-121.
Available http://www-diglib.stanford.edu/cgi-bin/get/SIDL-WP-1996-0051.

2. Birmingham, W. P. An Agent-Based Architecture for Digital Libraries, in D-Lib Magazine
1, 1 (July 1995). Available http://www.dlib.org/dlib/July95/07birmingham.html.

3. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte,
S., and Winer, D. Simple Object Access Protocol (SOAP) v1.1, W3C Technical Note, (8
May 2000). Available http://www.w3.org/TR/SOAP/

4. Brown, M. R. FastCGI – A High-Performance Gateway Interface, position paper at
"Programming the Web - a search for APIs" workshop, Fifth International World Wide Web
Conference, (Paris, France, 6 May 1996). Available http://www.fastcgi.com/
devkit/doc/www5-api-workshop.html

5. Clark, J. (editor) XSL Transformations Version 1.0, W3C Recommendation, (November
1999). Available http://www.w3.org/TR/xslt

6. Computer Science Teaching Center; www.cstc.org/. Accessed 26 June 2002
7. Dublin Core Metadata Initiative. Dublin Core Metadata Element Set Version 1.1: Reference

Description, 1997. Available http://www.dublincore.org/documents/dces/.
8. EPrints; http://www.eprints.org/. Accessed 26 June 2002
9. Gladney, H., Ahmed, Z., Ashany, R., Belkin, N. J., Fox, E. A., and Zemankova, M. Digital

Library: Gross Structure and Requirements (Report from a Workshop), IBM Almaden
Research Center, Research Report RJ9840, May 1994. Available
http://www.ifla.org.sg/documents/libraries/net/rj9840.pdf

10. Kahn, R., and Wilensky, R. A Framework for Distributed Digital Object Services, CNRI,
1995. Available http://www.cnri.reston.va.us/k-w.html.

11. Lagoze., C., and Davis, J. R. Dienst – An Architecture for Distributed Document Libraries,
in Commun. ACM 38, 4 (April 1995), 47.

12. Lagoze, C., and Van de Sompel, H. The Open Archives Initiative: Building a low-barrier
interoperability framework, in Proceedings of JCDL 2001 (Roanoke VA, June 2001), ACM
Press, 54-62.

13. Leiner, B. M. The NCSTRL Approach to Open Architecture, in D-Lib Magazine 4, 11
(December 1998). Available http://www.dlib.org/dlib/december98/leiner/12leiner.html

14. Nichols, Bill. Open Meta Tools, in BYTE Magazine, 25 February 2002. Available
http://www.byte.com/documents/s=7023/byt1014229948533/0225_nicholls.html

15. Ogbuji, U. Using WSDL in SOAP Applications, IBM developerWorks, (November 2000).
Available http://www-106.ibm.com/developerworks/webservices/library/ws-soap/index.
html

16. Paepcke, A., Brandriff, R., Janee, G., Larson, R., Ludaescher, B., Melnik, S., and Raghavan
S. Search Middleware and the Simple Digital Library Interoperability Protocol, in D-Lib
Magazine 6, 3 (March 2000). Available http://www.dlib.org/dlib/march00/paepcke/
03paepcke.html

17. Payette, S., and Lagoze, C. Flexible and Extensible Digital Object and Repository
Architecture, in Proceedings of Second European Conference on Research and Advanced
Technology for Digital Libraries (Heraklion, Crete, Greece, September 21-23 1998),
Springer, 1998, (Lecture notes in computer science; Vol. 1513).

18. Repository-in-a-Box; http://www.nhse.org/RIB/. Accessed 26 June 2002
19. SpeedyCGI; http://daemoninc.com/speedycgi/. Accessed 26 June 2002
20. Suleman, H. Enforcing Interoperability with the Open Archives Initiative Repository

Explorer, in Proceedings of JCDL 2001, (Roanoke, VA, June 2001), ACM Press, 63-64.
21. Suleman, H., Atkins, A., Gonçalves, M. A., France, R. K., Fox, E. A., Chachra, V.,

Crowder, M., and Young, J. Networked Digital Library of Theses and Dissertations:
Bridging the Gaps for Global Access - Part 1: Mission and Progress, and Part 2: Services
and Research, in D-Lib Magazine 7, 9 (September 2001). Available
http://www.dlib.org/dlib/september01/suleman/09suleman-pt1.html and http://www.dlib.
org/dlib/september01/suleman/09suleman-pt2.html.

22. Suleman, H., and Fox, E. A. A Framework for Building Open Digital Libraries, in D-Lib
Magazine 7, 12 (December 2001). Available http://www.dlib.org/dlib/december01/
suleman/12suleman.html.

23. Suleman, H., and Fox, E. A. Beyond Harvesting: Digital Library Components as OAI
Extensions, Technical Report, Department of Computer Science, Virginia Tech (January
2001).

24. Van de Sompel, H., and Lagoze, C. The Open Archives Initiative Protocol for Metadata
Harvesting. Open Archives Initiative, 2001. Available http://www.openarchives.org/
OAI_protocol/openarchivesprotocol.html.

25. Wang, Jun. VIDI: A Lightweight Protocol Between Visualization Tools and Digital
Libraries, Master’s Thesis, Virginia Tech (May 2002).

